1
|
Rafique S, Rashid F, Wei Y, Zeng T, Xie L, Xie Z. Avian Orthoreoviruses: A Systematic Review of Their Distribution, Dissemination Patterns, and Genotypic Clustering. Viruses 2024; 16:1056. [PMID: 39066218 PMCID: PMC11281703 DOI: 10.3390/v16071056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Avian orthoreviruses have become a global challenge to the poultry industry, causing significant economic impacts on commercial poultry. Avian reoviruses (ARVs) are resistant to heat, proteolytic enzymes, a wide range of pH values, and disinfectants, so keeping chicken farms free of ARV infections is difficult. This review focuses on the global prevalence of ARVs and associated clinical signs and symptoms. The most common signs and symptoms include tenosynovitis/arthritis, malabsorption syndrome, runting-stunting syndrome, and respiratory diseases. Moreover, this review also focused on the characterization of ARVs in genotypic clusters (I-VI) and their relation to tissue tropism or viral distribution. The prevailing strains of ARV in Africa belong to all genotypic clusters (GCs) except for GC VI, whereas all GCs are present in Asia and the Americas. In addition, all ARV strains are associated with or belong to GC I-VI in Europe. Moreover, in Oceania, only GC V and VI are prevalent. This review also showed that, regardless of the genotypic cluster, tenosynovitis/arthritis was the predominant clinical manifestation, indicating its universal occurrence across all clusters. Globally, most avian reovirus infections can be prevented by vaccination against four major strains: S1133, 1733, 2408, and 2177. Nevertheless, these vaccines may not a provide sufficient defense against field isolates. Due to the increase in the number of ARV variants, classical vaccine approaches are being developed depending on the degree of antigenic similarity between the vaccine and field strains, which determines how successful the vaccination will be. Moreover, there is a need to look more closely at the antigenic and pathogenic properties of reported ARV strains. The information acquired will aid in the selection of more effective vaccine strains in combination with biosecurity and farm management methods to prevent ARV infections.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd., Rawalpindi 46000, Pakistan;
| | - Farooq Rashid
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - You Wei
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Tingting Zeng
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| |
Collapse
|
2
|
Wang Y, Zhang Y, Zuo W, Bo Z, Zhang C, Zhang X, Wu Y. Avian Reovirus σB Interacts with Caveolin-1 in Lipid Rafts during Dynamin-Dependent Caveolae-Mediated Endocytosis. Viruses 2022; 14:v14102201. [PMID: 36298756 PMCID: PMC9608613 DOI: 10.3390/v14102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Caveolin-1 (Cav-1) is the basic component of caveolae, a specialized form of lipid raft that plays an essential role in endocytic viral entry. However, the evidence of direct involvement of caveolae and Cav-1 in avian reovirus (ARV) entry remains insufficient. In this study, the membrane lipid rafts were isolated as detergent-resistant microdomains (DRMs) by sucrose gradient centrifugation, and the capsid protein σB of ARV was found to associate with Cav-1 in DRMs fractions. Additionally, the interaction between ARV σB protein and Cav-1 was demonstrated by immunofluorescence co-localization and co-immunoprecipitation assays. Furthermore, we found that the internalization of ARV is sensitive to caveolae and dynamin inhibitors, while it is insensitive to clathrin inhibitors. In conclusion, these results indicate that the ARV σB protein interacts with Cav-1 during dynamin-dependent caveolae-mediated endocytosis for the entry of ARV.
Collapse
Affiliation(s)
- Yuyang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Yangyang Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wei Zuo
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
3
|
Kumar R, Porter RE, Mor SK, Goyal SM. Efficacy and Immunogenicity of Recombinant Pichinde Virus-Vectored Turkey Arthritis Reovirus Subunit Vaccine. Vaccines (Basel) 2022; 10:486. [PMID: 35455235 PMCID: PMC9030058 DOI: 10.3390/vaccines10040486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
We created a recombinant live pichinde virus-vectored bivalent codon optimized subunit vaccine that expresses immunogenic Sigma C and Sigma B proteins of turkey arthritis reovirus. The vaccine virus could be transmitted horizontally immunizing the non-vaccinated pen mates. The vaccine was tested for efficacy against homologous (TARV SKM121) and heterologous (TARV O'Neil) virus challenge. Immunized poults produced serum neutralizing antibodies capable of neutralizing both viruses. The vaccinated and control birds showed similar body weights indicating no adverse effect on feed efficiency. Comparison of virus gene copy numbers in intestine and histologic lesion scores in tendons of vaccinated and non-vaccinated birds showed a decrease in the replication of challenge viruses in the intestine and tendons of vaccinated birds. These results indicate the potential usefulness of this vaccine.
Collapse
Affiliation(s)
- Rahul Kumar
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, Saint Paul, MN 55108, USA; (R.K.); (R.E.P.); (S.K.M.)
