1
|
Mashzhan A, Kistaubayeva A, Javier-López R, Bissenbay A, Birkeland NK. Caldanaerobacter subterraneus subsp. keratinolyticus subsp. nov., a Novel Feather-Degrading Anaerobic Thermophile. Microorganisms 2024; 12:1277. [PMID: 39065046 PMCID: PMC11278675 DOI: 10.3390/microorganisms12071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Caldanaerobacter subterraneus subsp. keratinolyticus subsp. nov. strain KAk was isolated from a geothermal hot spring located in Kazakhstan. Growth occurred at temperatures ranging from 50 to 80 °C, with approximately 70 °C as optimum. It also thrived in pH conditions ranging from 4.0 to 9.0, with the best growth occurring at 6.8. Under optimal conditions in a glucose-containing medium, the cells were predominantly observed singly, in pairs, or less frequently in chains, and did not form endospores. However, under conditions involving growth with merino wool or feathers, or under suboptimal conditions, the cells of strain KAk exhibited a notably elongated and thinner morphology, with lengths ranging from 5 to 8 µm, and spores were observed. The KAk strain exhibited efficient degradation of feather keratin and merino wool at temperatures ranging from 65 to 70 °C. Analysis of the 16S rRNA gene sequence placed KAk within the genus Caldanaerobacter, family Thermoanaerobacteraceae, with the highest similarity to C. subterraneus subsp. tengcongensis MB4T (98.84% sequence identity). Furthermore, our analysis of the draft genome sequence indicated a genome size of 2.4 Mbp, accompanied by a G+C value of 37.6 mol%. This study elucidated the physiological and genomic characteristics of strain KAk, highlighting its keratinolytic capabilities and distinctiveness compared to other members of the genus Caldanaerobacter.
Collapse
Affiliation(s)
- Akzhigit Mashzhan
- Department of Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan; (A.K.); (A.B.)
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway;
- Science Research Institute of Biology and Biotechnology Peoblem, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
- Almaty Branch of National Center for Biotechnology in Central Reference Laboratory (CRL), Zhahanger St. 14, 050054 Almaty, Kazakhstan
- Department of Botany, E.A. Buketov Karaganda State University, Universitet St. 28, 100028 Karaganda, Kazakhstan
| | - Aida Kistaubayeva
- Department of Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan; (A.K.); (A.B.)
- Science Research Institute of Biology and Biotechnology Peoblem, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Rubén Javier-López
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway;
| | - Akerke Bissenbay
- Department of Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan; (A.K.); (A.B.)
- Almaty Branch of National Center for Biotechnology in Central Reference Laboratory (CRL), Zhahanger St. 14, 050054 Almaty, Kazakhstan
| | - Nils-Kåre Birkeland
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway;
| |
Collapse
|
2
|
DePoy AN, King GM. Putative Nickel-Dependent Anaerobic Carbon Monoxide Uptake Occurs Commonly in Soils and Sediments at Ambient Temperature and Might Contribute to Atmospheric and Sub-Atmospheric Carbon Monoxide Uptake During Anoxic Conditions. Front Microbiol 2022; 13:736189. [PMID: 35401450 PMCID: PMC8987735 DOI: 10.3389/fmicb.2022.736189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon monoxide (CO) occurs naturally in the atmosphere where it plays a critical role in tropospheric chemistry. Atmospheric CO uptake by soils has been well documented as an important CO sink and has been attributed to a group of aerobic bacteria that possess a molybdenum-dependent CO dehydrogenase (Mo-CODH). CO can also be oxidized by obligate Ni-dependent anaerobes (Ni-COX) that possess nickel-dependent CODHs (Ni-CODH) but relatively little is known about their ecology or their potential to contribute to CO dynamics within soils and sediments or to soil-atmosphere CO exchanges. Results from a series of assays undertaken with diverse soils and sediments and CO concentrations of 10 ppm and 25% with incubation temperatures of 10, 25, and 60°C revealed anaerobic uptake rates with 10 ppm CO that were comparable to those measured under oxic conditions; further, anaerobic CO uptake occurred without a lag and at atmospheric and sub-atmospheric CO concentrations. Assays with 25% CO revealed previously undocumented activity at 10°C and showed extensive activity at 25°C. Results from prior studies with isolates and soils suggest that anaerobic uptake at both 10 ppm and 25% CO concentrations might be attributed to Ni-COX. Collectively the results considerably expand the ecological range for Ni-COX and indicate that they could play previously unsuspected roles in soil CO dynamics.
Collapse
|
3
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
4
|
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:99-148. [PMID: 32386607 DOI: 10.1016/bs.aambs.2019.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Omae K, Fukuyama Y, Yasuda H, Mise K, Yoshida T, Sako Y. Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan. Arch Microbiol 2019; 201:969-982. [PMID: 31030239 PMCID: PMC6687684 DOI: 10.1007/s00203-019-01661-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
In hydrothermal environments, carbon monoxide (CO) utilisation by thermophilic hydrogenogenic carboxydotrophs may play an important role in microbial ecology by reducing toxic levels of CO and providing H2 for fuelling microbial communities. We evaluated thermophilic hydrogenogenic carboxydotrophs by microbial community analysis. First, we analysed the correlation between carbon monoxide dehydrogenase (CODH)–energy-converting hydrogenase (ECH) gene cluster and taxonomic affiliation by surveying an increasing genomic database. We identified 71 genome-encoded CODH–ECH gene clusters, including 46 whose owners were not reported as hydrogenogenic carboxydotrophs. We identified 13 phylotypes showing > 98.7% identity with these taxa as potential hydrogenogenic carboxydotrophs in hot springs. Of these, Firmicutes phylotypes such as Parageobacillus, Carboxydocella, Caldanaerobacter, and Carboxydothermus were found in different environmental conditions and distinct microbial communities. The relative abundance of the potential thermophilic hydrogenogenic carboxydotrophs was low. Most of them did not show any symbiotic networks with other microbes, implying that their metabolic activities might be low.
Collapse
Affiliation(s)
- Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Hisato Yasuda
- Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kenta Mise
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan.
| |
Collapse
|
6
|
Barzkar N, Homaei A, Hemmati R, Patel S. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 2018; 22:335-346. [DOI: 10.1007/s00792-018-1009-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
7
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
8
|
Diender M, Stams AJM, Sousa DZ. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation. Front Microbiol 2015; 6:1275. [PMID: 26635746 PMCID: PMC4652020 DOI: 10.3389/fmicb.2015.01275] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/31/2015] [Indexed: 11/29/2022] Open
Abstract
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands ; Centre of Biological Engineering, University of Minho Braga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
9
|
Sant'Anna FH, Lebedinsky AV, Sokolova TG, Robb FT, Gonzalez JM. Analysis of three genomes within the thermophilic bacterial species Caldanaerobacter subterraneus with a focus on carbon monoxide dehydrogenase evolution and hydrolase diversity. BMC Genomics 2015; 16:757. [PMID: 26446804 PMCID: PMC4596419 DOI: 10.1186/s12864-015-1955-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/19/2015] [Indexed: 11/22/2022] Open
Abstract
Background The Caldanaerobacter subterraneus species includes thermophilic fermentative bacteria able to grow on carbohydrates substrates with acetate and L-alanine as the main products. In this study, comprehensive analysis of three genomes of C. subterraneus subspecies was carried in order to identify genes encoding key metabolic enzymes and to document the genomic basis for the evolution of these organisms. Methods Average nucleotide identity and in silico DNA relatedness were estimated for the studied C. subterraneus genomes. Genome synteny was evaluated using R2CAT software. Protein conservation was analyzed using mGenome Subtractor. Horizontal gene transfer was predicted through the GOHTAM pipeline (using tetranucleotide composition) and phylogenetic analyses (by maximum likelihood). Hydrolases were identified through the MEROPS and CAZy platforms. Results The three genomes of C. subterraneus showed high similarity, although there are substantial differences in their gene composition and organization. Each subspecies possesses a gene cluster encoding a carbon monoxide dehydrogenase (CODH) and an energy converting hydrogenase (ECH). The CODH gene is associated with an operon that resembles the Escherichia coli hydrogenase hyc/hyf operons, a novel genetic context distinct from that found in archetypical hydrogenogenic carboxydotrophs. Apart from the CODH-associated hydrogenase, these bacteria also contain other hydrogenases, encoded by ech and hyd genes. An Mbx ferredoxin:NADP oxidoreductase homolog similar to that originally described in the archaeon Pyrococcus furiosus was uniquely encoded in the C. subterraneus subsp. yonseiensis genome. Compositional analysis demonstrated that some genes of the CODH-ECH and mbx operons present distinct sequence patterns in relation to the majority of the other genes of each genome. Phylogenetic reconstructions of the genes from these operons and those from the ech operon are incongruent to the species tree. Notably, the cooS gene of C. subterraneus subsp. pacificus and its homologs in C. subterraneus subsp. tengcongensis and C. subterraneus subsp. yonseiensis form distinct clades. The strains have diverse hydrolytic enzymes and they appear to be proteolytic and glycolytic. Divergent glycosidases from 14 families, among them amylases, chitinases, alpha-glucosidases, beta-glucosidases, and cellulases, were identified. Each of the three genomes also contains around 100 proteases from 50 subfamilies, as well about ten different esterases. Conclusions Genomic information suggests that multiple horizontal gene transfers conferred the adaptation of C. subterraneus subspecies to extreme niches throughout the carbon monoxide utilization and hydrogen production. The variety of hydrolases found in their genomes indicate the versatility of the species in obtaining energy and carbon from diverse substrates, therefore these organisms constitute a remarkable resource of enzymes with biotechnological potential. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1955-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F H Sant'Anna
- Institute of Natural Resources and Agrobiology, Spanish Council for Research, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012, Sevilla, Spain. .,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil.
