1
|
Nojiri T, Werneburg I, Sakai A, Furutera T, Negishi-Koga T, Ishijima M, Ichimura K, Takechi M. Embryonic development and cranial ossification of the Japanese Aodaishō, Elaphe climacophora (Serpentes: Colubridae): with special reference to the prootic bone and auditory evolution in snakes. Anat Rec (Hoboken) 2025; 308:5-25. [PMID: 38992983 DOI: 10.1002/ar.25539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Snakes show remarkably deviated "body plan" from other squamate reptiles. In addition to limb loss, they have accomplished enormous anatomical specialization of the skull associated with the pit organs and the reduction of the tympanic membranes and auditory canals in the outer ears. Despite being the most diverse group of snakes, our knowledge of the embryonic staging for organogenesis and cranial ossification has been minimal for Colubridae. Therefore, in the present observation, we provide the first embryonic description of the Japanese rat snake Elaphe climacophora. We based our study on the Standard Event System (SES) for external anatomical characters and on a description of the cranial ossification during post-ovipositional development. We further estimated the relative ossification timing of each cranial bony element and compared it with that of selected other snakes, lizards, turtles, and crocodilians. The present study shows that the relative ossification timing of the palatine and pterygoid bones is relatively early in squamates when compared to other reptiles, implying the developmental integration as the palate-pterygoid complex in this clade and functional demands for the unique feeding adaptation to swallow large prey with the help of their large palatine and pterygoid teeth. Furthermore, unlike in species with pit organs, the prootic bone of Ela. climacophora is expanded to provide articulation with the supratemporal, thereby contributing to the hearing system by detecting substrate vibration. We also demonstrate that the relative timing of the prootic ossification is significantly accelerated in colubrids compared to snakes with pit organs. Our finding suggests that the temporal changes of the prootic ossification underpin the evolution of the perception of the ground-bourne sound signals among snakes.
Collapse
Affiliation(s)
- Taro Nojiri
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment an der Eberhard Karls Universität, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | | | - Toshiko Furutera
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaki Takechi
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Pommery Y, Koyabu D, Meguro F, Tu VT, Ngamprasertwong T, Wannaprasert T, Nojiri T, Wilson LAB. Prenatal growth patterns of the upper jaw complex with implications for laryngeal echolocation in bats. J Anat 2024. [PMID: 39463142 DOI: 10.1111/joa.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Craniofacial morphology is extremely diversified within bat phylogeny, however growth and development of the palate in bats remains unstudied. The formation of both midline and bilateral orofacial clefts in laryngeally echolocating bats, morphologically similar to the syndromic and non-syndromic cleft palate in humans, are not well understood. Developmental series of prenatal samples (n = 128) and adults (n = 10) of eight bat species (two pteropodids, four rhinolophoids, and two yangochiropterans), and two non-bat mammals (Mus musculus and Erinaceus amurensis), were CT-scanned and cranial bones forming the upper jaw complex were three-dimensionally visualised to assess whether differences in palate development can be observed across bat phylogeny. Volumetric data of bones composing the upper jaw complex were measured to quantify palate growth. The premaxilla is relatively reduced in bats compared to other mammals and its shape is heterogeneous depending on the presence and type of orofacial cleft across bat phylogeny. The palatine process of premaxillary bones is lacking in pteropodids and yangochiropterans, whereas the premaxilla is a mobile structure which is only in contact caudally with the maxilla by a fibrous membrane or suture in rhinolophoids. In all bats, maxillary bones progressively extend caudally and palatine bones, in some cases split into three branches, extend caudally so that they are completely fused to another one medially prior to the birth. Ossification of the vomer and fusion of the maxillary and palatine bones occur earlier in rhinolophoids than in pteropodids and yangochiropterans. The vomer ossifies bilaterally from two different ossification centres in yangochiropterans, which is uncommon in other bats and non-bat mammals. Analysis of ontogenetic allometric trajectories of the upper jaw complex revealed faster development of maxillary, vomer, and palatine bones in yangochiropterans compared to other bats, especially rhinolophoids. Ancestral state reconstruction revealed that yangochiropterans have a higher magnitude of change in ossification rate compared to other bats and E. amurensis a lower magnitude compared to M. musculus and bats. This study provides new evidence of heterochronic shifts in craniofacial development and growth across bat phylogeny that can improve understanding of the developmental differences characterising nasal and oral emission strategies.
