1
|
Contribution of yeast models to virus research. Appl Microbiol Biotechnol 2021; 105:4855-4878. [PMID: 34086116 PMCID: PMC8175935 DOI: 10.1007/s00253-021-11331-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Abstract Time and again, yeast has proven to be a vital model system to understand various crucial basic biology questions. Studies related to viruses are no exception to this. This simple eukaryotic organism is an invaluable model for studying fundamental cellular processes altered in the host cell due to viral infection or expression of viral proteins. Mechanisms of infection of several RNA and relatively few DNA viruses have been studied in yeast to date. Yeast is used for studying several aspects related to the replication of a virus, such as localization of viral proteins, interaction with host proteins, cellular effects on the host, etc. The development of novel techniques based on high-throughput analysis of libraries, availability of toolboxes for genetic manipulation, and a compact genome makes yeast a good choice for such studies. In this review, we provide an overview of the studies that have used yeast as a model system and have advanced our understanding of several important viruses. Key points • Yeast, a simple eukaryote, is an important model organism for studies related to viruses. • Several aspects of both DNA and RNA viruses of plants and animals are investigated using the yeast model. • Apart from the insights obtained on virus biology, yeast is also extensively used for antiviral development.
Collapse
|
2
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
3
|
Willemsen A, Félez-Sánchez M, Bravo IG. Genome Plasticity in Papillomaviruses and De Novo Emergence of E5 Oncogenes. Genome Biol Evol 2019; 11:1602-1617. [PMID: 31076746 PMCID: PMC6557308 DOI: 10.1093/gbe/evz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The clinical presentations of papillomavirus (PV) infections come in many different flavors. While most PVs are part of a healthy skin microbiota and are not associated to physical lesions, other PVs cause benign lesions, and only a handful of PVs are associated to malignant transformations linked to the specific activities of the E5, E6, and E7 oncogenes. The functions and origin of E5 remain to be elucidated. These E5 open reading frames (ORFs) are present in the genomes of a few polyphyletic PV lineages, located between the early and the late viral gene cassettes. We have computationally assessed whether these E5 ORFs have a common origin and whether they display the properties of a genuine gene. Our results suggest that during the evolution of Papillomaviridae, at least four events lead to the presence of a long noncoding DNA stretch between the E2 and the L2 genes. In three of these events, the novel regions evolved coding capacity, becoming the extant E5 ORFs. We then focused on the evolution of the E5 genes in AlphaPVs infecting primates. The sharp match between the type of E5 protein encoded in AlphaPVs and the infection phenotype (cutaneous warts, genital warts, or anogenital cancers) supports the role of E5 in the differential oncogenic potential of these PVs. In our analyses, the best-supported scenario is that the five types of extant E5 proteins within the AlphaPV genomes may not have a common ancestor. However, the chemical similarities between E5s regarding amino acid composition prevent us from confidently rejecting the model of a common origin. Our evolutionary interpretation is that an originally noncoding region entered the genome of the ancestral AlphaPVs. This genetic novelty allowed to explore novel transcription potential, triggering an adaptive radiation that yielded three main viral lineages encoding for different E5 proteins, displaying distinct infection phenotypes. Overall, our results provide an evolutionary scenario for the de novo emergence of viral genes and illustrate the impact of such genotypic novelty in the phenotypic diversity of the viral infections.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD Uni Montpellier), Centre National de la Recherche Scientique (CNRS), Montpellier, France
| | - Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ignacio G Bravo
- Laboratory MIVEGEC (UMR CNRS IRD Uni Montpellier), Centre National de la Recherche Scientique (CNRS), Montpellier, France
| |
Collapse
|
4
|
Abstract
Fifty years ago, inoculation with bovine papillomavirus (BPV) was found to cause mesenchymal tumors of the skin in cattle and horses, as well as tumors of the bladder in cattle. Subsequent to these studies of BPVs, human papillomaviruses (HPVs) were found to cause cervical cancer resulting in intense research into papillomaviruses. During the past 50 years, the ways that HPVs and BPVs cause disease have been investigated, and both HPVs and BPVs have been associated with an increasingly diverse range of diseases. Herein, the biology, oncogenic mechanisms, and diseases associated with BPVs are compared with those of HPVs. As reviewed, there are currently significant differences between BPVs and HPVs. However, research 50 years ago into BPVs formed a prologue for the recognition that papillomaviruses have a significant role in human disease, and it is possible that future research may similarly reveal that BPVs are less different from HPVs than is currently recognized.
