1
|
Barone LJ, Cardoso NP, Mansilla FC, Castillo M, Capozzo AV. Enhanced infectivity of bovine viral diarrhoea virus (BVDV) in arginase-producing bovine monocyte-derived macrophages. Virulence 2023:2283899. [PMID: 37966797 DOI: 10.1080/21505594.2023.2283899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
Macrophages are important cells of the innate immunity that play a major role in Bovine Viral Diarrhea Virus (BVDV) pathogenesis. Macrophages are not a homogenous population; they exist in different phenotypes, typically divided into two main categories: classically (pro-inflammatory) and alternatively activated (anti-inflammatory) or M1 and M2, respectively. The role of bovine macrophage phenotypes on BVDV infection is still unclear. This study characterized the interaction between BVDV, and monocyte-derived macrophages (Mo-Mφ) collected from healthy cattle and polarized to an M1 or M2 state by using LPS, INF-γ, IL-4 or azithromycin. Arginase activity quantitation was utilized as a marker of the M2 Mo-Mφ spectrum. There was a significant association between arginase activity and the replication rate of BVDV strains of different genotypes and biotypes. Inhibition of arginase activity also reduced BVDV infectivity. Calves treated with azithromycin induced Mo-Mφ of the M2 state produced high levels of arginase. Interestingly, azithromycin administered in vivo increased the susceptibility of macrophages to BVDV infection ex vivo. Mo-Mφ from pregnant dams and calves produced higher arginase levels than those from non-pregnant adult animals. The increased infection of arginase-producing alternatively activated bovine macrophages with BVDV supports the need to delve into a possible leading role of M2 macrophages in establishing the immune-suppressive state during BVDV convalescence.
Collapse
Affiliation(s)
- Lucas José Barone
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Nancy Patricia Cardoso
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Florencia Celeste Mansilla
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Mariángeles Castillo
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhang K, Zhang J, Qiu Z, Zhang K, Liang F, Zhou Q, Wang L, Li J. Prevalence characteristic of BVDV in some large scale dairy farms in Western China. Front Vet Sci 2022; 9:961337. [PMID: 35968024 PMCID: PMC9366859 DOI: 10.3389/fvets.2022.961337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to analyze the prevalence characteristic of Bovine viral diarrhea virus (BVDV) in some large scale dairy farms in Western China. BVDV was detected in 30 samples of bulk tank milk (BTM) collected from 30 large dairy farms in 7 provinces of western China, 93.33% (28/30) of the farms were infected with BVDV, and S/P ratio was over 0.3 in 28 positive farms. The individual status was further estimated in the dairy farm (No. 10) with the highest positive rate (S/P ratio = 1.37) and the dairy farm (No. 17) with the lowest positive rate (S/P ratio = 0.39). Two hundred cows were, respectively, selected from calf, young cows and lactating cows in farm No. 10 and farm No. 17 and the serum sample of each enrolled cow was collected. The individual positive rate of serum antibody (Ab) was 87.17% (523/600) in farm No. 10 and 31.33% (188/600) in farm No. 17. The individual positive ratio of serum antibody in calves, young cows and lactating cows were 41.75 % (167/400), 58.75% (235/400) and 77.25% (309/400), respectively. BTM Ab of farm No. 10 has an S/P ratio more than 1.0, which indicated there were emergent or persistent infection (PI) cases, and further test showed that PI cases were 0.51% in farm No. 10. Pathogens were positive in 42.34% (163/385) of nasal mucus samples collected from cows with respiratory symptom, and BVDV cases were 57 in 163 positive samples. Three strains of NCP BVDV-1, one strain of CP BVDV-1, one strain of NCP BVDV-2 and one strain of CP BVDV-2 were successfully isolated. Phylogenetic analysis revealed that the subtypes of BVDV currently prevalent in western China were BVDV-1a, BVDV-1m, BVDV-1q and BVDV-2. The findings suggested that the BVDV infection is serious in some Large Scale Dairy Farms in Western China.
