1
|
Ferreira EA, Moore CC, Ogereau D, Suwalski A, Prigent SR, Rogers RL, Yassin A. Genomic Islands of Divergence Between Drosophila yakuba Subspecies are Predominantly Driven by Chromosomal Inversions and the Recombination Landscape. Mol Ecol 2025; 34:e17627. [PMID: 39690859 PMCID: PMC11757039 DOI: 10.1111/mec.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
During the early stages of local adaptation and speciation, genetic differences tend to accumulate at certain regions of the genome leading to the formation of genomic islands of divergence (GIDs). This pattern may be due to selection and/or difference in the rate of recombination. Here, we investigate the possible causes of GIDs in Drosophila yakuba mayottensis, and reconfirm using field collection its association with toxic noni (Morinda citrifolia) fruits on the Mayotte island. Population genomics revealed lack of genetic structure on the island and identified 23 GIDs distinguishing D. y. mayottensis from generalist mainland populations of D. y. yakuba. The GIDs were enriched with gene families involved in the metabolism of lipids, sugars, peptides and xenobiotics, suggesting a role in host shift. We assembled a new genome for D. y. mayottensis and identified five novel chromosomal inversions. Twenty one GIDs (~99% of outlier windows) fell in low recombining regions or subspecies-specific inversions. However, only two GIDs were in collinear, normally recombining regions suggesting a signal of hard selective sweeps. Unlike D. y. mayottensis, D. sechellia, the only other noni-specialist, is known to be homosequential with its generalist relatives. Thus, whereas structural variation may disproportionally shape GIDs in some species, striking parallel adaptations can occur between species despite distinct genomic architectures.
Collapse
Affiliation(s)
- Erina A. Ferreira
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Cathy C. Moore
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte NC, USA
| | - David Ogereau
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
| | - Arnaud Suwalski
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Stéphane R. Prigent
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Rebekah L. Rogers
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte NC, USA
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
2
|
Lesturgie P, Denton JSS, Yang L, Corrigan S, Kneebone J, Laso-Jadart R, Lynghammar A, Fedrigo O, Mona S, Naylor GJP. Short-term evolutionary implications of an introgressed size-determining supergene in a vulnerable population. Nat Commun 2025; 16:1096. [PMID: 39870630 PMCID: PMC11772779 DOI: 10.1038/s41467-025-56126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025] Open
Abstract
The Thorny Skate (Amblyraja radiata) is a vulnerable species displaying a discrete size-polymorphism in the northwest Atlantic Ocean (NWA). We conducted whole genome sequencing of samples collected across its range. Genetic diversity was similar at all sampled sites, but we discovered a ~ 31 megabase bi-allelic supergene associated with the size polymorphism, with the larger size allele having introgressed in the last ~160,000 years B.P. While both Gulf of Maine (GoM) and Canadian (CAN) populations exhibit the size polymorphism, we detected a significant deficit of heterozygotes at the supergene and longer stretches of homozygosity in GoM population. This suggests inbreeding driven by assortative mating for size in GoM but not in CAN. Coalescent-based demographic modelling reveals strong migration between regions maintaining genetic variability in the recombining genome, preventing speciation between morphs. This study highlights short-term context-dependent evolutionary consequences of a size-determining supergene providing new insights for the management of vulnerable species.
Collapse
Affiliation(s)
- Pierre Lesturgie
- Florida Museum of Natural History, Dickinson Hall, 1659 Museum Road, Gainesville, FL, 32611, USA.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
- cE3c - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - John S S Denton
- Department of Ichthyology, American Museum of Natural History, Central Park West @ 79th Street, New York, NY, 10024, USA
| | - Lei Yang
- Florida Museum of Natural History, Dickinson Hall, 1659 Museum Road, Gainesville, FL, 32611, USA
| | - Shannon Corrigan
- Florida Museum of Natural History, Dickinson Hall, 1659 Museum Road, Gainesville, FL, 32611, USA
| | - Jeff Kneebone
- Anderson Cabot Center for Ocean Life at the New England Aquarium, 1 Central Wharf, Boston, MA, 02110, USA
| | - Romuald Laso-Jadart
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- EPHE, PSL Research University, Paris, France
| | - Arve Lynghammar
- UiT The Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, The Norwegian College of Fishery Science, NO-9037 Breivika, Tromsø, Norway
| | | | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
- EPHE, PSL Research University, Paris, France.
| | - Gavin J P Naylor
- Florida Museum of Natural History, Dickinson Hall, 1659 Museum Road, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Steward RA, Ortega Giménez J, Choudhary S, Moss O, Su Y, Van Aken O, Runemark A. Evolved and Plastic Gene Expression in Adaptation of a Specialist Fly to a Novel Niche. Mol Ecol 2025:e17653. [PMID: 39783891 DOI: 10.1111/mec.17653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
How gene expression evolves to enable divergent ecological adaptation and how changes in gene expression relate to genomic architecture are pressing questions for understanding the mechanisms enabling adaptation and ecological speciation. Furthermore, how plasticity in gene expression can both contribute to and be affected by the process of ecological adaptation is crucial to understanding gene expression evolution, colonisation of novel niches and response to rapid environmental change. Here, we investigate the role of constitutive and plastic gene expression differences between host races, or host-specific ecotypes, of the peacock fly Tephritis conura, a thistle bud specialist. By cross-fostering larvae to new buds of their natal host plant or the alternative, novel host plant, we uncover extensive constitutive differences in gene expression between the host races, especially genes associated with processing of host plant chemicals. However, evidence for expression plasticity was minimal and limited to the ancestral host race. Genes with host race-specific expression are found more often than expected within a large inversion in the T. conura genome, adding to evidence that inversions are important for enabling diversification in the face of gene flow and underscores that altered gene expression may be key to understanding the evolutionary consequences of inversions.