| | - A V Lebedinsky
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia.
| | - T G Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia.
| | - F T Robb
- Department of Microbiology and Immunology, University of Maryland and Institute of Marine and Environmental Technology, 701 E Pratt Street, Baltimore, MD, 21202, USA.
| | - J M Gonzalez
- Institute of Natural Resources and Agrobiology, Spanish Council for Research, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012, Sevilla, Spain.
| |
Collapse
|
10
|
Rittmann SKM, Lee HS, Lim JK, Kim TW, Lee JH, Kang SG. One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity. Biotechnol Adv 2015; 33:165-177. [DOI: 10.1016/j.biotechadv.2014.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
|
11
|
Yoneda Y, Yoshida T, Yasuda H, Imada C, Sako Y. A thermophilic, hydrogenogenic and carboxydotrophic bacterium, Calderihabitans maritimus gen. nov., sp. nov., from a marine sediment core of an undersea caldera. Int J Syst Evol Microbiol 2013; 63:3602-3608. [PMID: 23606483 DOI: 10.1099/ijs.0.050468-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hydrogenogenic, carboxydotrophic marine bacterium, strain KKC1(T), was isolated from a sediment core sample taken from a submerged marine caldera. Cells were non-motile, Gram-stain-negative, 1.0-3.0 µm straight rods, often observed with round endospores. Strain KKC1(T) grew at 55-68 °C, pH 5.2-9.2 and 0.8-14 % (w/v) salinity. Optimum growth occurred at 65 °C, pH 7.0-7.5 and 2.46 % salinity with a doubling time of 3.7 h. The isolate grew chemolithotrophically, producing H2 from carbon monoxide (CO) oxidation with reduction of various electron acceptors, e.g. sulfite, thiosulfate, fumarate, ferric iron and AQDS (9,10-anthraquinone 2,6-disulfonate). KKC1(T) grew heterotrophically on pyruvate, lactate, fumarate, glucose, fructose and mannose with thiosulfate as an electron acceptor. When grown mixotrophically on CO and pyruvate, C16 : 0 constituted almost half of the total cellular fatty acids. The DNA G+C content was 50.6 mol%. The 16S rRNA gene sequence of KKC1(T) was most closely related to those of members of the genus Moorella with similarity ranging from 91 to 89 %. Based on physiological and phylogenetic novelty, we propose the isolate as a representative of a new genus and novel species with the name Calderihabitans maritimus gen. nov., sp. nov.; the type strain of the type species is KKC1(T) ( = DSM 26464(T) = NBRC 109353(T)).
Collapse
Affiliation(s)
- Yasuko Yoneda
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisato Yasuda
- Center for Advance Marine Core Research, Kochi University, Kochi 783-8502, Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Hydrogen-producing microflora and Fe-Fe hydrogenase diversities in seaweed bed associated with marine hot springs of Kalianda, Indonesia. Curr Microbiol 2013; 66:499-506. [PMID: 23325032 DOI: 10.1007/s00284-013-0302-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Microbial fermentation is a promising technology for hydrogen (H(2)) production. H(2) producers in marine geothermal environments are thermophilic and halotolerant. However, no one has surveyed an environment specifically for thermophilic bacteria that produce H(2) through Fe-Fe hydrogenases (H(2)ase). Using heterotrophic medium, several microflora from a seaweed bed associated with marine hot springs were enriched and analyzed for H(2) production. A H(2)-producing microflora was obtained from Sargassum sp., 16S rRNA genes and Fe-Fe H(2)ase diversities of this enrichment were also analyzed. Based on 16S rRNA genes analysis, 10 phylotypes were found in the H(2)-producing microflora showing 90.0-99.5 % identities to known species, and belonged to Clostridia, Gammaproteobacteria, and Bacillales. Clostridia were the most abundant group, and three Clostridia phylotypes were most related to known H(2) producers such as Anaerovorax odorimutans (94.0 % identity), Clostridium papyrosolvens (98.4 % identity), and Clostridium tepidiprofundi (93.1 % identity). For Fe-Fe H(2)ases, seven phylotypes were obtained, showing 63-97 % identities to known Fe-Fe H(2)ases, and fell into four distinct clusters. Phylotypes HW55-3 and HM55-1 belonged to thermophilic and salt-tolerant H(2)-producing Clostridia, Halothermothrix orenii-like Fe-Fe H(2)ases (80 % identity), and cellulolytic H(2)-producing Clostridia, C. papyrosolvens-like Fe-Fe H(2)ases (97 % identity), respectively. The results of both 16S rRNA genes and Fe-Fe H(2)ases surveys suggested that the thermophilic and halotolerant H(2)-producing microflora in seaweed bed of hot spring area represented previously unknown H(2) producers, and have potential application for H(2) production.
Collapse
|
13
|
Li YL. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans. ASTROBIOLOGY 2012; 12:1100-8. [PMID: 23145573 PMCID: PMC3522128 DOI: 10.1089/ast.2012.0847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/26/2012] [Indexed: 05/19/2023]
Abstract
Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life.
Collapse
Affiliation(s)
- Yi-Liang Li
- Department of Earth Sciences, The University of Hong Kong , Hong Kong.
| |
Collapse
|
14
|
Srinivasan V, Morowitz HJ, Huber H. What is an autotroph? Arch Microbiol 2011; 194:135-40. [DOI: 10.1007/s00203-011-0755-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 07/24/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
15
|
Enzymatic properties and substrate specificity of the trehalose phosphorylase from Caldanaerobacter subterraneus. Appl Environ Microbiol 2011; 77:6939-44. [PMID: 21803886 DOI: 10.1128/aem.05190-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A putative glycoside phosphorylase from Caldanaerobacter subterraneus subsp. pacificus was recombinantly expressed in Escherichia coli, after codon optimization and chemical synthesis of the encoding gene. The enzyme was purified by His tag chromatography and was found to be specifically active toward trehalose, with an optimal temperature of 80°C. In addition, no loss of activity could be detected after 1 h of incubation at 65°C, which means that it is the most stable trehalose phosphorylase reported so far. The substrate specificity was investigated in detail by measuring the relative activity on a range of alternative acceptors, applied in the reverse synthetic reaction, and determining the kinetic parameters for the best acceptors. These results were rationalized based on the enzyme-substrate interactions observed in a homology model with a docked ligand. The specificity for the orientation of the acceptor's hydroxyl groups was found to decrease in the following order: C-3 > C-2 > C-4. This results in a particularly high activity on the monosaccharides d-fucose, d-xylose, l-arabinose, and d-galactose, as well as on l-fucose. However, determination of the kinetic parameters revealed that these acceptors bind less tightly in the active site than the natural acceptor d-glucose, resulting in drastically increased K(m) values. Nevertheless, the enzyme's high thermostability and broad acceptor specificity make it a valuable candidate for industrial disaccharide synthesis.