Collapse
Affiliation(s)
- Kang Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Veterinary Sciences, Gansu Agricultural University, Lanzhou, China
| | - Jingyan Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengying Qiu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kai Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fenfen Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiaoni Zhou
- Shenzhen Bioeasy Biotechnology Co., Ltd., Shenzhen, China
| | - Lei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Veterinary Sciences, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Lei Wang
| | - Jianxi Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jianxi Li
| |
Collapse
|
3
|
Concomitant pyroptotic and apoptotic cell death triggered in macrophages infected by Zika virus. PLoS One 2022; 17:e0257408. [PMID: 35446851 PMCID: PMC9022797 DOI: 10.1371/journal.pone.0257408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) is a positive-sense RNA flavivirus and can cause serious neurological disorders including microcephaly in infected fetuses. As a mosquito-borne arbovirus, it enters the bloodstream and replicates in various organs. During pregnancy, it can be transmitted from the blood of the viremic mother to the fetus by crossing the placental barrier. Monocytes and macrophages are considered the earliest blood cell types to be infected by ZIKV. As a first line defense, these cells are crucial components in innate immunity and host responses and may impact viral pathogenesis in humans. Previous studies have shown that ZIKV infection can activate inflammasomes and induce proinflammatory cytokines in monocytes. In this report, we showed that ZIKV could infect and induce cell death in human and murine macrophages. In addition to the presence of cleaved caspase-3, indicating that apoptosis was involved, we identified the cleaved caspase-1 and gasdermin D (GSDMD) as well as increased secretion of IL-1β and IL-18. This suggests that the inflammasome was activated and that may lead to pyroptosis in infected macrophages. The pyroptosis was NLRP3-dependent and could be suppressed in the macrophages treated with shRNA to target and knockdown caspase-1. It was also be inhibited by an inhibitor for caspase-1, indicating that the pyroptosis was triggered via a canonical approach. Our findings in this study demonstrate a concomitant occurrence of apoptosis and pyroptosis in ZIKV-infected macrophages, with two mechanisms involved in the cell death, which may have potentially significant impacts on viral pathogenesis in humans.
Collapse
|
4
|
Abdelsalam K, Rajput M, Elmowalid G, Sobraske J, Thakur N, Abdallah H, Ali AAH, Chase CCL. The Effect of Bovine Viral Diarrhea Virus (BVDV) Strains and the Corresponding Infected-Macrophages' Supernatant on Macrophage Inflammatory Function and Lymphocyte Apoptosis. Viruses 2020; 12:E701. [PMID: 32610565 PMCID: PMC7412197 DOI: 10.3390/v12070701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important viral disease of cattle that causes immune dysfunction. Macrophages are the key cells for the initiation of the innate immunity and play an important role in viral pathogenesis. In this in vitro study, we studied the effect of the supernatant of BVDV-infected macrophage on immune dysfunction. We infected bovine monocyte-derived macrophages (MDM) with high or low virulence strains of BVDV. The supernatant recovered from BVDV-infected MDM was used to examine the functional activity and surface marker expression of normal macrophages as well as lymphocyte apoptosis. Supernatants from the highly virulent 1373-infected MDM reduced phagocytosis, bactericidal activity and downregulated MHC II and CD14 expression of macrophages. Supernatants from 1373-infected MDM induced apoptosis in MDBK cells, lymphocytes or BL-3 cells. By protein electrophoresis, several protein bands were unique for high-virulence, 1373-infected MDM supernatant. There was no significant difference in the apoptosis-related cytokine mRNA (IL-1beta, IL-6 and TNF-a) of infected MDM. These data suggest that BVDV has an indirect negative effect on macrophage functions that is strain-specific. Further studies are required to determine the identity and mechanism of action of these virulence factors present in the supernatant of the infected macrophages.
Collapse
Affiliation(s)
- Karim Abdelsalam
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (G.E.); (H.A.); (A.A.H.A.)
| | - Mrigendra Rajput
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
| | - Gamal Elmowalid
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (G.E.); (H.A.); (A.A.H.A.)
| | - Jacob Sobraske
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
| | - Neelu Thakur
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
| | - Hossam Abdallah
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (G.E.); (H.A.); (A.A.H.A.)
| | - Ahmed A. H. Ali
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (G.E.); (H.A.); (A.A.H.A.)