Collapse
Affiliation(s)
| | - Jesús Ortega Giménez
- Department of Biology, Lund University, Lund, Sweden
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universidad de Valencia, Paterna, Spain
| | - Shruti Choudhary
- Department of Biology, Lund University, Lund, Sweden
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences Umeå, Umeå, Sweden
| | - Oliver Moss
- Department of Biology, Lund University, Lund, Sweden
- Department of Plant Breeding, Swedish University of Agricultural Sciences Alnarp, Lomma, Sweden
| | - Yi Su
- Department of Biology, Lund University, Lund, Sweden
| | | | - Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Combrink LL, Golcher-Benavides J, Lewanski AL, Rick JA, Rosenthal WC, Wagner CE. Population Genomics of Adaptive Radiation. Mol Ecol 2025; 34:e17574. [PMID: 39717932 DOI: 10.1111/mec.17574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/25/2024]
Abstract
Adaptive radiations are rich laboratories for exploring, testing, and understanding key theories in evolution and ecology because they offer spectacular displays of speciation and ecological adaptation. Particular challenges to the study of adaptive radiation include high levels of species richness, rapid speciation, and gene flow between species. Over the last decade, high-throughput sequencing technologies and access to population genomic data have lessened these challenges by enabling the analysis of samples from many individual organisms at whole-genome scales. Here we review how population genomic data have facilitated our knowledge of adaptive radiation in five key areas: (1) phylogenetics, (2) hybridization, (3) timing and rates of diversification, (4) the genomic basis of trait evolution, and (5) the role of genome structure in divergence. We review current knowledge in each area, highlight outstanding questions, and focus on methods that facilitate detection of complex patterns in the divergence and demography of populations through time. It is clear that population genomic data are revolutionising the ability to reconstruct evolutionary history in rapidly diversifying clades. Additionally, studies are increasingly emphasising the central role of gene flow, re-use of standing genetic variation during adaptation, and structural genomic elements as facilitators of the speciation process in adaptive radiations. We highlight hybridization-and the hypothesized processes by which it shapes diversification-and questions seeking to bridge the divide between microevolutionary and macroevolutionary processes as rich areas for future study. Overall, access to population genomic data has facilitated an exciting era in adaptive radiation research, with implications for deeper understanding of fundamental evolutionary processes across the tree of life.
Collapse
Affiliation(s)
- Lucia L Combrink
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Jimena Golcher-Benavides
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Biology Department, Hope College, Holland, Michigan, USA
| | - Alexander L Lewanski
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jessica A Rick
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - William C Rosenthal
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
5
|
St. John CA, Timm LE, Gruenthal KM, Larson WA. Whole Genome Sequencing Reveals Substantial Genetic Structure and Evidence of Local Adaptation in Alaskan Red King Crab. Evol Appl 2025; 18:e70049. [PMID: 39742389 PMCID: PMC11686092 DOI: 10.1111/eva.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 01/03/2025] Open
Abstract
High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution. Managers have identified stock structure and local adaptation as crucial information to help understand biomass declines and how to potentially reverse them, with regulation and possible stock enhancement. We generated low-coverage whole genome sequencing (lcWGS) data on red king crabs from five regions: The Aleutian Islands, eastern Bering Sea, northern Bering Sea, Gulf of Alaska, and Southeast Alaska. We used data from millions of genetic markers generated from lcWGS to build on previous studies of population structure in Alaska that used < 100 markers and to investigate local adaptation. We found each of the regions formed their own distinct genetic clusters, some containing subpopulation structure. Most notably, we found that the Gulf of Alaska and eastern Bering Sea were significantly differentiated, something that had not been previously documented. Inbreeding in each region was low and not a concern for fisheries management. We found genetic patterns consistent with local adaptation on several chromosomes and one particularly strong signal on chromosome 100. At this locus, the Gulf of Alaska harbors distinct genetic variation that could facilitate local adaptation to their environment. Our findings support the current practice of managing red king crab at a regional scale, and they strongly favor sourcing broodstock from the target population if stock enhancement is considered to avoid genetic mismatch.
Collapse
Affiliation(s)
- Carl A. St. John
- Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| | - Laura E. Timm
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
- College of Fisheries and Ocean Sciences, University of Alaska FairbanksFairbanksAlaskaUSA
| | - Kristen M. Gruenthal
- Alaska Department of Fish and Game, Division of Commercial Fisheries, Gene Conservation LaboratoryJuneauAlaskaUSA
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
6
|
Mykhailenko A, Zieliński P, Bednarz A, Schlyter F, Andersson MN, Antunes B, Borowski Z, Krokene P, Melin M, Morales-García J, Müller J, Nowak Z, Schebeck M, Stauffer C, Viiri H, Zaborowska J, Babik W, Nadachowska-Brzyska K. Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest. Genome Biol Evol 2024; 16:evae263. [PMID: 39656753 DOI: 10.1093/gbe/evae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.