Collapse
Affiliation(s)
- J. S. Munday
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
|
6
|
DiMaio D, Petti LM. The E5 proteins. Virology 2013; 445:99-114. [PMID: 23731971 DOI: 10.1016/j.virol.2013.05.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/23/2022]
Abstract
The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating these activities. The primary target of the 44-amino acid BPV1 E5 protein is the PDGF β receptor, whereas the EGF receptor appears to be an important target of the 83-amino acid HPV16 E5 protein. Both E5 proteins also bind to the vacuolar ATPase and affect MHC class I expression and cell-cell communication. Continued studies of the E5 proteins will elucidate important aspects of transmembrane protein-protein interactions, cellular signal transduction, cell biology, virus replication, and tumorigenesis.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, USA; Department of Therapeutic Radiology, Yale School of Medicine, USA; Department of Molecular Biophysics & Biochemistry, Yale University, USA; Yale Cancer Center, USA.
| | | |
Collapse
|
7
|
Byun YJ, Lee SB, Lee HO, Son MJ, Kim HS, Kwon OJ, Jeong SW. Vacuolar H+-ATPase c protects glial cell death induced by sodium nitroprusside under glutathione-depleted condition. J Cell Biochem 2011; 112:1985-96. [DOI: 10.1002/jcb.23105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification. J Virol 2010; 84:10619-29. [PMID: 20686024 DOI: 10.1128/jvi.00831-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human papillomavirus type 16 E5 oncoprotein (16E5) enhances acute, ligand-dependent activation of the epidermal growth factor receptor (EGFR) and concomitantly alkalinizes endosomes, presumably by binding to the 16-kDa "c" subunit of the V-ATPase proton pump (16K) and inhibiting V-ATPase function. However, the relationship between 16K binding, endosome alkalinization, and altered EGFR signaling remains unclear. Using an antibody that we generated against 16K, we found that 16E5 associated with only a small fraction of endogenous 16K in keratinocytes, suggesting that it was unlikely that E5 could significantly affect V-ATPase function by direct inhibition. Nevertheless, E5 inhibited the acidification of endosomes, as determined by a new assay using a biologically active, pH-sensitive fluorescent EGF conjugate. Since we also found that 16E5 did not alter cell surface EGF binding, the number of EGFRs on the cell surface, or the endocytosis of prebound EGF, we postulated that it might be blocking the fusion of early endosomes with acidified vesicles. Our studies with pH-sensitive and -insensitive fluorescent EGF conjugates and fluorescent dextran confirmed that E5 prevented endosome maturation (acidification and enlargement) by inhibiting endosome fusion. The E5-dependent defect in vesicle fusion was not due to detectable disruption of actin, tubulin, vimentin, or cytokeratin filaments, suggesting that membrane fusion was being directly affected rather than vesicle transport. Perhaps most importantly, while bafilomycin A(1) (like E5) binds to 16K and inhibits endosome acidification, it did not mimic the ability of E5 to inhibit endosome enlargement or the trafficking of EGF. Thus, 16E5 alters EGF endocytic trafficking via a pH-independent inhibition of vesicle fusion.
Collapse
|
9
|
Pedroza-Saavedra A, Lam EWF, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. The human papillomavirus type 16 E5 oncoprotein synergizes with EGF-receptor signaling to enhance cell cycle progression and the down-regulation of p27(Kip1). Virology 2010; 400:44-52. [PMID: 20144468 DOI: 10.1016/j.virol.2010.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/16/2009] [Accepted: 01/07/2010] [Indexed: 12/19/2022]
Abstract
E5 oncoprotein activity from high risk human papillomaviruses (HPVs) is associated with growth factor receptor signaling, but the function of this protein is not well understood. In this study, we investigated the role of HPV-16 E5 on the cell cycle progression during EGF-stimulation. Wild-type and NIH 3T3 cells over-expressing human EGF-receptor were transfected with HPV-16 E5 gene and the cell cycle progression was characterized. This analysis showed that the E5-expressing cells increased DNA synthesis (S-phase) by around 40%. Cell cycle protein analysis of E5-expressing cells showed a reduction in the half-life of p27(Kip1) protein as compared to control cells (18.4 vs. 12.7 h), an effect that was enhanced in EGF-stimulated cells (12.8 vs. 3.6 h). Blockage of EGF-receptor activity abrogated E5 signals as well as p27(Kip1) down-regulation. These results suggest that E5 and the EGF-receptor cooperate to enhance cell cycle entry and progression through regulating p27(Kip1) expression at protein level.