| | - Christopher C. L. Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
| |
Collapse
|
5
|
Risalde MA, Romero-Palomo F, Lecchi C, Ceciliani F, Bazzocchi C, Comazzi S, Besozzi M, Gómez-Villamandos JC, Luzzago C. BVDV permissiveness and lack of expression of co-stimulatory molecules on PBMCs from calves pre-infected with BVDV. Comp Immunol Microbiol Infect Dis 2019; 68:101388. [PMID: 31790941 DOI: 10.1016/j.cimid.2019.101388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022]
Abstract
Bovine viral diarrhea virus (BVDV) has been detected in peripheral blood mononuclear cells (PBMCs) of immunocompetent animals, not being clear whether the development of a specific humoral immune response can prevent BVDV infection. The aim of this study was to evaluate the ability of non-cytopathic BVDV to replicate and produce infectious virus in PBMCs from calves pre-infected with BVDV and to elucidate the immunomodulatory effect of BVDV on these cells in an in vitro model. Quantification of virus was by quantitative PCR, while its replicative capacity and shedding into the extracellular environment was evaluated by viral titration. Apoptosis was assessed by flow cytometry analysis of annexin V and propidium iodide, and by expression of caspase-3/7. Flow cytometry was used to analyze the expression of CD14/CD11b/CD80, CD4/CD8/CD25, MHC-I/MHC-II and B-B2 markers. Our results showed that PBMCs from cattle naturally infected with BVDV were more susceptible to in vitro BVDV infection and showed a more severe apoptosis response than those from naïve animals. Non-cytopathic BVDV in vitro infection also resulted in a lack of effect in the expression of antigen presentation surface markers. All these findings could be related to the immunosuppressive capacity of BVDV and the susceptibility of cattle to this infection.
Collapse
Affiliation(s)
- María A Risalde
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy; Dpto. de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba (UCO), Agrifood Excellence International Campus (ceiA3), 14071, Córdoba, Spain
| | - Fernando Romero-Palomo
- Dpto. de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba (UCO), Agrifood Excellence International Campus (ceiA3), 14071, Córdoba, Spain
| | - Cristina Lecchi
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy; Centro di Ricerca Coordinata, Epidemiologia e Sorveglianza Molecolare delle Infezioni - EpiSoMI, University of Milan, Milano, Italy
| | - Stefano Comazzi
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Martina Besozzi
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - Jose C Gómez-Villamandos
- Dpto. de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba (UCO), Agrifood Excellence International Campus (ceiA3), 14071, Córdoba, Spain.
| | - Camilla Luzzago
- Department of Veterinary Medicine, University of Milan, Via dell'Università 6, 26900, Lodi, Italy; Centro di Ricerca Coordinata, Epidemiologia e Sorveglianza Molecolare delle Infezioni - EpiSoMI, University of Milan, Milano, Italy
| |
Collapse
|
6
|
Schaut RG, Ridpath JF, Sacco RE. Bovine Viral Diarrhea Virus Type 2 Impairs Macrophage Responsiveness to Toll-Like Receptor Ligation with the Exception of Toll-Like Receptor 7. PLoS One 2016; 11:e0159491. [PMID: 27420479 PMCID: PMC4946783 DOI: 10.1371/journal.pone.0159491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/05/2016] [Indexed: 12/20/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a member of the Flaviviridae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp) or non-cytopathic (ncp) effects in epithelial cell culture. BVDV isolates are further separated into species, BVDV1 and 2, based on genetic differences. Symptoms of BVDV infection range from subclinical to severe, depending on strain virulence, and may involve multiple organ systems and induction of a generalized immunosuppression. During BVDV-induced immune suppression, macrophages, critical to innate immunity, may have altered pathogen recognition receptor (PRR) signaling, including signaling through toll-like receptors (TLRs). Comparison of BVDV 2 strains with different biotypes and virulence levels is valuable to determining if there are differences in host macrophage cellular responses between viral phenotypes. The current study demonstrates that cytopathic (cp), noncytopathic (ncp), high (hv) or low virulence (lv) BVDV2 infection of bovine monocyte-derived macrophages (MDMΦ) result in differential expression of pro-inflammatory cytokines compared to uninfected MDMΦ. A hallmark of cp BVDV2 infection is IL-6 production. In response to TLR2 or 4 ligation, as might be observed during secondary bacterial infection, cytokine secretion was markedly decreased in BVDV2-infected MDMΦ, compared to non-infected MDMΦ. Macrophages were hyporesponsive to viral TLR3 or TLR8 ligation. However, TLR7 stimulation of BVDV2-infected MDMΦ induced cytokine secretion, unlike results observed for other TLRs. Together, these data suggest that BVDV2 infection modulated mRNA responses and induced a suppression of proinflammatory cytokine protein responses to TLR ligation in MDMΦ with the exception of TLR7 ligation. It is likely that there are distinct differences in TLR pathways modulated following BVDV2 infection, which have implications for macrophage responses to secondary infections.