Collapse
Affiliation(s)
- Anastasiia Mykhailenko
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aleksandra Bednarz
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Fredrik Schlyter
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, 234 22 Lomma, Sweden
- ETM, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Praha, Czechia
| | | | - Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Zbigniew Borowski
- Departament of Forest Ecology, Forest Research Institute, 05-090 Raszyn, Poland
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Markus Melin
- Forest Health and Bidiversity Group, Natural Resources Institute Finland, 80100 Joensuu, Finland
| | - Julia Morales-García
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, 94481 Grafenau, Germany
| | - Zuzanna Nowak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Christian Stauffer
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Heli Viiri
- UPM Forest, UPM-Kymmene, 33100 Tampere, Finland
| | - Julia Zaborowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | | |
Collapse
|
7
|
Augustijnen H, Arias-Sardá C, Farré M, Lucek K. A Genomic Update on the Evolutionary Impact of Chromosomal Rearrangements. Mol Ecol 2024; 33:e17602. [PMID: 39585199 DOI: 10.1111/mec.17602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Affiliation(s)
- Hannah Augustijnen
- Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Marta Farré
- School of Biosciences, University of Kent, Kent, UK
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
8
|
Euclide PT, Larson WA, Shi Y, Gruenthal K, Christensen KA, Seeb J, Seeb L. Conserved islands of divergence associated with adaptive variation in sockeye salmon are maintained by multiple mechanisms. Mol Ecol 2024; 33:e17126. [PMID: 37695544 PMCID: PMC11628665 DOI: 10.1111/mec.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Local adaptation is facilitated by loci clustered in relatively few regions of the genome, termed genomic islands of divergence. The mechanisms that create and maintain these islands and how they contribute to adaptive divergence is an active research topic. Here, we use sockeye salmon as a model to investigate both the mechanisms responsible for creating islands of divergence and the patterns of differentiation at these islands. Previous research suggested that multiple islands contributed to adaptive radiation of sockeye salmon. However, the low-density genomic methods used by these studies made it difficult to fully elucidate the mechanisms responsible for islands and connect genotypes to adaptive variation. We used whole genome resequencing to genotype millions of loci to investigate patterns of genetic variation at islands and the mechanisms that potentially created them. We discovered 64 islands, including 16 clustered in four genomic regions shared between two isolated populations. Characterisation of these four regions suggested that three were likely created by structural variation, while one was created by processes not involving structural variation. All four regions were small (< 600 kb), suggesting low recombination regions do not have to span megabases to be important for adaptive divergence. Differentiation at islands was not consistently associated with established population attributes. In sum, the landscape of adaptive divergence and the mechanisms that create it are complex; this complexity likely helps to facilitate fine-scale local adaptation unique to each population.
Collapse
Affiliation(s)
- Peter T. Euclide
- Department of Forestry and Natural ResourcesIllinois‐Indiana Sea GrantPurdue UniversityWest LafayetteIndianaUSA
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| | - Yue Shi
- College of Fisheries and Ocean Sciences, University of Alaska FairbanksJuneauAlaskaUSA
| | - Kristen Gruenthal
- Alaska Department of Fish and GameJuneauAlaskaUSA
- Office of Applied Science, Wisconsin Department of Natural Resources, Wisconsin Cooperative Fishery Research UnitCollege of Natural Resources, University of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | | | - Jim Seeb
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Lisa Seeb
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
9
|
Dunn PO, Sly ND, Freeman-Gallant CR, Henschen AE, Bossu CM, Ruegg KC, Minias P, Whittingham LA. Sexually selected differences in warbler plumage are related to a putative inversion on the Z chromosome. Mol Ecol 2024; 33:e17525. [PMID: 39268700 DOI: 10.1111/mec.17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.
Collapse
Affiliation(s)
- Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Amberleigh E Henschen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Linda A Whittingham
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Lee A, Daniels BN, Hemstrom W, López C, Kagaya Y, Kihara D, Davidson JM, Toonen RJ, White C, Christie MR. Genetic adaptation despite high gene flow in a range-expanding population. Mol Ecol 2024:e17511. [PMID: 39215560 DOI: 10.1111/mec.17511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Signals of natural selection can be quickly eroded in high gene flow systems, curtailing efforts to understand how and when genetic adaptation occurs in the ocean. This long-standing, unresolved topic in ecology and evolution has renewed importance because changing environmental conditions are driving range expansions that may necessitate rapid evolutionary responses. One example occurs in Kellet's whelk (Kelletia kelletii), a common subtidal gastropod with an ~40- to 60-day pelagic larval duration that expanded their biogeographic range northwards in the 1970s by over 300 km. To test for genetic adaptation, we performed a series of experimental crosses with Kellet's whelk adults collected from their historical (HxH) and recently expanded range (ExE), and conducted RNA-Seq on offspring that we reared in a common garden environment. We identified 2770 differentially expressed genes (DEGs) between 54 offspring samples with either only historical range (HxH offspring) or expanded range (ExE offspring) ancestry. Using SNPs called directly from the DEGs, we assigned samples of known origin back to their range of origin with unprecedented accuracy for a marine species (92.6% and 94.5% for HxH and ExE offspring, respectively). The SNP with the highest predictive importance occurred on triosephosphate isomerase (TPI), an essential metabolic enzyme involved in cold stress response. TPI was significantly upregulated and contained a non-synonymous mutation in the expanded range. Our findings pave the way for accurately identifying patterns of dispersal, gene flow and population connectivity in the ocean by demonstrating that experimental transcriptomics can reveal mechanisms for how marine organisms respond to changing environmental conditions.