Collapse
Affiliation(s)
- Adolfo Pedroza-Saavedra
- Center for Research on Infectious Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | | | | | | |
Collapse
|
10
|
Di Domenico F, Foppoli C, Blarzino C, Perluigi M, Paolini F, Morici S, Coccia R, Cini C, De Marco F. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:4. [PMID: 19133143 PMCID: PMC2654431 DOI: 10.1186/1756-9966-28-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 01/08/2009] [Indexed: 12/27/2022]
Abstract
Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14) by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these effects can modulate the cell phenotype and can induce a higher sensitivity to tyrosine related anti-blastic drugs.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nath R, Mant CA, Kell B, Cason J, Bible JM. Analyses of variant human papillomavirus type-16 E5 proteins for their ability to induce mitogenesis of murine fibroblasts. Cancer Cell Int 2006; 6:19. [PMID: 16899131 PMCID: PMC1569872 DOI: 10.1186/1475-2867-6-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 08/09/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human papillomavirus type 16 (HPV-16) E5 protein co-operates with epidermal growth factor to stimulate mitogenesis of murine fibroblasts. Currently, little is known about which viral amino acids are involved in this process. Using sequence variants of HPV-16 E5 we have investigated their effects upon E5 transcription, cell-cycling and cell-growth of murine fibroblasts. RESULTS We demonstrate that: (i) introduction of Thr64 into the reference E5 sequence of HPV-16 abrogates mitogenic activity: both were poorly transcribed in NIH-3T3 cells; (ii) substitution of Leu44Val65 or, Thr37Leu44Val65 into the HPV-16 E5 reference backbone resulted in high transcription in NIH-3T3 cells, enhanced cell-cycle progression and high cell-growth; and, (iii) inclusion of Tyr8 into the Leu44Val65 backbone inhibited E5 induced cell-growth and repression of p21 expression, despite high transcription levels. CONCLUSION The effects of HPV-16 E5 variants upon mitosis help to explain why Leu44Val65 HPV-16 E5 variants are most prevalent in 'wild' pathogenic viral populations in the UK.
Collapse
Affiliation(s)
- Rahul Nath
- Department of Infectious Diseases, Second Floor New Guy's House, Guy's Hospital, Guy's, King's College and St Thomas' School of Medicine, King's College London, London SE19RT, UK
| | - Christine A Mant
- Department of Infectious Diseases, Second Floor New Guy's House, Guy's Hospital, Guy's, King's College and St Thomas' School of Medicine, King's College London, London SE19RT, UK
| | - Barbara Kell
- Department of Infectious Diseases, Second Floor New Guy's House, Guy's Hospital, Guy's, King's College and St Thomas' School of Medicine, King's College London, London SE19RT, UK
| | - John Cason
- Department of Infectious Diseases, Second Floor New Guy's House, Guy's Hospital, Guy's, King's College and St Thomas' School of Medicine, King's College London, London SE19RT, UK
| | - Jon M Bible
- Department of Infectious Diseases, Second Floor New Guy's House, Guy's Hospital, Guy's, King's College and St Thomas' School of Medicine, King's College London, London SE19RT, UK
| |
Collapse
|
12
|
Marchetti B, Ashrafi GH, Dornan ES, Araibi EH, Ellis SA, Campo MS. The E5 protein of BPV-4 interacts with the heavy chain of MHC class I and irreversibly retains the MHC complex in the Golgi apparatus. Oncogene 2006; 25:2254-63. [PMID: 16288210 DOI: 10.1038/sj.onc.1209245] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BPV-4 E5 inhibits transcription of the bovine MHC class I heavy chain (HC) gene, increases degradation of HC and downregulates surface expression of MHC class I by retaining the complex in the Golgi apparatus (GA). Here we report that transcription inhibition can be alleviated by interferon treatment and the degradation of HC can be reversed by treatment with inhibitors of proteasomes and lysosomes. However, the inhibition of transport of MHC class I to the cell surface is irreversible. We show that E5 is capable of physically interacting with HC. Together with the inhibition of the vacuolar ATPase (due to the interaction between E5 and 16k subunit c), the interaction between E5 and HC is likely to be responsible for retention of MHC class I in the GA. C-terminus deletion mutants of E5 are incapable of either downregulating surface MHC class I or interacting with HC, establishing that the C-terminus domain of E5 is important in the inhibition of MHC class I.