Collapse
Affiliation(s)
- Robert G. Schaut
- Immunobiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
| | - Julia F. Ridpath
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
| | - Randy E. Sacco
- Immunobiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Sakoda Y. [Pestivirus]. Uirusu 2011; 61:239-248. [PMID: 22916570 DOI: 10.2222/jsv.61.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Members of the genus Pestivirus, are causative agents of economically important diseases for livestock and wild animals that occur worldwide, such as bovine viral diarrhea, classical swine fever, and border disease of sheep. Pestivirus have novel insertions of host genes in the viral genome and functions of unique viral proteins, N(pro) and E(rns), related to the pathogenicity although genomic structure is closely related to the other viruses of Flaviviridae family, especially hepatitis C virus. In this review, recent studies on the molecular basis of pathogenicity of pestivirus infections were summarized.
Collapse
Affiliation(s)
- Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Sapporo 060-0818, Japan.
| |
Collapse
|
9
|
Burciaga-Robles LO, Step DL, Krehbiel CR, Holland BP, Richards CJ, Montelongo MA, Confer AW, Fulton RW. Effects of exposure to calves persistently infected with bovine viral diarrhea virus type 1b and subsequent infection with Mannheima haemolytica on clinical signs and immune variables: Model for bovine respiratory disease via viral and bacterial interaction1,2. J Anim Sci 2010; 88:2166-78. [DOI: 10.2527/jas.2009-2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Apoptosis in lymphoid tissues of calves inoculated with non-cytopathic bovine viral diarrhea virus genotype 1: activation of effector caspase-3 and role of macrophages. J Gen Virol 2009; 90:2650-2659. [DOI: 10.1099/vir.0.012021-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mechanisms responsible for lymphocyte apoptosis in bovine viral diarrhoea have not yet been clarified. Previous work suggests that bovine viral diarrhea virus (BVDV) is only directly responsible for the destruction of a small number of lymphocytes. The aim of this study was to clarify, in vivo, the role of macrophages in lymphocyte destruction through indirect mechanisms linked to the biosynthetic activation of these immunocompetent cells on ileal Peyer's patches, as well as the distribution and quantification of apoptosis. Eight colostrum-deprived calves were inoculated intranasally with a non-cytopathic strain of BVDV genotype 1 and killed in batches of two at 3, 6, 9 and 14 days post-inoculation (p.i.). The progressive depletion of Peyer's patches was found to be due to massive lymphocyte apoptosis, with an increase in cleaved caspase-3 and TUNEL-positive cells. Lymphoid depletion was accompanied, from 3 days p.i., by a significant rise in macrophage numbers both in lymphoid follicles and in interfollicular areas. Some macrophages showed signs of viral infection, together with subcellular changes indicative of phagocyte activation and, in some cases, of secretory activity. However, the number of macrophages that showed positive immunostaining for tumour necrosis factor-α and interleukin-1α, cytokines with a proven ability to induce apoptosis, remained low throughout the experiment in lymphoid follicles, where most apoptotic cells were found. These results thus appear to rule out a major involvement of macrophages and macrophage-secreted chemical mediators in the apoptosis of follicular B lymphocytes during BVDV infection.
Collapse
|
11
|
Gamlen T, Richards KH, Mankouri J, Hudson L, McCauley J, Harris M, Macdonald A. Expression of the NS3 protease of cytopathogenic bovine viral diarrhea virus results in the induction of apoptosis but does not block activation of the beta interferon promoter. J Gen Virol 2009; 91:133-44. [PMID: 19793904 DOI: 10.1099/vir.0.016170-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV; genus Pestivirus) can exist as two biotypes, cytopathogenic (CP) and non-cytopathogenic (NCP). The CP form differs from NCP by the continual expression of free non-structural protein 3 (NS3). CP BVDV infection of cultured cells induces apoptosis, whereas NCP BVDV infection has been reported to block the induction of beta interferon (IFN-beta). To investigate the viral mechanisms underlying these effects, NS3 or NS2-3 proteins of NCP and CP BVDV biotypes, together with the cognate NS3 co-factor NS4A, were expressed in cells, and their effect on apoptosis and induction of IFN-beta was investigated. Expression of NS3/4A resulted in increased activity of caspase-9 and caspase-3, indicating induction of the intrinsic apoptosis pathway. Mutational analysis revealed that a protease-inactive NS3/4A was unable to induce apoptosis, suggesting that NS3 protease activity is required for initiation of apoptosis during CP BVDV infection. The ability of NS2-3 to modulate activation of the IFN-beta promoter was also investigated. These studies confirmed that, unlike the related hepatitis C virus and GB virus-B, BVDV proteases are unable to inhibit TLR3- and RIG-I-dependent activation of the IFN-beta promoter. These data suggest that BVDV NS3/4A is responsible for regulating the levels of cellular apoptosis and provide new insights regarding the viral elements associated with CP biotype pathogenesis.