Collapse
Affiliation(s)
- Yannick Pommery
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumiya Meguro
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | | | - Thanakul Wannaprasert
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Taro Nojiri
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Laura A B Wilson
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Acton, Australian Capital Territory, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Research School of Physics, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Cardini A. Allometry and phylogenetic divergence: Correspondence or incongruence? Anat Rec (Hoboken) 2024. [PMID: 39045807 DOI: 10.1002/ar.25544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The potential connection between trends of within species variation, such as those of allometric change in morphology, and phylogenetic divergence has been a central topic in evolutionary biology for more than a century, including in the context of human evolution. In this study, I focus on size-related shape change in craniofacial proportions using a sample of more than 3200 adult Old World monkeys belonging to 78 species, of which 2942 specimens of 51 species are selected for the analysis. Using geometric morphometrics, I assess whether the divergence in the direction of static allometries increases in relation to phyletic differences. Because both small samples and taxonomic sampling may bias the results, I explore the sensitivity of the main analyses to the inclusion of more or less taxa depending on the choice of a threshold for the minimum sample size of a species. To better understand the impact of sampling error, I also use randomized subsampling experiments in the largest species samples. The study shows that static allometries vary broadly in directions without any evident phylogenetic signal. This variation is much larger than previously found in ontogenetic trajectories of Old World monkeys, but the conclusion of no congruence with phylogenetic divergence is the same. Yet, the effect of sampling error clearly contributes to inaccuracies and tends to magnify the differences in allometric change. Thus, morphometric research at the boundary between micro- and macro-evolution in primates, and more generally in mammals, critically needs very large and representative samples. Besides sampling error, I suggest other non-mutually exclusive explanations for the lack of correspondence between allometric and phylogenetic divergence in Old World monkeys, and also discuss why directions might be more variable in static compared to ontogenetic trajectories. Even if allometric variation may be a poor source of information in relation to phylogeny, the evolution of allometry is a fascinating subject and the study of size-related shape changes remains a fundamental piece of the puzzle to understand morphological variation within and between species in primates and other animals.
Collapse
Affiliation(s)
- Andrea Cardini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy
- Centre for Forensic Anatomy and Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
4
|
Fostowicz-Frelik Ł, Tseng ZJ. The mammalian skull: development, structure and function. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220077. [PMID: 37183895 PMCID: PMC10184243 DOI: 10.1098/rstb.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The mammalian skull is an informative and versatile study system critical to research efforts across the broad spectrum of molecular, cellular, organismal and evolutionary sciences. The amount of knowledge concerning mammalian skull continues to grow exponentially, fuelled by the advent of new research methods and new material. Computed microtomography, including X-ray imaging using synchrotron radiation, proved to be an important tool for the descriptive and quantitative analysis of cranial anatomy. A major conceptual change, namely combining genetics and development with evolution into 'evo-devo' studies, also contributed to our knowledge of the mammalian skull enormously. These advances, coupled with novel techniques now allow researchers to integrate the process of cranial development with data from the fossil record, which is also augmented by seminal discoveries from Africa, Asia and both Americas. However, for decades, there has been no comprehensive source covering fundamental aspects of this vibrant field of evolutionary biology. To address this gap, we offer in this theme issue a balanced mix of research papers and reviews from leading experts in the field and a younger generation of scientists from five continents. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Łucja Fostowicz-Frelik
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Institute of Paleobiology, Polish Academy of Sciences, 00-818 Warsaw, Poland
| | - Z Jack Tseng
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3200, USA
- University of California Museum of Paleontology, Berkeley, CA 94720, USA
| |
Collapse
|