1
|
Mapar M, Rydzak T, Hommes JW, Surewaard BGJ, Lewis IA. Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants. Trends Microbiol 2024:S0966-842X(24)00251-8. [PMID: 39393939 DOI: 10.1016/j.tim.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Small colony variants (SCVs) of Staphylococcus aureus are a relatively rare but clinically significant growth morphotype. Infections with SCVs are frequently difficult to treat, inherently antibiotic-resistant, and can lead to persistent infections. Despite a long history of research, the molecular underpinnings of this morphotype and their impact on the clinical trajectory of infections remain unclear. However, a growing body of literature indicates that SCVs are caused by a diverse range of molecular factors. These recent findings suggest that SCVs should be thought of as an ensemble collection of loosely related phenotypes, and not as a single phenomenon. This review describes the diverse mechanisms currently known to contribute to SCVs and proposes an ensemble model for conceptualizing this morphotype.
Collapse
Affiliation(s)
- Maryam Mapar
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Rydzak
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Josefien W Hommes
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bas G J Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Huang W, Li J, Zhu Q, Lv J, Zhu R, Pu C, Zhao H, Fu G, Zhang D. Increasing Vitamin K 2 Synthesis in Bacillus subtilis by Controlling the Expression of MenD and Stabilizing MenA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39373655 PMCID: PMC11487629 DOI: 10.1021/acs.jafc.4c07385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
As an indispensable member of the family of lipid vitamins, vitamin K2 (MK-7) plays an important role in blood coagulation, cardiovascular health, and kidney health. Microbial fermentation is favored due to its high utilization rate of raw materials, simple operation, and moderate conditions. However, the biosynthesis pathway of vitamin K2 in microorganisms is highly complex, which hinders its industrial production in microbial cell factories. One of the major challenges is the stable expression and deregulation of key enzymes in the vitamin K2 biosynthesis pathway, which remains unclear and has undergone little investigation. In this study, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase (MenD) and 1,4-dihydroxy-2-naphthoate polyprenyltransferase (MenA) were identified as pivotal enzymes in the biosynthesis of vitamin K2. To investigate the catalytic efficiency of MenD in the biosynthesis pathway of vitamin K2, structure-based mutation design and site-directed mutagenesis were performed. Three mutation sites were identified in MenD: A115Y, R96 M, and R323M, which improve the expression level and protein stability. Meanwhile, the MenA mutant T290M, which exhibits improved protein stability, was obtained by modifying its hydrophobic stacking structure. Finally, an engineered strain noted ZQ13 that combinatorially overexpressed MenD (A115Y) and MenA (T290M) mutants was constructed and achieved 338.37 mg/L vitamin K2 production in a 3-L fermenter.
Collapse
Affiliation(s)
- Wei Huang
- School
of Biological Engineering, Tianjin University
of Science and Technology, Tianjin 300457, China
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinlong Li
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiyao Zhu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianan Lv
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Rui Zhu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chunxiang Pu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Huabing Zhao
- School
of Biological Engineering, Tianjin University
of Science and Technology, Tianjin 300457, China
| | - Gang Fu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- School
of Biological Engineering, Tianjin University
of Science and Technology, Tianjin 300457, China
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yi Y, Jin X, Chen M, Coldea TE, Yang H, Zhao H. Brij-58 supplementation enhances menaquinone-7 biosynthesis and secretion in Bacillus natto. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12640-y. [PMID: 37358810 DOI: 10.1007/s00253-023-12640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Menaquinone-7 is a form of vitamin K2 that has been shown to have numerous healthy benefits. In this study, several surfactants were investigated to enhance the production of menaquinone-7 in Bacillus natto. Results showed that Brij-58 supplementation influenced the cell membrane via adsorption, and changed the interfacial tension of fermentation broth, while the changes in the state and the composition of the cell membrane enhanced the secretion and biosynthesis of menaquinone-7. The total production and secretion rate of menaquinone-7 increased by 48.0% and 56.2% respectively. During fermentation, the integrity of the cell membrane decreased by 82.9% while the permeability increased by 158% when the maximum secretory rate was reached. Furthermore, Brij-58 supplementation induced the stress response in bacteria, resulting in hyperpolarization of the membrane, and increased membrane ATPase activity. Finally, changes in fatty acid composition increased membrane fluidity by 30.1%. This study provided an effective strategy to enhance menaquinone-7 yield in Bacillus natto and revealed the mechanism of Brij-58 supplementation in menaquinone-7 production. KEY POINTS: • MK-7 yield in Bacillus natto was significantly increased by Brij-58 supplementation. • Brij-58 could be adsorbed on cell surface and change fermentation environment. • Brij-58 supplementation could affect the state and composition of the cell membrane.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca-Napoca, Romania
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Lee BS, Singh S, Pethe K. Inhibiting respiration as a novel antibiotic strategy. Curr Opin Microbiol 2023; 74:102327. [PMID: 37235914 DOI: 10.1016/j.mib.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The approval of the first-in-class antibacterial bedaquiline for tuberculosis marks a breakthrough in antituberculosis drug development. The drug inhibits mycobacterial respiration and represents the validation of a wholly different metabolic process as a druggable target space. In this review, we discuss the advances in the development of mycobacterial respiratory inhibitors, as well as the potential of applying this strategy to other pathogens. The non-fermentative nature of mycobacteria explains their vulnerability to respiration inhibition, and we caution that this strategy may not be equally effective in other organisms. Conversely, we also showcase fundamental studies that reveal ancillary functions of the respiratory pathway, which are crucial to some pathogens' virulence, drug susceptibility and fitness, introducing another perspective of targeting bacterial respiration as an antibiotic strategy.
Collapse
Affiliation(s)
- Bei Shi Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| | - Samsher Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; National Centre for Infectious Diseases, Singapore 308442, Singapore.
| |
Collapse
|
5
|
Richards NGJ, Bearne SL, Goto Y, Parker EJ. Reactivity and mechanism in chemical and synthetic biology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220023. [PMID: 36633278 PMCID: PMC9835593 DOI: 10.1098/rstb.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 01/13/2023] Open
Abstract
Physical organic chemistry and mechanistic thinking provide a strong intellectual framework for understanding the chemical logic of evolvable informational macromolecules and metabolic transformations in living organisms. These concepts have also led to numerous successes in designing and applying tools to delineate biological function in health and disease, chemical ecology and possible alternative chemistries employed by extraterrestrial life. A symposium at the 2020 Pacifichem meeting was scheduled in December 2020 to discuss designing and exploiting expanded genetic alphabets, methods to understand the biosynthesis of natural products and re-engineering primary metabolism in bacteria. The COVID-19 pandemic led to postponement of in-person discussions, with the symposium eventually being held on 20-21 December 2021 as an online event. This issue is a written record of work presented on biosynthetic pathways and enzyme catalysis, engineering microorganisms with new metabolic capabilities, and the synthesis of non-canonical, nucleobases for medical applications and for studies of alternate chemistries for living organisms. The variety of opinion pieces, reviews and original research articles provide a starting point for innovations that clarify how complex biological systems emerge from the rules of chemical reactivity and mechanism. This article is part of the themed issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Advanced Molecular Evolution, 13709 Progress Boulevard, Alachua, FL 32615, USA
| | - Stephen L. Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4R2
| | - Yuki Goto
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Emily J. Parker
- Department of Chemistry, Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand
| |
Collapse
|