Collapse
Affiliation(s)
- Toby Gamlen
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Morphological Changes and Virus Distribution in the Ileum of Colostrum-Deprived Calves Inoculated with Non-Cytopathic Bovine Viral Diarrhoea Virus Genotype-1. J Comp Pathol 2009; 141:52-62. [DOI: 10.1016/j.jcpa.2009.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 02/19/2009] [Accepted: 03/12/2009] [Indexed: 11/18/2022]
|
13
|
MAEDA K, FUJIHARA M, HARASAWA R. Bovine viral diarrhea virus 2 Infection Activates the Unfolded Protein Response in MDBK Cells, Leading to Apoptosis. J Vet Med Sci 2009; 71:801-5. [DOI: 10.1292/jvms.71.801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kouji MAEDA
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University
| | - Masatoshi FUJIHARA
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University
| | - Ryô HARASAWA
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University
| |
Collapse
|
14
|
Pinchuk GV, Lee SR, Nanduri B, Honsinger KL, Stokes JV, Pinchuk LM. Bovine viral diarrhea viruses differentially alter the expression of the protein kinases and related proteins affecting the development of infection and anti-viral mechanisms in bovine monocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1234-47. [DOI: 10.1016/j.bbapap.2008.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
|
15
|
Bendfeldt S, Ridpath JF, Neill JD. Activation of cell signaling pathways is dependant on the biotype of bovine viral diarrhea viruses type 2. Virus Res 2007; 126:96-105. [PMID: 17376555 DOI: 10.1016/j.virusres.2007.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/29/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus of the Flaviviridae family, is an economically important cattle pathogen with a worldwide distribution. Besides the segregation into two distinct species (BVDV1/BVDV2) two different biotypes, a cytopathic (cp) and a noncytopathic (ncp) biotype, are distinguished based on their behavior in epithelial cell cultures. One of the most serious forms of BVDV infection affecting immunocompetent animals of all ages is severe acute BVD (sa BVD) which is caused by highly virulent ncp BVDV2 strains. Previous studies revealed that these highly virulent ncp viruses cause cell death in a lymphoid cell line (BL3) which is not clearly associated with typical apoptotic changes (e.g. PARP cleavage) observed after infection with cp BVDV. To further characterize the underlying molecular mechanisms, we first analyzed the role of the mitochondria and caspases as key mediators of apoptosis. Compared to infection with cp BVDV2, infection with highly virulent ncp BVDV2 resulted in a delayed and less pronounced disruption of the mitochondrial transmembrane potential (DeltaPsi(m)) and a weaker activation of the caspase cascade. In contrast, infection with low virulence ncp BVDV2 showed no significant differences from the uninfected control cells. Since different pro- and anti-apoptotic cellular signaling pathways may become activated upon virus infection, we compared the effect of different BVDV2 strains on cellular signaling pathways in BL3 cells. Stress-mediated p38 MAPK phosphorylation was detected only in cells infected with cp BVDV2. Interestingly, infection with highly virulent ncp BVDV2 was found to influence the phosphoinositide 3-kinase (PI3K)-Akt pathway. This indicates that BL3 cells respond differently to infection with BVDV depending on virulence and biotype.
Collapse
Affiliation(s)
- S Bendfeldt
- National Animal Disease Center, ARS, USDA, Ames, IA, USA
| | | | | |
Collapse
|
16
|
Spilki F, Silva T, Esteves P, Teixeira M, Batista H, Chiminazzo C, Driemeier D, Franco A, Roehe P. Co-infections with bovine herpesvirus type 5 and bovine viral diarrhoea virus. ARQ BRAS MED VET ZOO 2006. [DOI: 10.1590/s0102-09352006000500001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
During a series of experiments attempting to reproduce clinically apparent bovine herpesvirus type 5 (BoHV-5) infections, a group of calves was inadvertently infected with bovine viral diarrhoea virus (BVDV). Another group of calves was infected with BoHV-5 only. This paper reports the outcome of such infections. Two out of six calves solely infected with BoHV-5 displayed moderate to severe clinical signs. Three out of four calves of the group co-infected with BoHV-5 and BVDV developed severe clinical signs, two of them died. BoHV-5 virus was isolated to higher titres and for a longer period from the group of calves infected with both viruses. These results suggest that BVDV may enhance clinical signs induced by BoHV-5 and may also play a role in extending the period of BoHV-5 shedding.