Collapse
Affiliation(s)
- Andy Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Benjamin N Daniels
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - William Hemstrom
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Cataixa López
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Jean M Davidson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Crow White
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Le Moan A, Stankowski S, Rafajlović M, Ortega-Martinez O, Faria R, Butlin RK, Johannesson K. Coupling of twelve putative chromosomal inversions maintains a strong barrier to gene flow between snail ecotypes. Evol Lett 2024; 8:575-586. [PMID: 39479507 PMCID: PMC11523631 DOI: 10.1093/evlett/qrae014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 11/02/2024] Open
Abstract
Chromosomal rearrangements can lead to the coupling of reproductive barriers, but whether and how they contribute to the completion of speciation remains unclear. Marine snails of the genus Littorina repeatedly form hybrid zones between populations segregating for multiple inversion arrangements, providing opportunities to study their barrier effects. Here, we analyzed 2 adjacent transects across hybrid zones between 2 ecotypes of Littorina fabalis ("large" and "dwarf") adapted to different wave exposure conditions on a Swedish island. Applying whole-genome sequencing, we found 12 putative inversions on 9 of 17 chromosomes. Nine of the putative inversions reached near differential fixation between the 2 ecotypes, and all were in strong linkage disequilibrium. These inversions cover 20% of the genome and carry 93% of divergent single nucleotide polymorphisms (SNPs). Bimodal hybrid zones in both transects indicated that the 2 ecotypes of Littorina fabalis maintain their genetic and phenotypic integrity following contact. The bimodality reflects the strong coupling between inversion clines and the extension of the barrier effect across the whole genome. Demographic inference suggests that coupling arose during a period of allopatry and has been maintained for > 1,000 generations after secondary contact. Overall, this study shows that the coupling of multiple chromosomal inversions contributes to strong reproductive isolation. Notably, 2 of the putative inversions overlap with inverted genomic regions associated with ecotype differences in a closely related species (Littorina saxatilis), suggesting the same regions, with similar structural variants, repeatedly contribute to ecotype evolution in distinct species.
Collapse
Affiliation(s)
- Alan Le Moan
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
- Adaptation et Diversité en Milieu Marin, UMR7144, Station Biologique de Roscoff, Sorbonne Université, 29680 Roscoff, France
| | - Sean Stankowski
- Institute of Science and Technology Austria, 3 21 44 Klosterneuburg, Austria
| | - Marina Rafajlović
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Olga Ortega-Martinez
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Roger K Butlin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| |
Collapse
|
12
|
Zhang J, Schneller NM, Field MA, Chan CX, Miller DJ, Strugnell JM, Riginos C, Bay L, Cooke I. Chromosomal inversions harbour excess mutational load in the coral, Acropora kenti, on the Great Barrier Reef. Mol Ecol 2024; 33:e17468. [PMID: 39046252 DOI: 10.1111/mec.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The future survival of coral reefs in the Anthropocene depends on the capacity of corals to adapt as oceans warm and extreme weather events become more frequent. Targeted interventions designed to assist evolutionary processes in corals require a comprehensive understanding of the distribution and structure of standing variation, however, efforts to map genomic variation in corals have so far focussed almost exclusively on SNPs, overlooking structural variants that have been shown to drive adaptive processes in other taxa. Here, we show that the reef-building coral, Acropora kenti, harbours at least five large, highly polymorphic structural variants, all of which exhibit signatures of strongly suppressed recombination in heterokaryotypes, a feature commonly associated with chromosomal inversions. Based on their high minor allele frequency, uniform distribution across habitats and elevated genetic load, we propose that these inversions in A. kenti are likely to be under balancing selection. An excess of SNPs with high impact on protein-coding genes within these loci elevates their importance both as potential targets for adaptive selection and as contributors to genetic decline if coral populations become fragmented or inbred in future.
Collapse
Affiliation(s)
- Jia Zhang
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadja M Schneller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matt A Field
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Line Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ira Cooke
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
13
|
Mackintosh C, Scott MF, Reuter M, Pomiankowski A. Locally adaptive inversions in structured populations. Genetics 2024; 227:iyae073. [PMID: 38709495 DOI: 10.1093/genetics/iyae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Inversions have been proposed to facilitate local adaptation, by linking together locally coadapted alleles at different loci. Prior work addressing this question theoretically has considered the spread of inversions in "continent-island" scenarios in which there is a unidirectional flow of maladapted migrants into the island population. In this setting, inversions capturing locally adaptive haplotypes are most likely to invade when selection is weak, because stronger local selection (i) more effectively purges maladaptive alleles and (ii) generates linkage disequilibrium between adaptive alleles, thus lessening the advantage of inversions. We show this finding only holds under limited conditions by studying the establishment of inversions in a more general two-deme model, which explicitly considers the dynamics of allele frequencies in both populations linked by bidirectional migration. In this model, the level of symmetry between demes can be varied from complete asymmetry (continent-island) to complete symmetry. For symmetric selection and migration, strong selection increases the allele frequency divergence between demes thereby increasing the frequency of maladaptive alleles in migrants, favoring inversions-the opposite of the pattern seen in the asymmetric continent-island scenario. We also account for the likelihood that a new inversion captures an adaptive haplotype in the first instance. When considering the combined process of capture and invasion in "continent island" and symmetric scenarios, relatively strong selection increases inversion establishment probability. Migration must also be low enough that the inversion is likely to capture an adaptive allele combination, but not so low as to eliminate the inversion's advantage. Overall, our analysis suggests that inversions are likely to harbor larger effect alleles that experience relatively strong selection.
Collapse
Affiliation(s)
- Carl Mackintosh
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff 29680, France
- Sorbonne Universités, UPMC Université Paris VI, Roscoff 29680, France
| | - Michael F Scott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Max Reuter
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
14
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
15
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
16
|
Nunez JCB, Lenhart BA, Bangerter A, Murray CS, Mazzeo GR, Yu Y, Nystrom TL, Tern C, Erickson PA, Bergland AO. A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila. Genetics 2024; 226:iyad207. [PMID: 38051996 PMCID: PMC10847723 DOI: 10.1093/genetics/iyad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Fluctuations in the strength and direction of natural selection through time are a ubiquitous feature of life on Earth. One evolutionary outcome of such fluctuations is adaptive tracking, wherein populations rapidly adapt from standing genetic variation. In certain circumstances, adaptive tracking can lead to the long-term maintenance of functional polymorphism despite allele frequency change due to selection. Although adaptive tracking is likely a common process, we still have a limited understanding of aspects of its genetic architecture and its strength relative to other evolutionary forces such as drift. Drosophila melanogaster living in temperate regions evolve to track seasonal fluctuations and are an excellent system to tackle these gaps in knowledge. By sequencing orchard populations collected across multiple years, we characterized the genomic signal of seasonal demography and identified that the cosmopolitan inversion In(2L)t facilitates seasonal adaptive tracking and shows molecular footprints of selection. A meta-analysis of phenotypic studies shows that seasonal loci within In(2L)t are associated with behavior, life history, physiology, and morphological traits. We identify candidate loci and experimentally link them to phenotype. Our work contributes to our general understanding of fluctuating selection and highlights the evolutionary outcome and dynamics of contemporary selection on inversions.