Collapse
Affiliation(s)
- B Marchetti
- Division of Pathological Sciences, Institute of Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
13
|
Disbrow GL, Hanover JA, Schlegel R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol 2005; 79:5839-46. [PMID: 15827198 PMCID: PMC1082759 DOI: 10.1128/jvi.79.9.5839-5846.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human papillomavirus type 16 (HPV-16) E5 protein is a small, hydrophobic polypeptide that is expressed in virus-infected keratinocytes and alters receptor signaling pathways, apoptotic responses, and endosomal pH. Despite its ability to inhibit endosomal acidification, the HPV-16 E5 protein is found predominantly in the endoplasmic reticulum (ER), suggesting that its effect may be indirect and perhaps global. To determine whether E5 alters the pHs of additional intracellular compartments, we transduced human keratinocytes with a codon-optimized E5 vector and then quantified endosomal and trans-Golgi pHs using sensitive, compartment-specific, ratiometric pHluorin constructs. E5 protein increased endosomal pH from 5.9 to 6.9 but did not affect the normal trans-Golgi pH of 6.3. Confirming the lack of alteration in trans-Golgi pH, we observed no alterations in the acidification-dependent processing of the proH3 protein. C-terminal deletions of E5, which retained normal expression and localization in the ER, were defective for endosomal alkalization. Thus, E5 does not uniformly alkalinize intracellular compartments, and its C-terminal 10 amino acids appear to mediate interactions with critical ER targets that modulate proton pump function and/or localization.
Collapse
Affiliation(s)
- Gary L Disbrow
- Department of Pathology, Georgetown University Medical School, Basic Science Building, Room 113, 3900 Reservoir Rd., NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
14
|
Suprynowicz FA, Disbrow GL, Simic V, Schlegel R. Are transforming properties of the bovine papillomavirus E5 protein shared by E5 from high-risk human papillomavirus type 16? Virology 2005; 332:102-13. [PMID: 15661144 DOI: 10.1016/j.virol.2004.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/10/2004] [Accepted: 11/10/2004] [Indexed: 11/24/2022]
Abstract
The E5 proteins of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 16 (HPV-16) are small (44-83 amino acids), hydrophobic polypeptides that localize to membranes of the Golgi apparatus and endoplasmic reticulum, respectively. While the oncogenic properties of BPV-1 E5 have been characterized in detail, less is known about HPV-16 E5 due to its low expression in mammalian cells. Using codon-optimized HPV-16 E5 DNA, we have generated stable fibroblast cell lines that express equivalent levels of epitope-tagged BPV-1 and HPV-16 E5 proteins. In contrast to BPV-1 E5, HPV-16 E5 does not activate growth factor receptors, phosphoinositide 3-kinase or c-Src, and fails to induce focus formation, although it does promote anchorage-independent growth in soft agar. These variant activities are apparently unrelated to differences in intracellular localization of the E5 proteins since retargeting HPV-16 E5 to the Golgi apparatus does not induce focus formation.
Collapse
Affiliation(s)
- Frank A Suprynowicz
- Department of Pathology, Georgetown University Medical School, Preclinical Sciences Building, Room GR10C, 3900 Reservoir Road, NW, Box #571432, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
15
|
Cartin W, Alonso A. The human papillomavirus HPV2a E5 protein localizes to the Golgi apparatus and modulates signal transduction. Virology 2003; 314:572-9. [PMID: 14554085 DOI: 10.1016/s0042-6822(03)00509-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The low-risk human papillomavirus type 2a (HPV2a) has been found associated with benign skin epithelial tumors and has only been very rarely identified in malignized epithelia. Here we report the identification of the E5 gene of HPV2a and demonstrate that the protein is mainly expressed in the Golgi apparatus of transfected cells, similar to the known high-risk types E5 proteins. Further, we present experimental evidence demonstrating that HPV2a E5, similar to HPV16 E5, is able to modulate EGF-mediated erk1/2 MAP kinase activation and to down-regulate the expression of MHC class I molecules at the plasma membrane. Thus, the E5 gene of at least one cutaneous low-risk HPV type displays similar biological characteristics to those described for the high-risk type HPV16.