Collapse
Affiliation(s)
| | - T.C. Silva
- UFRGS; Centro de Pesquisa Veterinária Desidério Finamor
| | - P.A. Esteves
- UFRGS; Centro de Pesquisa Veterinária Desidério Finamor
| | - M.B. Teixeira
- UFRGS; Centro de Pesquisa Veterinária Desidério Finamor
| | | | - C. Chiminazzo
- UFRGS; Centro de Pesquisa Veterinária Desidério Finamor
| | | | - A.C. Franco
- UFRGS; Centro de Pesquisa Veterinária Desidério Finamor
| | - P.M. Roehe
- UFRGS; Centro de Pesquisa Veterinária Desidério Finamor
| |
Collapse
|
17
|
Piccinini R, Luzzago C, Frigerio M, Frigerio V, Daprà V, Liandris E, Zecconi A. Comparison of Blood Non-Specific Immune Parameters in Bovine Virus Diarrhoea Virus (BVDV) Persistently Infected and in Immune Heifers. ACTA ACUST UNITED AC 2006; 53:62-7. [PMID: 16626401 DOI: 10.1111/j.1439-0450.2006.00914.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several data from different authors show that Bovine virus diarrhoea virus (BVDV) could be a key component in multiple-etiology diseases, indeed a lower leukocytes number and their impaired functions decrease the resistance to infections. However, most of the information on the impairment of immune function during BVDV infections arise from circumstantial evidence and from experimental infection studies, and few from field data. To assess the effects of BVDV on blood cells parameters, cellular and humoral functions under field conditions, we designed a controlled study in commercial dairy herds, comparing persistent infected (PI) and healthy heifers. A total of 45 heifers were considered, the PI animals were nine, the control animals were 34, while two controls were considered as acute infected animals. The comparison of the mean values in PI calves showed a significant decrease for leukocytes and granulocytes, while platelets showed a significant increase, when compared with control animals. The total number of lymphocytes decreased not significantly in PI animals, while the proportion significantly increased. The number and proportion of monocytes was significantly reduced in PI animals, when compared with controls. The data collected on markers of cellular immunity during our study cannot be compared with the literature because there are no reference values. The presence of a persistent infection affected the cellular enzymes: NAGase, lysozyme and respiratory burst showed a large statistically significant decrease in PI animals when compared with controls. The presence of a persistent infection with BVD virus influenced blood cells number and impaired some blood cell functions. Such impairment confirms that PI animals represent a threat to the herd not only because they could spread BVDV, but also because they are more susceptible to other infectious diseases.
Collapse
Affiliation(s)
- R Piccinini
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Sezione di Malattie Infettive, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Dedieu L, Chapey E, Balcer-Rodrigues V. Mycoplasma mycoides ssp. mycoides biotype small colony-secreted components induce apoptotic cell death in bovine leucocytes. Scand J Immunol 2006; 62:528-38. [PMID: 16316420 DOI: 10.1111/j.1365-3083.2005.01690.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Contagious bovine pleuropneumonia, caused by Mycoplasma mycoides ssp. mycoides biotype small colony (MmmSC), is one of the most serious cattle diseases in Africa. Several observations suggested that MmmSC had evolved an efficient way to escape the bovine immune responses by triggering host-cell cytotoxicity. This study was implemented to determine whether the cytotoxic effect was due to apoptotic cell death. To that end, bovine blood cells were cultured for up to 3 days in the presence of viable or heat-killed MmmSC compared to unstimulated cultures. The findings provided evidence for a viable MmmSC-induced, time-dependent apoptosis in bovine blood leucocytes, whereas heat-killed MmmSC had no effect. Morphological and physiological changes (evidenced by TUNEL and annexin V staining) typical of apoptosis were observed in response to viable MmmSC. All the lymphocyte subsets as well as the monocyte/granulocyte subset exhibited extensive apoptosis after exposure to viable MmmSC. Our results demonstrated a potential role for MmmSC-secreted components as pathogenic factors able to induce programmed cell death in bovine blood leucocytes.