Collapse
Affiliation(s)
- Joaquin C B Nunez
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Benedict A Lenhart
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Alyssa Bangerter
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Connor S Murray
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Giovanni R Mazzeo
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Yang Yu
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Taylor L Nystrom
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Courtney Tern
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Priscilla A Erickson
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Alan O Bergland
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| |
Collapse
|
17
|
Klein JD, Maduna SN, Dicken ML, da Silva C, Soekoe M, McCord ME, Potts WM, Hagen SB, Bester‐van der Merwe AE. Local adaptation with gene flow in a highly dispersive shark. Evol Appl 2024; 17:e13628. [PMID: 38283610 PMCID: PMC10810256 DOI: 10.1111/eva.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024] Open
Abstract
Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non-model species, gene-environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome-wide SNPs obtained through a restriction site-associated DNA method (3RAD). A combination of differentiation-based genome-scan (outflank) and genotype-environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation-based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations.
Collapse
Affiliation(s)
- Juliana D. Klein
- Molecular Breeding and Biodiversity Research Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - Simo N. Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research—NIBIOSvanvikNorway
| | - Matthew L. Dicken
- KwaZulu‐Natal Sharks BoardUmhlanga RocksSouth Africa
- Institute for Coastal and Marine Research (CMR), Ocean Sciences CampusNelson Mandela UniversityGqeberhaSouth Africa
| | - Charlene da Silva
- Department of Forestry, Fisheries and EnvironmentRogge BaySouth Africa
| | - Michelle Soekoe
- Division of Marine ScienceReel Science CoalitionCape TownSouth Africa
| | - Meaghen E. McCord
- South African Shark ConservancyHermanusSouth Africa
- Canadian Parks and Wilderness SocietyVancouverBritish ColumbiaCanada
| | - Warren M. Potts
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research—NIBIOSvanvikNorway
| | - Aletta E. Bester‐van der Merwe
- Molecular Breeding and Biodiversity Research Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
18
|
Soudi S, Jahani M, Todesco M, Owens GL, Bercovich N, Rieseberg LH, Yeaman S. Repeatability of adaptation in sunflowers reveals that genomic regions harbouring inversions also drive adaptation in species lacking an inversion. eLife 2023; 12:RP88604. [PMID: 38095362 PMCID: PMC10721221 DOI: 10.7554/elife.88604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Local adaptation commonly involves alleles of large effect, which experience fitness advantages when in positive linkage disequilibrium (LD). Because segregating inversions suppress recombination and facilitate the maintenance of LD between locally adapted loci, they are also commonly found to be associated with adaptive divergence. However, it is unclear what fraction of an adaptive response can be attributed to inversions and alleles of large effect, and whether the loci within an inversion could still drive adaptation in the absence of its recombination-suppressing effect. Here, we use genome-wide association studies to explore patterns of local adaptation in three species of sunflower: Helianthus annuus, Helianthus argophyllus, and Helianthus petiolaris, which each harbour a large number of species-specific inversions. We find evidence of significant genome-wide repeatability in signatures of association to phenotypes and environments, which are particularly enriched within regions of the genome harbouring an inversion in one species. This shows that while inversions may facilitate local adaptation, at least some of the loci can still harbour mutations that make substantial contributions without the benefit of recombination suppression in species lacking a segregating inversion. While a large number of genomic regions show evidence of repeated adaptation, most of the strongest signatures of association still tend to be species-specific, indicating substantial genotypic redundancy for local adaptation in these species.
Collapse
Affiliation(s)
- Shaghayegh Soudi
- Department of Biological Sciences, University of CalgaryCalgaryCanada
| | - Mojtaba Jahani
- Department of Biological Sciences, University of CalgaryCalgaryCanada
- Department of Botany, University of British ColumbiaVancouverCanada
| | - Marco Todesco
- Department of Botany, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
- Irving K. Barber Faculty of Science, University of British Columbia OkanaganKelownaCanada
| | | | | | | | - Sam Yeaman
- Department of Biological Sciences, University of CalgaryCalgaryCanada
| |
Collapse
|
19
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Ulmo‐Diaz G, Engman A, McLarney WO, Lasso Alcalá CA, Hendrickson D, Bezault E, Feunteun E, Prats‐Léon FL, Wiener J, Maxwell R, Mohammed RS, Kwak TJ, Benchetrit J, Bougas B, Babin C, Normandeau E, Djambazian HHV, Chen S, Reiling SJ, Ragoussis J, Bernatchez L. Panmixia in the American eel extends to its tropical range of distribution: Biological implications and policymaking challenges. Evol Appl 2023; 16:1872-1888. [PMID: 38143897 PMCID: PMC10739100 DOI: 10.1111/eva.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 12/26/2023] Open
Abstract
The American eel (Anguilla rostrata) has long been regarded as a panmictic fish and has been confirmed as such in the northern part of its range. In this paper, we tested for the first time whether panmixia extends to the tropical range of the species. To do so, we first assembled a reference genome (975 Mbp, 19 chromosomes) combining long (PacBio and Nanopore and short (Illumina paired-end) reads technologies to support both this study and future research. To test for population structure, we estimated genotype likelihoods from low-coverage whole-genome sequencing of 460 American eels, collected at 21 sampling sites (in seven geographic regions) ranging from Canada to Trinidad and Tobago. We estimated genetic distance between regions, performed ADMIXTURE-like clustering analysis and multivariate analysis, and found no evidence of population structure, thus confirming that panmixia extends to the tropical range of the species. In addition, two genomic regions with putative inversions were observed, both geographically widespread and present at similar frequencies in all regions. We discuss the implications of lack of genetic population structure for the species. Our results are key for the future genomic research in the American eel and the implementation of conservation measures throughout its geographic range. Additionally, our results can be applied to fisheries management and aquaculture of the species.