Collapse
Affiliation(s)
- Walter Cartin
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld-242, 69120 Heidelberg, Germany
| | | |
Collapse
|
16
|
Beniston RG, Campo MS. Quercetin elevates p27(Kip1) and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1. Oncogene 2003; 22:5504-14. [PMID: 12934110 DOI: 10.1038/sj.onc.1206848] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous work with primary bovine fibroblasts demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 and G2/M, in correlation with p53 activation. The expression of bovine papillomavirus type 4 (BPV-4) E7 overcame this arrest and lead to the development of tumorigenic cells lines (Beniston et al., 2001). Given the possible link between papillomavirus infection, bracken fern in the diet and cancer of the upper gastrointestinal (GI) tract in humans, we investigated whether a similar situation would occur in human cells transformed by human papillomavirus type 16 (HPV-16) oncoproteins. Quercetin arrested primary human foreskin keratinocytes in G1. Arrest was linked to an elevation of the cyclin-dependent kinase inhibitor (cdki) p27(Kip1). Expression of the HPV16 E6 and E7 oncoproteins in transformed cells failed to abrogate cell cycle arrest. G1 arrest in the transformed cells was also linked to an increase of p27(Kip1) with a concomitant reduction of cyclin E-associated kinase activity. This elevation of p27(Kip1) was due not only to increased protein half-life, but also to increased mRNA transcription.
Collapse
Affiliation(s)
- Richard Garry Beniston
- Institute of Comparative Medicine, Glasgow University Veterinary School, Garscube Estate, Glasgow G61 1QH, Scotland, UK
| | | |
Collapse
|
17
|
Disbrow GL, Sunitha I, Baker CC, Hanover J, Schlegel R. Codon optimization of the HPV-16 E5 gene enhances protein expression. Virology 2003; 311:105-14. [PMID: 12832208 DOI: 10.1016/s0042-6822(03)00129-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human papillomavirus type 16 (HPV-16) E5 protein is an 83-amino-acid, hydrophobic polypeptide that has been localized to intracellular membranes when overexpressed in COS-1 cells. While the HPV-16 E5 protein appears to modulate endosomal pH and signal transduction pathways, genetic analysis of its biological activities has been hampered by low (usually nondetectable) levels of expression in stable cell lines. Sequence analysis of the native HPV-16 E5 gene revealed that infrequent-use codons are used for 33 of its 83 amino acids and, in an effort to optimize E5 expression, we converted these codons to those more common in mammalian genes. The modified gene, 16E5*, generated protein levels that were six- to ninefold higher than those of wild-type HPV-16 E5, whereas the levels of mRNA were unchanged. 16E5* protein was detectable in keratinocytes by immunoblotting, immunoprecipitation, and immunofluorescence techniques and formed disulfide-dependent dimers and higher-order oligomers. Unlike the bovine papillomavirus E5 protein, which is present in the Golgi, 16E5* was localized primarily to the endoplasmic reticulum and its expression reduced the in vitro life span of keratinocytes.
Collapse
Affiliation(s)
- Gary L Disbrow
- Department of Pathology, Georgetown University Medical School, Georgetown University Medical Center, Preclinical Science Building, Room GR10C, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
18
|
Marchetti B, Ashrafi GH, Tsirimonaki E, O'Brien PM, Campo MS. The bovine papillomavirus oncoprotein E5 retains MHC class I molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene 2002; 21:7808-16. [PMID: 12420217 DOI: 10.1038/sj.onc.1205885] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Revised: 07/16/2002] [Accepted: 07/18/2002] [Indexed: 11/08/2022]
Abstract
During papillomavirus infection, the E5 protein localizes in the cell Golgi apparatus and other endomembrane compartments. Cells transformed by E5 do not express major histocompatibility class I complex (MHC I) on the cell surface, while cells transformed by the other transforming proteins E6 and E7 do. In addition, the total amount of both MHC I protein and mRNA is reduced in E5-transformed cells. Here we show that expression of bovine papillomavirus E5 causes the retention of MHC I in the Golgi apparatus, thus preventing its transport to the cell surface. We ascribe this effect to a failure of acidification of the Golgi apparatus, as similar effects are observed in control cells treated with the ionophore monensin. Treatment of E5-transformed cells with either beta- or gamma-interferon increases the synthesis of MHC I, showing that inhibition of MHC I expression by E5 is not irreversible. However, even after interferon treatment, MHC I, although increased in quantity, is not transported to the cell surface. E5 therefore affects MHC I at several levels, but prevention of MHC I transport to the cell surface appears to be the dominant effect. Lack of surface MHC I would have profound consequences for presentation of viral peptides to the immune system.