Collapse
Affiliation(s)
- L Dedieu
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement CIRAD, Campus International de Baillarguet, Montpellier, France.
| | | | | |
Collapse
|
19
|
Boyd BL, Lee TM, Kruger EF, Pinchuk LM. Cytopathic and non-cytopathic bovine viral diarrhoea virus biotypes affect fluid phase uptake and mannose receptor-mediated endocytosis in bovine monocytes. Vet Immunol Immunopathol 2004; 102:53-65. [PMID: 15451615 DOI: 10.1016/j.vetimm.2004.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 05/27/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
We have used non-cytopathic (ncp) and cytopathic (cp) bovine viral diarrhoea viruses (BVDV) to determine how the two biotypes affect mannose receptor (MR)-mediated endocytosis and fluid phase uptake in bovine monocytes. We have demonstrated that endocytosis in uninfected monocytes after 1 h of culture was mediated by the MR and fluid phase uptake, and after 24 h of culture it was mediated via fluid phase uptake only. Both cp and ncp BVDV affected the mechanisms of antigen uptake in monocytes. Endocytosis in BVDV infected monocytes, unlike in uninfected cells, was MR-independent and mediated by fluid phase uptake after 1 h of infection. The 24-h-BVDV infection changed the antigen uptake mechanisms to become MR- and fluid phase uptake-dependent. We conclude that antigen uptake, an important antigen presenting cell (APC) function, is affected in the early stage of BVDV infection during the first 24 h, with both BVDV biotypes, cp and ncp, having similar effects on monocyte antigen uptake in cattle. By influencing the early antigen uptake function of APC, BVDV might disrupt the function of monocytes as professional APC and contribute to the specific immunotolerance to BVDV.
Collapse
MESH Headings
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/physiology
- Bovine Virus Diarrhea-Mucosal Disease/immunology
- Bovine Virus Diarrhea-Mucosal Disease/metabolism
- Bovine Virus Diarrhea-Mucosal Disease/virology
- Cattle
- Cytopathogenic Effect, Viral/immunology
- Dextrans/immunology
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Disease Reservoirs/veterinary
- Endocytosis/immunology
- Endocytosis/physiology
- Female
- Fluorescein-5-isothiocyanate/analogs & derivatives
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/metabolism
- Monocytes/immunology
- Monocytes/virology
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- Bobbie L Boyd
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, PO Box 6100, 39762-6100, USA
| | | | | | | |
Collapse
|
20
|
Chase CCL, Elmowalid G, Yousif AAA. The immune response to bovine viral diarrhea virus: a constantlychanging picture. Vet Clin North Am Food Anim Pract 2004; 20:95-114. [PMID: 15062477 DOI: 10.1016/j.cvfa.2003.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the major immuno-suppressive viruses of cattle. The effect on the innate and acquired immune system is unique and results in dramatic immune dysfunction. BVDV infection also has the ability to cause persistent infection (PI) in the developing fetus. This Pl syndrome creates a requirement for high levels of BVDV immunity from vaccines to prevent these infections. BVDV vaccines and their future development continue to be an enigma in the control of BVDV.
Collapse
Affiliation(s)
- Christopher C L Chase
- Department of Veterinary Science, South Dakota State University, P.O. Box 2175, Brookings, SD 57007, USA.
| | | | | |
Collapse
|
21
|
Bendfeldt S, Grummer B, Greiser-Wilke I. No caspase activation but overexpression of Bcl-2 in bovine cells infected with noncytopathic bovine virus diarrhoea virus. Vet Microbiol 2004; 96:313-26. [PMID: 14599779 DOI: 10.1016/j.vetmic.2003.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytopathic bovine viral diarrhoea viruses (cp BVDV) induce apoptosis in permissible cell cultures via the intrinsic pathway, which involves the mitochondria as key organelles. An important event is the irreversible opening of the permeability transition pore (PTP) and the breakdown of the transmembrane potential DeltaPsi(m). The resulting release of cytochrome C from the mitochondria serves as a trigger to form the apoptosome which then leads to caspase activation and cell death. In contrast, noncytopathic (ncp) BVDV do not seem to affect cells in vivo or in vitro, suggesting that they inhibit apoptosis. Interestingly, inhibition of caspases in cells infected with cp BVDV delayed the apoptotic cascade but did not prevent the cytopathic effect (CPE). This suggests that the induction of apoptosis and the processes finally leading to the CPE may proceed separately, implying that the inhibition of apoptosis by ncp BVDV has to start earlier in the cascade. In this study we show that in fact apoptosis inhibition in cells infected with ncp BVDV must occur at the mitochondrial level, before the activation of the caspase cascade occurs. To elucidate the role of mitochondria after infection of cells with ncp BVDV, expression of Bcl-2 and Bax were analysed. It was shown that while Bax expression was not affected, the anti-apoptotic Bcl-2 protein was upregulated, presumably suppressing initiation of cell death and enabling persistent infection in vitro.