Collapse
|
16
|
Kozina IV, Kublanov IV, Kolganova TV, Chernyh NA, Bonch-Osmolovskaya EA. Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 2010; 60:1372-1375. [DOI: 10.1099/ijs.0.012328-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic thermophilic bacterium, strain K67T, was isolated from a terrestrial hot spring of Uzon Caldera, Kamchatka Peninsula. Analysis of the 16S rRNA gene sequence revealed that the novel isolate belongs to the genus Caldanaerobacter, with 95 % 16S rRNA gene sequence similarity to Caldanaerobacter subterraneus subsp. subterraneus SEBR 7858T, suggesting that it represents a novel species of the genus Caldanaerobacter. Strain K67T was characterized as an obligate anaerobe, a thermophile (growth at 50–75 °С; optimum 68–70 °C), a neutrophile (growth at pH25 °C 4.8–8.0; optimum pH25 °C 6.8) and an obligate organotroph (growth by fermentation of various sugars, peptides and polysaccharides). Major fermentation products were acetate, H2 and CO2; ethanol, lactate and l-alanine were formed in smaller amounts. Thiosulfate stimulated growth and was reduced to hydrogen sulfide. Nitrate, sulfate, sulfite and elemental sulfur were not reduced and did not stimulate growth. Thus, according to the strain's phylogenetic position and phenotypic novelties (lower upper limit of temperature range for growth, the ability to grow on arabinose, the inability to reduce elemental sulfur and the formation of alanine as a minor fermentation product), the novel species Caldanaerobacter uzonensis sp. nov. is proposed, with the type strain K67T (=DSM 18923T =VKM В-2408T).
Collapse
Affiliation(s)
- Irina V. Kozina
- Winogradsky Institute of Microbiology Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - Tatyana V. Kolganova
- Bioengineering Center, Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/1, 117312 Moscow, Russia
| | - Nikolai A. Chernyh
- Winogradsky Institute of Microbiology Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | | |
Collapse
|
17
|
Tirado-Acevedo O, Chinn MS, Grunden AM. Production of biofuels from synthesis gas using microbial catalysts. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:57-92. [PMID: 20359454 DOI: 10.1016/s0065-2164(10)70002-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels.
Collapse
Affiliation(s)
- Oscar Tirado-Acevedo
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, USA
| | | | | |
Collapse
|
18
|
Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey. Extremophiles 2009; 13:885-94. [PMID: 19701714 PMCID: PMC2767516 DOI: 10.1007/s00792-009-0276-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 08/03/2009] [Indexed: 11/26/2022]
Abstract
A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4–0.6 μm in diameter and 3.5–10 μm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.
Collapse
|
19
|
Sokolova TG, Henstra AM, Sipma J, Parshina SN, Stams AJM, Lebedinsky AV. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 2009; 68:131-41. [PMID: 19573196 DOI: 10.1111/j.1574-6941.2009.00663.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Both natural and anthropogenic hot environments contain appreciable levels of carbon monoxide (CO). Anaerobic microbial communities play an important role in CO conversion in such environments. CO is involved in a number of redox reactions. It is biotransformed by thermophilic methanogens, acetogens, hydrogenogens, sulfate reducers, and ferric iron reducers. Most thermophilic CO-oxidizing anaerobes have diverse metabolic capacities, but two hydrogenogenic species are obligate carboxydotrophs. Among known thermophilic carboxydotrophic anaerobes, hydrogenogens are most numerous, and based on available data they are most important in CO biotransformation in hot environments.
Collapse
Affiliation(s)
- Tatyana G Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya 7/2, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
20
|
Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem Biophys Res Commun 2009; 385:605-11. [PMID: 19486892 DOI: 10.1016/j.bbrc.2009.05.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/21/2022]
Abstract
Two novel lipase genes RlipE1 and RlipE2 which encoded 361- and 265-amino acid peptides, respectively, were recovered from a metagenomic library of the rumen microbiota of Chinese Holstein cows. A BLAST search revealed a high similarity (90%) between RlipE2 and a carboxylesterase from Thermosinus carboxydivorans Nor1, while there was a low similarity (below 50%) between RlipE1 and other lipases. Phylogenetic analysis indicated that RlipE2 clustered with the lipolytic enzymes from family V while RlipE1 clustered with six other putative bacterial lipases which might constitute a new subfamily. The recombinant lipases were thermally unstable and retained 60% activity over a pH range of 6.5-8.5. Substrate specificity assay indicated that both enzymes had higher hydrolytic activity toward laurate (C(12)), palmitate (C(16)) and stearate (C(18)). The novel phylogenetic affiliation and high specificity of both enzymes for long-chain fatty acid make them interesting targets for manipulation of rumen lipid metabolism.
Collapse
|
21
|
Techtmann SM, Colman AS, Robb FT. 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia. Environ Microbiol 2009; 11:1027-37. [PMID: 19239487 DOI: 10.1111/j.1462-2920.2009.01865.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon monoxide (CO), while a potent toxin, is also a key intermediate in major autotrophic pathways such as methanogenesis and acetogenesis. The ability of purple sulfur bacteria to use CO as an energy source was first described by Uffen in 1976. The prototype extremely thermophilic carboxydotroph Carboxydothermus hydrogenoformans was described in 1991. Eight bacteria and one archaeon that utilize CO have since been isolated and described from diverse geothermal environments. They derive energy from the oxidation of CO with water to form CO(2) and H(2). Most of these isolates thrive with headspace CO partial pressures around 1 atm, which is grossly elevated relative to CO concentrations in geothermal effluents. To account for this, we suggest that under consortial growth conditions the carboxydotrophs occupy microniches in which biogenic CO accumulates locally to high concentrations. CO oxidizers dissipate these potentially toxic CO hot spots with the production of H(2), CO(2) and acetate whose subsequent oxidation fuels other thermophiles. The identification of genes related to anaerobic CO oxidation in many metagenomic databases attests to widespread distribution of carboxydotrophs. Current evidence suggests that CO-oxidizing bacteria and archaea hold a vital niche in thermophilic ecosystems.
Collapse
Affiliation(s)
- Stephen M Techtmann
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA
| | | | | |
Collapse
|
22
|
Atypical one-carbon metabolism of an acetogenic and hydrogenogenic Moorella thermoacetica strain. Arch Microbiol 2008; 191:123-31. [DOI: 10.1007/s00203-008-0435-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
|
23
|
The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 2008; 190:7491-9. [PMID: 18790866 DOI: 10.1128/jb.00746-08] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Thermococcus, sulfur-reducing hyperthermophilic archaea, are ubiquitously present in various deep-sea hydrothermal vent systems and are considered to play a significant role in the microbial consortia. We present the complete genome sequence and feature analysis of Thermococcus onnurineus NA1 isolated from a deep-sea hydrothermal vent area, which reveal clues to its physiology. Based on results of genomic analysis, T. onnurineus NA1 possesses the metabolic pathways for organotrophic growth on peptides, amino acids, or sugars. More interesting was the discovery that the genome encoded unique proteins that are involved in carboxydotrophy to generate energy by oxidation of CO to CO(2), thereby providing a mechanistic basis for growth with CO as a substrate. This lithotrophic feature in combination with carbon fixation via RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) introduces a new strategy with a complementing energy supply for T. onnurineus NA1 potentially allowing it to cope with nutrient stress in the surrounding of hydrothermal vents, providing the first genomic evidence for the carboxydotrophy in Thermococcus.