Collapse
Affiliation(s)
- Gabriela Ulmo‐Diaz
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Augustin Engman
- University of Tennessee Institute of Agriculture, School of Natural ResourcesKnoxvilleTennesseeUSA
| | | | | | - Dean Hendrickson
- Department of Integrative Biology and Biodiversity CollectionsUniversity of Texas at AustinAustinTexasUSA
| | - Etienne Bezault
- UMR 8067 BOREA, Biologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU, IRD, UCN, UA)Université des AntillesPointe‐à‐PitreGuadeloupe
- Caribaea Initiative, Département de BiologieUniversité Des Antilles‐Campus de FouillolePointe‐à‐PitreGuadeloupeFrance
| | - Eric Feunteun
- UMR 7208 BOREABiologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU,IRD, UCN, UA)Station Marine de DinardRennesFrance
- EPHE‐PSLCGEL (Centre de Géoécologie Littorale)DinardFrance
| | | | - Jean Wiener
- Fondation pour la Protection de la Biodiversité Marine (FoProBiM)CaracolHaiti
| | - Robert Maxwell
- Inland Fisheries SectionLouisiana Department of Wildlife and FisheriesLouisianaUSA
| | - Ryan S. Mohammed
- The University of the West Indies (UWI)St. AugustineTrinidad and Tobago
- Present address:
Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Thomas J. Kwak
- US Geological SurveyNorth Carolina Cooperative Fish and Wildlife Research UnitDepartment of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Bérénice Bougas
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Charles Babin
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Eric Normandeau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Haig H. V. Djambazian
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Shu‐Huang Chen
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Sarah J. Reiling
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Jiannis Ragoussis
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| |
Collapse
|
21
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Johnson ZV, Hegarty BE, Gruenhagen GW, Lancaster TJ, McGrath PT, Streelman JT. Cellular profiling of a recently-evolved social behavior in cichlid fishes. Nat Commun 2023; 14:4891. [PMID: 37580322 PMCID: PMC10425353 DOI: 10.1038/s41467-023-40331-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
Social behaviors are diverse in nature, but it is unclear how conserved genes, brain regions, and cell populations generate this diversity. Here we investigate bower-building, a recently-evolved social behavior in cichlid fishes. We use single nucleus RNA-sequencing in 38 individuals to show signatures of recent behavior in specific neuronal populations, and building-associated rebalancing of neuronal proportions in the putative homolog of the hippocampal formation. Using comparative genomics across 27 species, we trace bower-associated genome evolution to a subpopulation of glia lining the dorsal telencephalon. We show evidence that building-associated neural activity and a departure from quiescence in this glial subpopulation together regulate hippocampal-like neuronal rebalancing. Our work links behavior-associated genomic variation to specific brain cell types and their functions, and suggests a social behavior has evolved through changes in glia.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tucker J Lancaster
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
23
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Schaal SM, Wuitchik SJS. Comparative study highlights how gene flow shapes adaptive genomic architecture. Mol Ecol 2023; 32:1545-1548. [PMID: 36785924 DOI: 10.1111/mec.16882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Adaptation to environmental conditions, and the mechanisms underlying these adaptations, can vary greatly among species. This variation can be attributed to a variety of factors including the strength of evolutionary processes like selection, gene flow, time since divergence, and/or genetic drift, as well as the interactions between these processes. A number of simulation and theoretical studies have helped elucidate the role of these processes on the genomic basis of adaptation (Schaal et al., 2022; Yeaman et al., 2016). However, complementary empirical studies to test these theoretical expectations for within-species adaptation have been limited due to the challenging nature of evaluating these processes in a comparative framework. To do this effectively, it is necessary to have systems where the range of environmental variation is similar between species, but where one or more of these evolutionary processes vary. In a From the Cover article in this issue of Molecular Ecology, Shi et al. (2022) provide an excellent example of a freshwater system where rates of gene flow differ between populations of six riverine species due to variation in spawning strategies (i.e., broadcast spawners = high gene flow, nest spawners = low gene flow), but all experience the same variation in environmental conditions across their distributions. The authors take a multivariate approach to evaluate the genomic basis of adaptation by using a combination of differentiation-based and genotype-environment association (GEA) methods. By comparing the amount of gene flow between species and the resulting genomic basis of local adaptation, they are able to infer how genomic architecture may be shaped by rates of gene flow. Their results identify a general pattern of increased genomic clustering in species with increasing levels of gene flow. However, two of six species did not follow this pattern, which could be due to additional factors not assessed. Additionally, they provide convincing evidence that the underlying evolutionary mechanisms that formed genomic clusters within each species vary. These deviations from a general pattern highlight how difficult evaluating these processes in natural populations are, particularly because species-specific responses can vary dramatically. Taken together, their comparative framework for assessing the genomic architecture of adaptation is unique, sheds important light on how evolutionary processes can impact adaptation, and provides robust empirical support of foundational theoretical and simulation studies.
