1
|
Marshall AR, Waite CE, Pfeifer M, Banin LF, Rakotonarivo S, Chomba S, Herbohn J, Gilmour DA, Brown M, Chazdon RL. Fifteen essential science advances needed for effective restoration of the world's forest landscapes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210065. [PMID: 36373922 PMCID: PMC9661955 DOI: 10.1098/rstb.2021.0065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
There has never been a more pressing and opportune time for science and practice to collaborate towards restoration of the world's forests. Multiple uncertainties remain for achieving successful, long-term forest landscape restoration (FLR). In this article, we use expert knowledge and literature review to identify knowledge gaps that need closing to advance restoration practice, as an introduction to a landmark theme issue on FLR and the UN Decade on Ecosystem Restoration. Aligned with an Adaptive Management Cycle for FLR, we identify 15 essential science advances required to facilitate FLR success for nature and people. They highlight that the greatest science challenges lie in the conceptualization, planning and assessment stages of restoration, which require an evidence base for why, where and how to restore, at realistic scales. FLR and underlying sciences are complex, requiring spatially explicit approaches across disciplines and sectors, considering multiple objectives, drivers and trade-offs critical for decision-making and financing. The developing tropics are a priority region, where scientists must work with stakeholders across the Adaptive Management Cycle. Clearly communicated scientific evidence for action at the outset of restoration planning will enable donors, decision makers and implementers to develop informed objectives, realistic targets and processes for accountability. This article paves the way for 19 further articles in this theme issue, with author contributions from across the world. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Andrew R. Marshall
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
- Department of Environment and Geography, University of York, York YO10 5DD, UK
- Reforest Africa, Mang'ula, Tanzania
- Flamingo Land Ltd, Kirby Misperton, North Yorkshire YO17 6UX, UK
| | - Catherine E. Waite
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| | - Marion Pfeifer
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Lindsay F. Banin
- UK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Sarobidy Rakotonarivo
- École Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 566 Antananarivo, Madagascar
| | | | - John Herbohn
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| | - Donald A. Gilmour
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| | - Mark Brown
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| | - Robin L. Chazdon
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| |
Collapse
|
2
|
Lewis SL. Realizing the potential of restoration science. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210174. [PMID: 36373923 PMCID: PMC9661940 DOI: 10.1098/rstb.2021.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Restoration science is growing fast. The restoration of habitats is increasingly part of the discussion over how to tackle the challenges of climate change, biodiversity loss and rural development. With this increasing role and attendant visibility, restoration science has seen increasing controversy. Here I describe six aspects of robust restoration science that should be kept in mind to help realize its potential: do data-driven studies; focus on robust results; improve reproducibility; contextualize the results; give attention to economics; consider the wider goals of restoration. Realizing the potential of restoration science, via robust scientific studies, will provide society with the knowledge and tools to make better choices about which habitats to restore and where. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Simon L. Lewis
- Department of Geography, University College London, WC1E 6BT London, UK
- School of Geography, University of Leeds, LS2 9JT Leeds, UK
| |
Collapse
|