Collapse
|
24
|
Abstract
Thermophilic anaerobes are Archaea and Bacteria that grow optimally at temperatures of 50 degrees C or higher and do not require the use of O(2) as a terminal electron acceptor for growth. The prokaryotes with this type of physiology are studied for a variety of reasons, including (a) to understand how life can thrive under extreme conditions, (b) for their biotechnological potential, and (c) because anaerobic thermophiles are thought to share characteristics with the early evolutionary life forms on Earth. Over 300 species of thermophilic anaerobes have been described; most have been isolated from thermal environments, but some are from mesobiotic environments, and others are from environments with temperatures below 0 degrees C. In this overview, the authors outline the phylogenetic and physiological diversity of thermophilic anaerobes as currently known. The purpose of this overview is to convey the incredible diversity and breadth of metabolism within this subset of anaerobic microorganisms.
Collapse
Affiliation(s)
- Isaac D Wagner
- 212 Biological Sciences Building, 1000 Cedar Street, University of Georgia, Athens, GA 30602-2605, USA
| | | |
Collapse
|
25
|
Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 2008; 65:1-14. [DOI: 10.1111/j.1574-6941.2008.00502.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Slobodkina GB, Kolganova TV, Tourova TP, Kostrikina NA, Jeanthon C, Bonch-Osmolovskaya EA, Slobodkin AI. Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2008; 58:852-5. [DOI: 10.1099/ijs.0.65485-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Smith JN, Shock EL. A thermodynamic analysis of microbial growth experiments. ASTROBIOLOGY 2007; 7:891-904. [PMID: 18163869 DOI: 10.1089/ast.2006.0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The common thread of energy release suggests that diverse microbial metabolic processes can be compared through thermodynamic analyses. The resulting energy and power requirements can provide quantitative constraints on habitability. Because previous thermodynamic analyses have focused on the minimum amount of energy needed for the growth of a microorganism or community, the focus of this study is to gain a fuller understanding of the microbial response to highly habitable conditions. This communication summarizes the results of a thermodynamic analysis of the energy and power consumed by microorganisms in experiments that were designed to optimize growth. Reports of microbial growth experiments taken from the literature were combined with speciation and standard state calculations to assess the overall Gibbs energy change during the experiments. Results show that similar numbers of cells (10(9) to 10(10) ) were produced in these experiments regardless of the duration of log phase growth (from <2 to >200 hours) or the total Gibbs energy change [from 1.3-29.6 kJ (mol electrons transferred)(1)]. As a result, optimal growth conditions appear to produce between 10(10) and 10(14) cells per watt of power consumed.
Collapse
Affiliation(s)
- Jennifer N Smith
- Department of Chemistry & Biochemistry, Arizona State University,Tempe, Arizona 85287, USA
| | | |
Collapse
|
28
|
Slepova TV, Rusanov II, Sokolova TG, Bonch-Osmolovskaya EA, Pimenov NV. Radioisotopic tracing of carbon monoxide conversion by anaerobic thermophilic prokaryotes. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707050025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Yokoyama H, Moriya N, Ohmori H, Waki M, Ogino A, Tanaka Y. Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl Microbiol Biotechnol 2007; 77:213-22. [PMID: 17828395 DOI: 10.1007/s00253-007-1144-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
The present study analyzed the community structures of anaerobic microflora producing hydrogen under extreme thermophilic conditions by two culture-independent methods: denaturing gradient gel electrophoresis (DGGE) and clone library analyses. Extreme thermophilic microflora (ETM) was enriched from cow manure by repeated batch cultures at 75 degrees C, using a substrate of xylose, glucose, lactose, cellobiose, or soluble starch, and produced hydrogen at yields of 0.56, 2.65, 2.17, 2.68, and 1.73 mol/mol-monosaccharide degraded, respectively. The results from the DGGE and clone library analyses were consistent and demonstrated that the community structures of ETM enriched with the four hexose-based substrates (glucose, lactose, cellobiose, and soluble starch) consisted of a single species, closely related to a hydrogen-producing extreme thermophile, Caldoanaerobacter subterraneus, with diversity at subspecies levels. The ETM enriched with xylose was more diverse than those enriched with the other substrates, and contained the bacterium related to C. subterraneus and an unclassified bacterium, distantly related to a xylan-degrading and hydrogen-producing extreme thermophile, Caloramator fervidus.
Collapse
Affiliation(s)
- Hiroshi Yokoyama
- Waste Recycling Research Team, National Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Henstra AM, Sipma J, Rinzema A, Stams AJM. Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 2007; 18:200-6. [PMID: 17399976 DOI: 10.1016/j.copbio.2007.03.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 02/20/2007] [Accepted: 03/21/2007] [Indexed: 11/29/2022]
Abstract
A significant portion of biomass sources like straw and wood is poorly degradable and cannot be converted to biofuels by microorganisms. The gasification of this waste material to produce synthesis gas (or syngas) could offer a solution to this problem, as microorganisms that convert CO and H2) (the essential components of syngas) to multicarbon compounds are available. These are predominantly mesophilic microorganisms that produce short-chain fatty acids and alcohols from CO and H2. Additionally, hydrogen can be produced by carboxydotrophic hydrogenogenic bacteria that convert CO and H2O to H2 and CO2. The production of ethanol through syngas fermentation is already available as a commercial process. The use of thermophilic microorganisms for these processes could offer some advantages; however, to date, few thermophiles are known that grow well on syngas and produce organic compounds. The identification of new isolates that would broaden the product range of syngas fermentations is desirable. Metabolic engineering could be employed to broaden the variety of available products, although genetic tools for such engineering are currently unavailable. Nevertheless, syngas fermenting microorganisms possess advantageous characteristics for biofuel production and hold potential for future engineering efforts.
Collapse
Affiliation(s)
- Anne M Henstra
- Laboratory of Microbiology, Wageningen University, H. v. Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 2007; 74:474-83. [PMID: 17021868 DOI: 10.1007/s00253-006-0647-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 08/20/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85 degrees C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75 degrees C (392 and 248 ml H2 per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60 degrees C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75 degrees C was not detected, at least for 24 days. At both 60 and 75 degrees C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75 degrees C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.
Collapse
Affiliation(s)
- Hiroshi Yokoyama
- Waste Recycling Research Team, National Institute of Livestock and Grassland Science (NILGS), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer R, González JM, Whitman WB, Wiegel J. Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 2006; 11:145-57. [PMID: 17021657 DOI: 10.1007/s00792-006-0022-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Three thermophilic strains of chemolithoautotrophic Fe(III)-reducers were isolated from mixed sediment and water samples (JW/KA-1 and JW/KA-2(T): Calcite Spring, Yellowstone N.P., WY, USA; JW/JH-Fiji-2: Savusavu, Vanu Levu, Fiji). All were Gram stain positive rods (approximately 0.5 x 1.8 microm). Cells occurred singly or in V-shaped pairs, and they formed long chains in complex media. All utilized H(2) to reduce amorphous iron (III) oxide/hydroxide to magnetite at temperatures from 50 to 75 degrees C (opt. approximately 73 degrees C). Growth occurred within the pH(60C) range of 6.5-8.5 (opt. pH(60C) 7.1-7.3). Magnetite production by resting cells occurred at pH(60C) 5.5-10.3 (opt. 7.3). The iron (III) reduction rate was 1.3 mumol Fe(II) produced x h(-1) x ml(-1) in a culture with 3 x 10(7) cells, one of the highest rates reported. In the presence or absence of H(2), JW/KA-2(T) did not utilize CO. The G + C content of the genomic DNA of the type strain is 52.7 +/- 0.3 mol%. Strains JW/KA-1 and JW/KA-2(T) each contain two different 16S rRNA gene sequences. The 16S rRNA gene sequences from JW/KA-1, JW/KA-2(T), or JW/JH-Fiji-2 possessed >99% similarity to each other but also 99% similarity to the 16S rRNA gene sequence from the anaerobic, thermophilic, hydrogenogenic CO-oxidizing bacterium 'Carboxydothermus restrictus' R1. DNA-DNA hybridization between strain JW/KA-2(T) and strain R1(T) yielded 35% similarity. Physiological characteristics and the 16S rRNA gene sequence analysis indicated that the strains represent two novel species and are placed into the novel genus Thermolithobacter within the phylum 'Firmicutes'. In addition, the levels of 16S rRNA gene sequence similarity between the lineage containing the Thermolithobacter and well-established members of the three existing classes of the 'Firmicutes' is less than 85%. Therefore, Thermolithobacter is proposed to constitute the first genus within a novel class of the 'Firmicutes', Thermolithobacteria. The Fe(III)-reducing Thermolithobacter ferrireducens gen. nov., sp. nov. is designated as the type species with strain JW/KA-2(T) (ATCC 700985(T), DSM 13639(T)) as its type strain. Strain R1(T) is the type strain for the hydrogenogenic, CO-oxidizing Thermolithobacter carboxydivorans sp. nov. (DSM 7242(T), VKM 2359(T)).