Collapse
Affiliation(s)
- Sara M Schaal
- Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | | |
Collapse
|
25
|
Touchard F, Simon A, Bierne N, Viard F. Urban rendezvous along the seashore: Ports as Darwinian field labs for studying marine evolution in the Anthropocene. Evol Appl 2023; 16:560-579. [PMID: 36793678 PMCID: PMC9923491 DOI: 10.1111/eva.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Humans have built ports on all the coasts of the world, allowing people to travel, exploit the sea, and develop trade. The proliferation of these artificial habitats and the associated maritime traffic is not predicted to fade in the coming decades. Ports share common characteristics: Species find themselves in novel singular environments, with particular abiotic properties-e.g., pollutants, shading, protection from wave action-within novel communities in a melting pot of invasive and native taxa. Here, we discuss how this drives evolution, including setting up of new connectivity hubs and gateways, adaptive responses to exposure to new chemicals or new biotic communities, and hybridization between lineages that would have never come into contact naturally. There are still important knowledge gaps, however, such as the lack of experimental tests to distinguish adaptation from acclimation processes, the lack of studies to understand the putative threats of port lineages to natural populations or to better understand the outcomes and fitness effects of anthropogenic hybridization. We thus call for further research examining "biological portuarization," defined as the repeated evolution of marine species in port ecosystems under human-altered selective pressures. Furthermore, we argue that ports act as giant mesocosms often isolated from the open sea by seawalls and locks and so provide replicated life-size evolutionary experiments essential to support predictive evolutionary sciences.
Collapse
Affiliation(s)
| | - Alexis Simon
- ISEM, EPHE, IRDUniversité MontpellierMontpellierFrance
- Center of Population Biology and Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| | | | | |
Collapse
|
26
|
Tigano A, Russello MA. The genomic basis of reproductive and migratory behaviour in a polymorphic salmonid. Mol Ecol 2022; 31:6588-6604. [PMID: 36208020 DOI: 10.1111/mec.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 01/13/2023]
Abstract
Recent ecotypic differentiation provides unique opportunities to investigate the genomic basis and architecture of local adaptation, while offering insights into how species form and persist. Sockeye salmon (Oncorhynchus nerka) exhibit migratory and resident ("kokanee") ecotypes, which are further distinguished into shore-spawning and stream-spawning reproductive ecotypes. Here, we analysed 36 sockeye (stream-spawning) and kokanee (stream- and shore-spawning) genomes from a system where they co-occur and have recent common ancestry (Okanagan Lake/River in British Columbia, Canada) to investigate the genomic basis of reproductive and migratory behaviour. Examination of the genomic landscape of differentiation, differences in allele frequencies and genotype-phenotype associations revealed three main blocks of sequence differentiation on chromosomes 7, 12 and 20, associated with migratory behaviour, spawning location and spawning timing. Structural variants identified in these same areas suggest they could contribute to ecotypic differentiation directly as causal variants or via maintenance of their genomic architecture through recombination suppression mechanisms. Genes in these regions were related to spatial memory and swimming endurance (SYNGAP, TPM3), as well as eye and brain development (including SIX6), potentially associated with differences in migratory behaviour and visual habitats across spawning locations, respectively. Additional genes (GREB1L, ROCK1) identified here have been associated with timing of migration in other salmonids and could explain variation in timing of O. nerka spawning. Together, these results based on the joint analysis of sequence and structural variation represent a significant advance in our understanding of the genomic landscape of ecotypic differentiation at different stages in the speciation continuum.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael A Russello
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
27
|
Spies I, Tarpey C, Kristiansen T, Fisher M, Rohan S, Hauser L. Genomic differentiation in Pacific cod using Pool-Seq. Evol Appl 2022; 15:1907-1924. [PMID: 36426128 PMCID: PMC9679252 DOI: 10.1111/eva.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Patterns of genetic differentiation across the genome can provide insight into selective forces driving adaptation. We used pooled whole genome sequencing, gene annotation, and environmental covariates to evaluate patterns of genomic differentiation and to investigate mechanisms responsible for divergence among proximate Pacific cod (Gadus macrocephalus) populations from the Bering Sea and Aleutian Islands and more distant Washington Coast cod. Samples were taken from eight spawning locations, three of which were replicated to estimate consistency in allele frequency estimation. A kernel smoothing moving weighted average of relative divergence (F ST) identified 11 genomic islands of differentiation between the Aleutian Islands and Bering Sea samples. In some islands of differentiation, there was also elevated absolute divergence (d XY) and evidence for selection, despite proximity and potential for gene flow. Similar levels of absolute divergence (d XY) but roughly double the relative divergence (F ST) were observed between the distant Bering Sea and Washington Coast samples. Islands of differentiation were much smaller than the four large inversions among Atlantic cod ecotypes. Islands of differentiation between the Bering Sea and Aleutian Island were associated with SNPs from five vision system genes, which can be associated with feeding, predator avoidance, orientation, and socialization. We hypothesize that islands of differentiation between Pacific cod from the Bering Sea and Aleutian Islands provide evidence for adaptive differentiation despite gene flow in this commercially important marine species.