Collapse
Affiliation(s)
- S Bendfeldt
- Institute of Virology, Hanover School of Veterinary Medicine, Buenteweg 17, 30559, Hannover, Germany
| | | | | |
Collapse
|
22
|
Risatti GR, Pomp D, Donis RO. Patterns of cellular gene expression in cells infected with cytopathic or non-cytopathic bovine viral diarrhea virus. Anim Biotechnol 2003; 14:31-49. [PMID: 12887178 DOI: 10.1081/abio-120020184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bovine viral diarrhea virus (BVDV) infection in cattle is responsible for mucosal disease; an invariably fatal syndrome characterized by the recovery of two BVDV strains: cytopathic (cp) or noncytopathic (ncp). To understand the cellular responses to cp BVDV infection, we carried out differential display-polymerase chain reaction (DD-PCR) analysis of gene expression in infected cells. Altered expression of 14 genes involved in several functions was observed in cells infected with cp BVDV: (1) immune regulation, such as CD46, FKBP-12, and osteopontin (OPN); (2) apoptosis-related cysteine proteases like calpain; (3) signaling plasma membrane proteins such as integrin beta1, and prion protein; and (4) unknown function genes. Northern blot analysis of the expression of these genes in ncp BVDV infected cells revealed that while the expression of some genes was affected as in cp BVDV infected cells, others show a clearly contrary change. We postulate that a cause-effect relationship may exist between the differential gene expression alterations that characterize cp and ncp BVDV infections and the unique diseases associated with each BVDV biotype.
Collapse
Affiliation(s)
- Guillermo R Risatti
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0905, USA
| | | | | |
Collapse
|
23
|
Perler L, Schweizer M, Jungi TW, Peterhans E. Bovine viral diarrhoea virus and bovine herpesvirus-1 prime uninfected macrophages for lipopolysaccharide-triggered apoptosis by interferon-dependent and -independent pathways. J Gen Virol 2000; 81:881-7. [PMID: 10725412 DOI: 10.1099/0022-1317-81-4-881] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The flavivirus bovine viral diarrhoea (BVD) virus exists in two biotypes, cytopathic (cp) and non-cytopathic (ncp), defined by their effect on cultured cells. Cp BVD virus-infected cells undergo apoptosis and may promote apoptosis in uninfected cells by an indirect mechanism. Macrophages (Mφ) infected with cp, but not ncp, BVD virus release a factor(s) in the supernatant capable of priming uninfected Mφ for activation-induced apoptosis in response to lipopolysaccharide. A possible role of interferon (IFN) type I was suggested previously by the observation that this cytokine primed for activation-induced apoptosis and was present in supernatants of Mφ infected with cp, but not ncp, BVD virus. Here, supernatants of both Mφ infected with a wider range of cp BVD virus and Mφ infected with bovine herpesvirus-1 are shown to contain such priming activity. Two lines of evidence indicate that factors in addition to IFN type I prime uninfected Mφ for apoptosis. First, supernatants of Mφ infected with cp BVD virus contained much less IFN than is required for priming for apoptosis. Second, whereas antiviral activity was neutralized by a vaccinia virus-encoded IFN type I receptor, B18R, the capacity of the supernatant to prime for apoptosis was unaffected by this treatment. The apparent molecular mass of the factor(s) priming for apoptosis was between 30 and 100 kDa. Priming of uninfected cells for activation-induced apoptosis may add a new facet to virus pathogenesis and may contribute to the formation of lesions not related directly to virus replication.
Collapse
Affiliation(s)
- L Perler
- Institute of Veterinary Virology, University of Berne, Laenggass-Str. 122, CH-3012 Berne, Switzerland
| | | | | | | |
Collapse
|