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/drug effects
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Bacteria, Anaerobic/isolation & purification
- Bacteria, Anaerobic/metabolism
- Base Composition
- Carbon Monoxide/metabolism
- Chemoautotrophic Growth
- DNA, Bacterial/analysis
- Drug Resistance
- Ferric Compounds/metabolism
- Ferrosoferric Oxide/metabolism
- Geologic Sediments/microbiology
- Gram-Positive Asporogenous Rods/classification
- Gram-Positive Asporogenous Rods/drug effects
- Gram-Positive Asporogenous Rods/genetics
- Gram-Positive Asporogenous Rods/growth & development
- Gram-Positive Asporogenous Rods/isolation & purification
- Gram-Positive Asporogenous Rods/metabolism
- Hydrogen-Ion Concentration
- Lipids/analysis
- Oxidation-Reduction
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Homology, Nucleic Acid
- Temperature
- Water Microbiology
Collapse
Affiliation(s)
- T Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Slobodkin AI, Sokolova TG, Lysenko AM, Wiegel J. Reclassification of Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov., and emended description of the genus Carboxydothermus. Int J Syst Evol Microbiol 2006; 56:2349-2351. [PMID: 17012560 DOI: 10.1099/ijs.0.64503-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Similarities in phylogeny and metabolic properties between the type species of two monospecific genera of thermophilic anaerobic bacteria, Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens, and analysis of their recently available 16S rRNA gene sequences warranted clarification of their taxonomic positions. We have determined that the value of DNA–DNA hybridization between the type strains is 53 %. Additional physiological studies revealed that C. hydrogenoformans Z-2901T is capable of Fe(III) reduction with H2 as an electron donor and ferrihydrite as an electron acceptor. T. ferrireducens JW/AS-Y7T is able to grow and utilize CO with ferrihydrite as an electron acceptor without hydrogen or acetate production. We therefore reclassify Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov. (type strain JW/AS-Y7T=DSM 11255T=VKM B-2392T). The description of the genus Carboxydothermus is emended to include such important physiological properties as growth on organic compounds and capacity for Fe(III) reduction.
Collapse
Affiliation(s)
- A I Slobodkin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117 312 Moscow, Russia
| | - T G Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117 312 Moscow, Russia
| | - A M Lysenko
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117 312 Moscow, Russia
| | - J Wiegel
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
34
|
L'Haridon S, Miroshnichenko ML, Kostrikina NA, Tindall BJ, Spring S, Schumann P, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C. Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 2006; 56:1047-1053. [PMID: 16627653 DOI: 10.1099/ijs.0.64012-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, moderately thermophilic, spore-forming bacterium, designated strain BRT, was isolated from deep-sea hydrothermal core samples collected at the Rainbow vent field on the Mid-Atlantic Ridge (36 degrees 14' N 33 degrees 54' W). The cells were found to be rod-shaped, non-motile, Gram-positive and spore-forming. The organism grew in the temperature range 37-60 degrees C, with an optimum at 55 degrees C, and at pH values in the range 6-8.5, with an optimum around pH 7. NaCl concentrations for growth were in the range 10-40 g l(-1), with an optimum at 20-30 g l(-1). Strain BRT grew chemo-organoheterotrophically with carbohydrates, proteinaceous substrates and organic acids with nitrate as electron acceptor. The novel isolate was not able to ferment. The G+C content of the genomic DNA was 34.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed strain BRT in the Bacillaceae within the class 'Bacilli'. On the basis of the phenotypic and phylogenetic data, this isolate should be described as a member of a novel genus, for which the name Vulcanibacillus gen. nov. is proposed. The type species is Vulcanibacillus modesticaldus sp. nov., with the type strain BRT (=DSM 14931T=JCM 12998T).
Collapse
MESH Headings
- Atlantic Ocean
- Bacillaceae/classification
- Bacillaceae/cytology
- Bacillaceae/isolation & purification
- Bacillaceae/physiology
- Base Composition
- Carbohydrate Metabolism
- Carboxylic Acids/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fatty Acids/isolation & purification
- Fermentation
- Genes, rRNA
- Hydrogen-Ion Concentration
- Molecular Sequence Data
- Movement
- Nitrates/metabolism
- Phylogeny
- Proteins/metabolism
- Quinones/analysis
- Quinones/isolation & purification
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Saline Solution, Hypertonic
- Seawater/microbiology
- Spores, Bacterial
- Temperature
- Water Microbiology
Collapse
Affiliation(s)
- S L'Haridon
- UMR 6197, Centre National de la Recherche Scientifique, IFREMER and Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, 29280 Plouzané, France
| | - M L Miroshnichenko
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabraya 7/2, 117811 Moscow, Russia
| | - N A Kostrikina
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabraya 7/2, 117811 Moscow, Russia
| | - B J Tindall
- German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig, Germany
| | - S Spring
- German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig, Germany
| | - P Schumann
- German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig, Germany
| | - E Stackebrandt
- German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig, Germany
| | - E A Bonch-Osmolovskaya
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabraya 7/2, 117811 Moscow, Russia
| | - C Jeanthon
- UMR 6197, Centre National de la Recherche Scientifique, IFREMER and Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, 29280 Plouzané, France
| |
Collapse
|
35
|
Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJM. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 2006; 26:41-65. [PMID: 16594524 DOI: 10.1080/07388550500513974] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological processes for production of bulk and fine chemicals or in biological treatment of waste streams. Synthesis gas produced from fossil fuels or biomass is rich in hydrogen and carbon monoxide. Conversion of carbon monoxide to hydrogen allows use of synthesis gas in existing hydrogen utilizing processes and is interesting in view of a transition from hydrogen production from fossil fuels to sustainable (CO2-neutral) biomass. The conversion of CO with H2O to CO2 and H2 is catalyzed by a rapidly increasing group of micro-organisms. Hydrogen is a preferred electron donor in biotechnological desulfurization ofwastewaters and flue gases. Additionally, CO is a good alternative electron donor considering the recent isolation of a CO oxidizing, sulfate reducing bacterium. Here we review CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization.
Collapse
Affiliation(s)
- Jan Sipma
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA. Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 2006; 56:797-800. [PMID: 16585697 DOI: 10.1099/ijs.0.63961-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, thermophilic, CO-utilizing bacterium, strain KarT, was isolated from a hot spring of Karymskoe Lake, Kamchatka Peninsula. The cells of the novel isolate were Gram-positive, spore-forming, short rods. The bacterium grew chemolithoautotrophically on CO, producing equimolar quantities of H2and CO2(according to the equation CO + H2O → CO2+ H2), and in the absence of CO, under N2in the gas phase, chemoorganoheterotrophically with yeast extract, sucrose or pyruvate. Growth was observed in the temperature range 50–70 °C, with an optimum at 60 °C, and in the pH range 6·2–8·0, with an optimum at pH 6·8. The micro-organism did not grow on solid media; it was able to grow only in semi-solid medium containing 0·5 % agar. The generation time under optimal conditions for chemolithoautotrophic growth was 1 h. The G+C content of the DNA was 46·5±1 mol%. Growth was completely inhibited by penicillin, novobiocin, streptomycin, kanamycin and neomycin. Analysis of the 16S rRNA gene sequence showed that the isolate should be assigned to the genusCarboxydocella. On the basis of the results of DNA–DNA hybridization and morphological and physiological analyses, strain KarTrepresents a novel species of the genusCarboxydocella, for which the nameCarboxydocella sporoproducenssp. nov. is proposed. The type strain is KarT(=DSM 16521T=VKM B-2358T).