Collapse
Affiliation(s)
- Ingrid Spies
- Resource Ecology and Fisheries Management DivisionAlaska Fisheries Science CenterSeattleWashingtonUSA
| | - Carolyn Tarpey
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | | | - Mary Fisher
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Sean Rohan
- Resource Assessment and Conservation Engineering DivisionAlaska Fisheries Science CenterSeattleWashingtonUSA
| | - Lorenz Hauser
- Resource Ecology and Fisheries Management DivisionAlaska Fisheries Science CenterSeattleWashingtonUSA
| |
Collapse
|
28
|
Koch EL, Ravinet M, Westram AM, Johannesson K, Butlin RK. Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution. Evolution 2022; 76:2332-2346. [PMID: 35994296 PMCID: PMC9826283 DOI: 10.1111/evo.14602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 01/22/2023]
Abstract
Chromosomal inversions have been shown to play a major role in a local adaptation by suppressing recombination between alternative arrangements and maintaining beneficial allele combinations. However, so far, their importance relative to the remaining genome remains largely unknown. Understanding the genetic architecture of adaptation requires better estimates of how loci of different effect sizes contribute to phenotypic variation. Here, we used three Swedish islands where the marine snail Littorina saxatilis has repeatedly evolved into two distinct ecotypes along a habitat transition. We estimated the contribution of inversion polymorphisms to phenotypic divergence while controlling for polygenic effects in the remaining genome using a quantitative genetics framework. We confirmed the importance of inversions but showed that contributions of loci outside inversions are of similar magnitude, with variable proportions dependent on the trait and the population. Some inversions showed consistent effects across all sites, whereas others exhibited site-specific effects, indicating that the genomic basis for replicated phenotypic divergence is only partly shared. The contributions of sexual dimorphism as well as environmental factors to phenotypic variation were significant but minor compared to inversions and polygenic background. Overall, this integrated approach provides insight into the multiple mechanisms contributing to parallel phenotypic divergence.
Collapse
Affiliation(s)
- Eva L. Koch
- School of BiosciencesUniversity of SheffieldSheffieldUK,Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Mark Ravinet
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Anja M. Westram
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria,Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Kerstin Johannesson
- Marine Science, Tjärnö Marine LaboratoryUniversity of GothenburgGothenburgSweden
| | - Roger K. Butlin
- School of BiosciencesUniversity of SheffieldSheffieldUK,Marine Science, Tjärnö Marine LaboratoryUniversity of GothenburgGothenburgSweden
| |
Collapse
|
29
|
Berdan EL, Flatt T, Kozak GM, Lotterhos KE, Wielstra B. Genomic architecture of supergenes: connecting form and function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210192. [PMID: 35694757 PMCID: PMC9189501 DOI: 10.1098/rstb.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Emma L Berdan
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, MA 02747, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
30
|
Westram AM, Faria R, Johannesson K, Butlin R, Barton N. Inversions and parallel evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210203. [PMID: 35694747 PMCID: PMC9189493 DOI: 10.1098/rstb.2021.0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Anja M Westram
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nick Barton
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
31
|
Stenløkk K, Saitou M, Rud-Johansen L, Nome T, Moser M, Árnyasi M, Kent M, Barson NJ, Lien S. The emergence of supergenes from inversions in Atlantic salmon. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210195. [PMID: 35694753 PMCID: PMC9189505 DOI: 10.1098/rstb.2021.0195] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Supergenes link allelic combinations into non-recombining units known to play an essential role in maintaining adaptive genetic variation. However, because supergenes can be maintained over millions of years by balancing selection and typically exhibit strong recombination suppression, both the underlying functional variants and how the supergenes are formed are largely unknown. Particularly, questions remain over the importance of inversion breakpoint sequences and whether supergenes capture pre-existing adaptive variation or accumulate this following recombination suppression. To investigate the process of supergene formation, we identified inversion polymorphisms in Atlantic salmon by assembling eleven genomes with nanopore long-read sequencing technology. A genome assembly from the sister species, brown trout, was used to determine the standard state of the inversions. We found evidence for adaptive variation through genotype-environment associations, but not for the accumulation of deleterious mutations. One young 3 Mb inversion segregating in North American populations has captured adaptive variation that is still segregating within the standard arrangement of the inversion, while some adaptive variation has accumulated after the inversion. This inversion and two others had breakpoints disrupting genes. Three multigene inversions with matched repeat structures at the breakpoints did not show any supergene signatures, suggesting that shared breakpoint repeats may obstruct supergene formation. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Kristina Stenløkk
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Marie Saitou
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Live Rud-Johansen
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Michel Moser
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Matthew Kent
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Nicola Jane Barson
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
32
|
Kim KW, De-Kayne R, Gordon IJ, Omufwoko KS, Martins DJ, Ffrench-Constant R, Martin SH. Stepwise evolution of a butterfly supergene via duplication and inversion. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210207. [PMID: 35694743 PMCID: PMC9189502 DOI: 10.1098/rstb.2021.0207] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Supergenes maintain adaptive clusters of alleles in the face of genetic mixing. Although usually attributed to inversions, supergenes can be complex, and reconstructing the precise processes that led to recombination suppression and their timing is challenging. We investigated the origin of the BC supergene, which controls variation in warning coloration in the African monarch butterfly, Danaus chrysippus. By generating chromosome-scale assemblies for all three alleles, we identified multiple structural differences. Most strikingly, we find that a region of more than 1 million bp underwent several segmental duplications at least 7.5 Ma. The resulting duplicated fragments appear to have triggered four inversions in surrounding parts of the chromosome, resulting in stepwise growth of the region of suppressed recombination. Phylogenies for the inversions are incongruent with the species tree and suggest that structural polymorphisms have persisted for at least 4.1 Myr. In addition to the role of duplications in triggering inversions, our results suggest a previously undescribed mechanism of recombination suppression through independent losses of divergent duplicated tracts. Overall, our findings add support for a stepwise model of supergene evolution involving a variety of structural changes. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Kang-Wook Kim
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Rishi De-Kayne
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ian J Gordon
- Centre of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye Campus, Huye, Rwanda
| | | | - Dino J Martins
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA.,Mpala Research Centre, Nanyuki, Kenya
| | | | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|