Collapse
Affiliation(s)
- Barbara Marchetti
- Institute of Comparative Medicine, Glasgow University Veterinary School, Garscube Estate, Glasgow G61 1QH, UK
| | | | | | | | | |
Collapse
|
19
|
Gibson LCD, Cadwallader G, Finbow ME. Evidence that there are two copies of subunit c" in V0 complexes in the vacuolar H+-ATPase. Biochem J 2002; 366:911-9. [PMID: 12038966 PMCID: PMC1222818 DOI: 10.1042/bj20020171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Revised: 05/21/2002] [Accepted: 05/31/2002] [Indexed: 11/17/2022]
Abstract
The proton-translocating core of eukaryotic vacuolar H(+)-ATPase (V-ATPase), V(0) consists of a hexameric arrangement of transmembrane alpha-helices formed from the related polypeptides, subunit c and subunit c". The former is comprised of four transmembrane alpha-helices, whilst the latter has an extra transmembrane domain at its N-terminus. In addition, the fungal form of V(0) contains a minor subunit c-related polypeptide, subunit c'. All three are required for activity of the proton pump in Saccharomyces cerevisiae. We have introduced cysteine residues in the N-terminal extension of subunit c" in a cysteine-free form. All mutant forms are active in the V-ATPase from S. cerevisiae. Oxidation of vacuolar membranes containing the cysteine-replaced forms gave a cross-linked product of 42000Da. Analysis of this species showed it to be a dimeric form of subunit c", and further studies confirmed there are two copies of subunit c" in the V-ATPases in which it is present. Co-expression of double cysteine-replaced forms of both subunit c and c" gave rise to only homotypic cross-linked forms. Also, subunit c oligomeric complexes are present in vacuolar membranes in the absence of subunit c", consistent with previous observations showing hexameric arrangements of subunit c in gap-junction-like membranes. In vitro studies showed subunit c" can bind to subunit c and itself. The extent of binding can be increased by removal of the N-terminal domain of subunit c". This domain may therefore function to limit the copy number of subunit c" in V(0). A deletion study shows that the domain is essential for the activity of subunit c". The results can be combined into a model of V(0) which contains two subunit c" protomers with the extra transmembrane domain located toward the central pore. Thus the predicted stoichiometry of V(0) in which subunit c" is present is subunit c(3):subunit c'(1):subunit c"(2). On the basis of the mutational and binding studies, it seems likely that two copies of subunit c" are next to each other.
Collapse
Affiliation(s)
- Lucien C D Gibson
- School of Biological and Biomedical Sciences, Glasgow Caledonian University, UK
| | | | | |
Collapse
|
20
|
Ashrafi GH, Tsirimonaki E, Marchetti B, O'Brien PM, Sibbet GJ, Andrew L, Campo MS. Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins. Oncogene 2002; 21:248-59. [PMID: 11803468 DOI: 10.1038/sj.onc.1205008] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 10/01/2001] [Accepted: 10/01/2001] [Indexed: 11/09/2022]
Abstract
The papillomavirus E5 protein is localized in the endoplasmic reticulum (ER) and Golgi apparatus (GA) of the host cell. Transformed bovine fibroblasts expressing bovine papillomavirus (BPV) E5 are highly vacuolated and have a much enlarged, distorted and fragmented GA. Major histocompatibility complex class I (MHC I) is processed and transported to the cell surface through the GA. Given the cellular localization of E5 in the GA and the morphologically abnormal GA, we investigated the expression of MHC I in cells transformed by E5 from BPV-1 and BPV-4. Two cell lines were used: bovine cells that also express E6, E7 and activated ras, and NIH3T3 cells that express only E5. In addition, PalF cells acutely infected with a recombinant retrovirus expressing E5 were also examined. In contrast to non-transformed normal cells, or transformed cells expressing other papillomavirus proteins, cells expressing E5 do not express MHC I on their surface, but retain it intracellularly, independently of the presence of other viral or cellular oncogenes, or of whether the cells are long-term transformants or acutely infected. We conclude that expression of E5 prevents expression of MHC I to the cell surface and causes its retention within the cell. In addition, lower amounts of total MHC I heavy chain and of heavy chain RNA are detected in E5-transformed cells than in control cells. As surface expression of another glycosylated membrane protein, the transferrin receptor, is not affected, it appears that E5 targets MHC I with at least a degree of specificity. In papillomavirus lesions this effect would have important implications for antigen presentation by, and immunosurveillance of, virally infected cells.
Collapse
Affiliation(s)
- G Hossein Ashrafi
- Papillomavirus Research Group, Institute of Comparative Medicine, Department of Veterinary Pathology, Glasgow University, Garscube Estate, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
The E5 protein of papillomaviruses. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0168-7069(02)08020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|