Collapse
Affiliation(s)
- Tatiana V Slepova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Tatyana G Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Anatoly M Lysenko
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Tatyana P Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Tatyana V Kolganova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Olga V Kamzolkina
- Lomonosov Moscow State University, Biology faculty, Vorob'evy gory, 119899 Moscow, Russia
| | - Genady A Karpov
- Institute of Volcanology and Seismology, Far-East Division Russian Academy of Sciences, Piip Boulevard, 9, 683006 Petropavlovsk-Kamchatsky, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| |
Collapse
|
37
|
Miroshnichenko ML, Bonch-Osmolovskaya EA. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 2006; 10:85-96. [PMID: 16418793 DOI: 10.1007/s00792-005-0489-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000-2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.
Collapse
|
38
|
|
39
|
Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, Eisen JA. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 2005; 1:e65. [PMID: 16311624 PMCID: PMC1287953 DOI: 10.1371/journal.pgen.0010065] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 10/19/2005] [Indexed: 11/20/2022] Open
Abstract
We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a “minimal” model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously. Carboxydothermus hydrogenoformans, a bacterium isolated from a Russian hotspring, is studied for three major reasons: it grows at very high temperature, it lives almost entirely on a diet of carbon monoxide (CO), and it converts water to hydrogen gas as part of its metabolism. Understanding this organism's unique biology gets a boost from the decoding of its genome, reported in this issue of PLoS Genetics. For example, genome analysis reveals that it encodes five different forms of the protein machine carbon monoxide dehydrogenase (CODH). Most species have no CODH and even species that utilize CO usually have only one or two. The five CODH in C. hydrogenoformans likely allow it to both use CO for diverse cellular processes and out-compete for it when it is limiting. The genome sequence also led the researchers to experimentally document new aspects of this species' biology including the ability to form spores. The researchers then used comparative genomic analysis to identify conserved genes found in all spore-forming species, including Bacillus anthracis, and not in any other species. Finally, the genome sequence and analysis reported here will aid in those trying to develop this and other species into systems to biologically produce hydrogen gas from water.
Collapse
Affiliation(s)
- Martin Wu
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Qinghu Ren
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - A. Scott Durkin
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Sean C Daugherty
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Lauren M Brinkac
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Robert J Dodson
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Ramana Madupu
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Steven A Sullivan
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - James F Kolonay
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - William C Nelson
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Luke J Tallon
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Kristine M Jones
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Luke E Ulrich
- Center for Bioinformatics and Computational Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Juan M Gonzalez
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland, United States of America
| | - Igor B Zhulin
- Center for Bioinformatics and Computational Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Frank T Robb
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland, United States of America
| | - Jonathan A Eisen
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Johns Hopkins University, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM. Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 2005; 55:2159-2165. [PMID: 16166725 DOI: 10.1099/ijs.0.63780-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A moderately thermophilic, anaerobic, chemolithoheterotrophic, sulfate-reducing bacterium, strain CO-1-SRB(T), was isolated from sludge from an anaerobic bioreactor treating paper mill wastewater. Cells were Gram-positive, motile, spore-forming rods. The temperature range for growth was 30-68 degrees C, with an optimum at 55 degrees C. The NaCl concentration range for growth was 0-17 g l(-1); there was no change in growth rate until the NaCl concentration reached 8 g l(-1). The pH range for growth was 6.0-8.0, with an optimum of 6.8-7.2. The bacterium could grow with 100% CO in the gas phase. With sulfate, CO was converted to H(2) and CO(2) and part of the H(2) was used for sulfate reduction; without sulfate, CO was completely converted to H(2) and CO(2). With sulfate, strain CO-1-SRB(T) utilized H(2)/CO(2), pyruvate, glucose, fructose, maltose, lactate, serine, alanine, ethanol and glycerol. The strain fermented pyruvate, lactate, glucose and fructose. Yeast extract was necessary for growth. Sulfate, thiosulfate and sulfite were used as electron acceptors, whereas elemental sulfur and nitrate were not. A phylogenetic analysis of 16S rRNA gene sequences placed strain CO-1-SRB(T) in the genus Desulfotomaculum, closely resembling Desulfotomaculum nigrificans DSM 574(T) and Desulfotomaculum sp. RHT-3 (99 and 100% similarity, respectively). However, the latter strains were completely inhibited above 20 and 50% CO in the gas phase, respectively, and were unable to ferment CO, lactate or glucose in the absence of sulfate. DNA-DNA hybridization of strain CO-1-SRB(T) with D. nigrificans and Desulfotomaculum sp. RHT-3 showed 53 and 60% relatedness, respectively. On the basis of phylogenetic and physiological features, it is suggested that strain CO-1-SRB(T) represents a novel species within the genus Desulfotomaculum, for which the name Desulfotomaculum carboxydivorans is proposed. This is the first description of a sulfate-reducing micro-organism that is capable of growth under an atmosphere of pure CO with and without sulfate. The type strain is CO-1-SRB(T) (=DSM 14880(T)=VKM B-2319(T)).
Collapse
Affiliation(s)
- Sofiya N Parshina
- Laboratory of Microbiology of Anthropogenic Environments, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 let Oktyabrya 7 b. 2, Moscow, Russia
| | - Jan Sipma
- Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Yutaka Nakashimada
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| | - Anne Meint Henstra
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| | - Anatoly M Lysenko
- Laboratory of Microbiology of Anthropogenic Environments, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 let Oktyabrya 7 b. 2, Moscow, Russia
| | - Piet N L Lens
- Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Gatze Lettinga
- Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| |
Collapse
|
41
|
Nealson KH, Inagaki F, Takai K. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 2005; 13:405-10. [PMID: 16054814 DOI: 10.1016/j.tim.2005.07.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 06/30/2005] [Accepted: 07/21/2005] [Indexed: 11/15/2022]
Abstract
One of the keys to success of many anaerobic ecosystems is the process of syntrophic intercellular hydrogen transfer. This process facilitates the overall reaction by end-product removal, taking advantage of a wide variety of organisms that are able to use hydrogen directly as an energy source by uptake hydrogenases. Thus, the issue is not whether there are hydrogen-driven processes or communities but whether there are hydrogen-driven communities that exist and persist independently of the products of photosynthesis (so-called subsurface lithoautotrophic microbial ecosystems, or SLiMEs). It is the proof of long-term independence from photosynthesis and its products that is the most difficult issue to establish, and perhaps the most important one with regard to searching for SLiMEs both on and off our planet. Although the evidence is not yet unequivocal, a growing body of evidence supports the existence of SLiME-like communities: if they exist, the implications are immense with regard to understanding subsurface environments on Earth, looking for present day analogs of early Earth and the search for life in other worlds.
Collapse
Affiliation(s)
- Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, CA 90089-0740, USA.
| | | | | |
Collapse
|
42
|
Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA. Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int J Syst Evol Microbiol 2005; 55:2069-2073. [PMID: 16166711 DOI: 10.1099/ijs.0.63299-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, thermophilic, alkalitolerant bacterium, strain 2204T, was isolated from a hot spring of the Baikal Lake region. The cells of strain 2204Twere straight rods of variable length, Gram-positive with an S-layer, motile with one to two lateral flagella, and often formed aggregates of 3–15 cells. The isolate was shown to be an obligate anaerobe oxidizing CO and producing equimolar quantities of H2and CO2according to the equation CO+H2O→CO2+H2. No organic substrates were used as energy sources. For lithotrophic growth on CO, 0·2 g acetate or yeast extract l−1was required but did not support growth in the absence of CO. Growth was observed in the temperature range 37–68 °C, the optimum being 55 °C. The pH range for growth was 6·7–9·5, the optimum pH being 8·0. The generation time under optimal conditions was 1·3 h. The DNA G+C content was 45 mol%. Penicillin, erythromycin, streptomycin, rifampicin, vancomycin and tetracycline completely inhibited both growth and CO utilization by strain 2204T. Thus, isolate 2204Twas found to be the first known moderately thermophilic and alkalitolerant H2-producing anaerobic carboxydotroph. The novel bacterium fell within the cluster of the familyPeptococcaceaewithin the low-G+C-content Gram-positive bacteria, where it formed a separate branch. On the basis of morphological, physiological and phylogenetic features, strain 2204Tshould be assigned to a novel genus and species, for which the nameThermincola carboxydiphilagen. nov., sp. nov. is proposed. The type strain is strain 2204T(=DSM 17129T=VKM B-2283T=JCM 13258T).
Collapse
Affiliation(s)
- Tatyana G Sokolova
- Institute of Microbiology, Russian Academy of Sciences, Prospekt 60, let Oktyabrya 7/2, 117811 Moscow, Russia
| | - Nadezhda A Kostrikina
- Institute of Microbiology, Russian Academy of Sciences, Prospekt 60, let Oktyabrya 7/2, 117811 Moscow, Russia
| | - Nikolai A Chernyh
- Institute of Microbiology, Russian Academy of Sciences, Prospekt 60, let Oktyabrya 7/2, 117811 Moscow, Russia
| | - Tatjana V Kolganova
- Institute of Microbiology, Russian Academy of Sciences, Prospekt 60, let Oktyabrya 7/2, 117811 Moscow, Russia
| | - Tatjana P Tourova
- Institute of Microbiology, Russian Academy of Sciences, Prospekt 60, let Oktyabrya 7/2, 117811 Moscow, Russia
| | | |
Collapse
|
43
|
Sokolova TG, González JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT. Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 2005; 54:2353-2359. [PMID: 15545483 DOI: 10.1099/ijs.0.63186-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new anaerobic, thermophilic, facultatively carboxydotrophic bacterium, strain Nor1(T), was isolated from a hot spring at Norris Basin, Yellowstone National Park. Cells of strain Nor1(T) were curved motile rods with a length of 2.6-3 microm, a width of about 0.5 microm and lateral flagellation. The cell wall structure was of the Gram-negative type. Strain Nor1(T) was thermophilic (temperature range for growth was 40-68 degrees C, with an optimum at 60 degrees C) and neutrophilic (pH range for growth was 6.5-7.6, with an optimum at 6.8-7.0). It grew chemolithotrophically on CO (generation time, 1.15 h), producing equimolar quantities of H(2) and CO(2) according to the equation CO+H(2)O-->CO(2)+H(2). During growth on CO in the presence of ferric citrate or amorphous ferric iron oxide, strain Nor1(T) reduced ferric iron but produced H(2) and CO(2) at a ratio close to 1 : 1, and growth stimulation was slight. Growth on CO in the presence of sodium selenite was accompanied by precipitation of elemental selenium. Elemental sulfur, thiosulfate, sulfate and nitrate did not stimulate growth of strain Nor1(T) on CO and none of these chemicals was reduced. Strain Nor1(T) was able to grow on glucose, sucrose, lactose, arabinose, maltose, fructose, xylose and pyruvate, but not on cellobiose, galactose, peptone, yeast extract, lactate, acetate, formate, ethanol, methanol or sodium citrate. During glucose fermentation, acetate, H(2) and CO(2) were produced. Thiosulfate was found to enhance the growth rate and cell yield of strain Nor1(T) when it was grown on glucose, sucrose or lactose; in this case, acetate, H(2)S and CO(2) were produced. In the presence of thiosulfate or ferric iron, strain Nor1(T) was also able to grow on yeast extract. Lactate, acetate, formate and H(2) were not utilized either in the absence or in the presence of ferric iron, thiosulfate, sulfate, sulfite, elemental sulfur or nitrate. Growth was completely inhibited by penicillin, ampicillin, streptomycin, kanamycin and neomycin. The DNA G+C content of the strain was 51.7+/-1 mol%. Analysis of the 16S rRNA gene sequence revealed that strain Nor1(T) belongs to the Bacillus-Clostridium phylum of the Gram-positive bacteria. On the basis of the studied phenotypic and phylogenetic features, we propose that strain Nor1(T) be assigned to a new genus, Thermosinus gen. nov. The type species is Thermosinus carboxydivorans sp. nov. (type strain, Nor1(T)=DSM 14886(T)=VKM B-2281(T)).
Collapse
Affiliation(s)
- Tatyana G Sokolova
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Juan M González
- COMB, Columbus Center, 701 E. Pratt St, Baltimore, MD 21202, USA
| | - Nadezhda A Kostrikina
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Nikolai A Chernyh
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Tatiana V Slepova
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | | | - Frank T Robb
- COMB, Columbus Center, 701 E. Pratt St, Baltimore, MD 21202, USA
| |
Collapse
|
44
|
Henstra AM, Stams AJM. Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 2005; 70:7236-40. [PMID: 15574922 PMCID: PMC535181 DOI: 10.1128/aem.70.12.7236-7240.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carboxydothermus hydrogenoformans is able to grow by conversion of CO to H2 and CO2. Besides CO, only pyruvate was described as serving as an energy source. Based on 16S rRNA gene sequence similarity, C. hydrogenoformans is closely related to Thermoterrabacterium ferrireducens. T. ferrireducens is like C. hydrogenoformans a gram-positive, thermophilic, strict anaerobic bacterium. However, it is capable of using various electron donors and acceptors for growth. Growth of C. hydrogenoformans with multiple electron donors and acceptors was tested. C. hydrogenoformans oxidized formate, lactate, glycerol, CO, and H2 with 9,10-anthraquinone-2,6-disulfonate as an electron acceptor. Sulfite, thiosulfate, sulfur, nitrate, and fumarate were reduced with lactate as an electron donor. T. ferrireducens oxidized CO with 9,10-anthraquinone-2,6-disulfonate as an electron acceptor but did not produce H2 from CO. In contrast to what was published before, T. ferrireducens was able to grow on lactate with sulfite, sulfur, and nitrate as electron acceptors.
Collapse
Affiliation(s)
- Anne M Henstra
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| | | |
Collapse
|
45
|
Parshina SN, Kijlstra S, Henstra AM, Sipma J, Plugge CM, Stams AJM. Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol 2005; 68:390-6. [PMID: 16133342 DOI: 10.1007/s00253-004-1878-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/08/2004] [Accepted: 12/13/2004] [Indexed: 11/28/2022]
Abstract
Biological sulfate (SO(4)) reduction with carbon monoxide (CO) as electron donor was investigated. Four thermophilic SO(4)-reducing bacteria, Desulfotomaculum thermoacetoxidans (DSM 5813), Thermodesulfovibrio yellowstonii (ATCC 51303), Desulfotomaculum kuznetsovii (DSM 6115; VKM B-1805), and Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum (DSM 14055), were studied in pure culture and in co-culture with the thermophilic carboxydotrophic bacterium Carboxydothermus hydrogenoformans (DSM 6008). D. thermoacetoxidans and T. yellowstonii were extremely sensitive to CO: their growth on pyruvate was completely inhibited at CO concentrations above 2% in the gas phase. D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum were less sensitive to CO. In pure culture, D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum were able to grow on CO as the only electron donor and, in particular in the presence of hydrogen/carbon dioxide, at CO concentrations as high as 50-70%. The latter SO(4) reducers coupled CO oxidation to SO(4) reduction, but a large part of the CO was converted to acetate. In co-culture with C. hydrogenoformans, D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum could even grow with 100% CO (P(CO) = 120 kPa).
Collapse
Affiliation(s)
- S N Parshina
- Laboratory of Microbiology of Anthropogenic Environments, Winogradsky Institute of Microbiology, Russian Academy of Sciences.
| | | | | | | | | | | |
Collapse
|
46
|
Slobodkina GB, Chernyh NA, Slobodkin AI, Subbotina IV, Bonch-Osmolovskaya EA, Lebedinsky AV. PCR-based identification of hyperthermophilic archaea of the family Thermococcaceae. Appl Environ Microbiol 2004; 70:5701-3. [PMID: 15345465 PMCID: PMC520901 DOI: 10.1128/aem.70.9.5701-5703.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method for rapid detection and identification of hyperthermophilic archaea of the family Thermococcaceae based on PCR amplification of 16S rRNA gene fragments with primers TcPc 173F (5'-TCCCCCATAGGYCTGRGGTACTGGAAGGTC-3') and TcPc 589R (5'-GCCGTGRGATTTCGCCAGGGACTTACGGGC-3') was developed and used for identification of new isolates.
Collapse
Affiliation(s)
- Galina B Slobodkina
- Institute of Microbiology, Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7/2, Moscow, 117312 Russia
| | | | | | | | | | | |
Collapse
|
47
|
Fardeau ML, Salinas MB, L'Haridon S, Jeanthon C, Verhé F, Cayol JL, Patel BKC, Garcia JL, Ollivier B. Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 2004; 54:467-474. [PMID: 15023962 DOI: 10.1099/ijs.0.02711-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel thermophilic, anaerobic, Gram-positive, rod-shaped bacteria, strains SL9 and OCA1, were isolated from oilfields in France and Australia, respectively. Both strains, together with Thermoanaerobacter yonseiensis KB-1(T) (=DSM 13777(T)), Thermoanaerobacter tengcongensis MB4(T) (=DSM 15242(T)) and Carboxydibrachium pacificum JM(T) (=DSM 12653(T)), possessed genomic (DNA-DNA hybridization studies) and phylogenetic similarities with Thermoanaerobacter subterraneus SEBR 7858(T) (=DSM 13054(T)), which was isolated recently from an oilfield reservoir in south-west France. Marked phenotypic differences exist between the three oilfield isolates (T. subterraneus, strain OCA1 and strain SL9): they include temperature range for growth and substrates used. Differences were also observed in the DNA G+C contents of all organisms. Similarly to T. subterraneus, strains SL9 and OCA1, and also T. yonseiensis, T. tengcongensis and Carboxydibrachium pacificum, produced acetate and L-alanine as major end products of glucose metabolism [0.8-1.0 mol L-alanine produced (mol glucose consumed)(-1)] and reduced thiosulfate, but not sulfate, to sulfide. Because of these significant metabolic and phylogenetic differences between the oilfield isolates (T. subterraneus, strain OCA1 and strain SL9), T. yonseiensis, T. tengcongensis and Carboxydibrachium pacificum and other Thermoanaerobacter species, it is proposed to reassign them as a novel genus and species, Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov., with the creation of four novel subspecies, Caldanaerobacter subterraneus subsp. subterraneus subsp. nov., comb. nov., Caldanaerobacter subterraneus subsp. yonseiensis subsp. nov., comb. nov., Caldanaerobacter subterraneus subsp. tengcongensis subsp. nov., comb. nov. and Caldanaerobacter subterraneus subsp. pacificus subsp. nov., comb. nov.
Collapse
Affiliation(s)
- Marie-Laure Fardeau
- IRD, UR101 Extrêmophiles, IFR-BAIM, Universités de Provence et de la Méditerranée, ESIL case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Monica Bonilla Salinas
- IRD, UR101 Extrêmophiles, IFR-BAIM, Universités de Provence et de la Méditerranée, ESIL case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Stéphane L'Haridon
- UMR CNRS 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, 29680 Plouzané, France
| | - Christian Jeanthon
- UMR CNRS 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, 29680 Plouzané, France
| | - Frédéric Verhé
- IRD, UR101 Extrêmophiles, IFR-BAIM, Universités de Provence et de la Méditerranée, ESIL case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Jean-Luc Cayol
- IRD, UR101 Extrêmophiles, IFR-BAIM, Universités de Provence et de la Méditerranée, ESIL case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Bharat K C Patel
- School of Biomolecular and Biomedical Sciences, Griffith University, Brisbane, Australia
| | - Jean-Louis Garcia
- IRD, UR101 Extrêmophiles, IFR-BAIM, Universités de Provence et de la Méditerranée, ESIL case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Bernard Ollivier
- IRD, UR101 Extrêmophiles, IFR-BAIM, Universités de Provence et de la Méditerranée, ESIL case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
48
|
Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA. The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 2004; 8:317-23. [PMID: 15164268 DOI: 10.1007/s00792-004-0389-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
From 24 samples of hydrothermal venting structures collected at the East Pacific Rise (13 degrees N), 13 enrichments of coccoid cells were obtained which grew on CO, producing H2 and CO2 at 80 degrees C. A hyperthermophilic archaeon capable of lithotrophic growth on CO coupled with equimolar production of H2 was isolated. Based on its 16S rRNA sequence analysis, this organism was affiliated with the genus Thermococcus. Other strains of Thermococcales species ( Pyrococcus furiosus, Thermococcus peptonophilus, T. profundus, T. chitonophagus, T. stetteri, T. gorgonarius, T. litoralis, and T. pacificus) were shown to be unable to grow on CO. Searches in sequence databases failed to reveal deposited sequences of genes related to CO metabolism in Thermococcales. Our work provides the first evidence of anaerobic CO oxidation coupled with H2 production performed by an archaeon as well as the first documented case of lithotrophic growth of a Thermococcales representative.
Collapse
Affiliation(s)
- Tatyana G Sokolova
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117312, Moscow, Russia,
| | | | | | | | | | | | | |
Collapse
|
49
|
Slobodkin AI, Tourova TP, Kostrikina NA, Chernyh NA, Bonch-Osmolovskaya EA, Jeanthon C, Jones BE. Tepidibacter thalassicus gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, fermentative bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2003; 53:1131-1134. [PMID: 12892139 DOI: 10.1099/ijs.0.02600-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A moderately thermophilic, anaerobic, endospore-forming bacterium (strain SC 562T) was isolated from a hydrothermal vent chimney located at 13 degrees N on the East-Pacific Rise at a depth of 2650 m. Cells of strain SC 562T were straight to slightly curved rods, which were 0.7-0.9 microm in diameter and 3.5-6.0 microm in length with peritrichous flagella. Strain SC 562T formed round, refractile endospores in terminally swollen sporangia. The temperature range for growth was 33-60 degrees C, with an optimum at 50 degrees C. The pH range for growth was 4.8-8.5, with an optimum at pH 6.5-6.8. Growth of strain SC 562T was observed at NaCl concentrations ranging from 1.5 to 6% (w/v). The substrates utilized by strain SC 562T included casein, peptone, albumin, yeast extract, beef extract, alanine plus proline and starch. Glucose, maltose, pyruvate, valine and arginine each slightly stimulated growth in the presence of yeast extract. The products of glucose fermentation were ethanol, acetate, H2 and CO2. Strain SC 562T reduced elemental sulfur to hydrogen sulfide. The G + C content of the DNA of strain SC 562T was 24 mol%. 16S rDNA sequence analysis revealed that the isolated organism belonged to cluster XI of the Clostridium subphylum. On the basis of its physiological properties and phylogenetic analyses, it is proposed that strain SC 562T represents the sole species of a novel genus, Tepidibacter; the name Tepidibacter thalassicus is proposed for strain SC 562T (=DSM 15285T=UNIQEM 215T).
Collapse
Affiliation(s)
- A I Slobodkin
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, Moscow 117811, Russia
| | - T P Tourova
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, Moscow 117811, Russia
| | - N A Kostrikina
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, Moscow 117811, Russia
| | - N A Chernyh
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, Moscow 117811, Russia
| | - E A Bonch-Osmolovskaya
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, Moscow 117811, Russia
| | - C Jeanthon
- UMR 6539-LEMAR, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise, Place Nicolas Copernic, 29280 Plouzané, France
| | - B E Jones
- Genencor International, P.O. Box 218, 2300 CN Leiden, The Netherlands
| |
Collapse
|
50
|
|