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Pandit Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura 281001, Uttar Pradesh, India
| | - Robert E. Porter
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, Saint Paul, MN 55108, USA; (R.K.); (R.E.P.); (S.K.M.)
| | - Sunil K. Mor
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, Saint Paul, MN 55108, USA; (R.K.); (R.E.P.); (S.K.M.)
| | - Sagar M. Goyal
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, Saint Paul, MN 55108, USA; (R.K.); (R.E.P.); (S.K.M.)
| |
Collapse
|
4
|
Huang WR, Li JY, Liao TL, Yeh CM, Wang CY, Wen HW, Hu NJ, Wu YY, Hsu CY, Chang YK, Chang CD, Nielsen BL, Liu HJ. Molecular chaperone TRiC governs avian reovirus replication by protecting outer-capsid protein σC and inner core protein σA and non-structural protein σNS from ubiquitin- proteasome degradation. Vet Microbiol 2021; 264:109277. [PMID: 34826648 DOI: 10.1016/j.vetmic.2021.109277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 01/15/2023]
Abstract
Avian reoviruses (ARVs) are important pathogens that cause considerable economic losses in poultry farming. To date, host factors that control stabilization of ARV proteins remain largely unknown. In this work we determined that the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC) is essential for avian reovirus (ARV) replication by stabilizing outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV. TriC serves as a chaperone of viral proteins and prevent their degradation via the ubiquitin-proteasome pathway. Furthermore, reciprocal co-immunoprecipitation assays confirmed the association of viral proteins (σA, σC, and σNS) with TRiC. Immunofluorescence staining indicated that the TRiC chaperonins (CCT2 and CCT5) are colocalized with viral proteins σC, σA, and σNS of ARV. In this study, inhibition of TRiC chaperonins (CCT2 and CCT5) by the inhibitor HSF1A or shRNAs significantly reduced expression levels of the σC, σA, and σNS proteins of ARV as well as virus yield, suggesting that the TRiC complex functions in stabilization of viral proteins and virus replication. This study provides novel insights into TRiC chaperonin governing virus replication via stabilization of outer-capsid protein σC, inner core protein σA, and the non-structural protein σNS of ARV.
Collapse
Affiliation(s)
- Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jyun-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chuan-Ming Yeh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; Bioproduction Reearch Institute, National Institute of Advanced Industrial Science and Technology, Tsukaba, Japan
| | - Chi-Young Wang
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Nien-Jen Hu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Yu Hsu
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Division of Urology, Department of Surgery, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan; Depertment of Nursing, Jen-Teh Junior College of Medicine and Management, Taiwan
| | - Ching-Dong Chang
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
5
|
Development of a Recombinant Pichinde Virus-Vectored Vaccine against Turkey Arthritis Reovirus and Its Immunological Response Characterization in Vaccinated Animals. Pathogens 2021; 10:pathogens10020197. [PMID: 33668435 PMCID: PMC7918942 DOI: 10.3390/pathogens10020197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Vaccination may be an effective way to reduce turkey arthritis reovirus (TARV)-induced lameness in turkey flocks. However, there are currently no commercial vaccines available against TARV infection. Here, we describe the use of reverse genetics technology to generate a recombinant Pichinde virus (PICV) that expresses the Sigma C and/or Sigma B proteins of TARV as antigens. Nine recombinant PICV-based TARV vaccines were developed carrying the wild-type S1 (Sigma C) and/or S3 (Sigma B) genes from three different TARV strains. In addition, three recombinant PICV-based TARV vaccines were produced carrying codon-optimized S1 and/or S3 genes of a TARV strain. The S1 and S3 genes and antigens were found to be expressed in virus-infected cells via reverse transcriptase polymerase chain reaction (RT-PCR) and the direct fluorescent antibody (DFA) technique, respectively. Turkey poults inoculated with the recombinant PICV-based TARV vaccine expressing the bivalent TARV S1 and S3 antigens developed high anti-TARV antibody titers, indicating the immunogenicity (and safety) of this vaccine. Future in vivo challenge studies using a turkey reovirus infection model will determine the optimum dose and protective efficacy of this recombinant virus-vectored candidate vaccine.
Collapse
|
6
|
Wang Y, Zhang Y, Zhang C, Hu M, Yan Q, Zhao H, Zhang X, Wu Y. Cholesterol-Rich Lipid Rafts in the Cellular Membrane Play an Essential Role in Avian Reovirus Replication. Front Microbiol 2020; 11:597794. [PMID: 33224131 PMCID: PMC7667042 DOI: 10.3389/fmicb.2020.597794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Cholesterol is an essential component of lipid rafts in cellular plasma membranes. Although lipid rafts have been reported to have several functions in multiple stages of the life cycles of many different enveloped viruses, the mechanisms by which non-enveloped viruses, which lack outer lipid membranes, infect host cells remain unclear. In this study, to investigate the dependence of non-enveloped avian reovirus (ARV) infection on the integrity of cholesterol-rich membrane rafts, methyl-β-cyclodextrin (MβCD) was used to deplete cellular membrane cholesterol at the ARV attachment, entry, and post-entry stages. Treatment with MβCD significantly inhibited ARV replication at both the entry and post-entry stages in a dose-dependent manner, but MβCD had a statistically insignificant effect when it was added at the attachment stage. Moreover, MβCD treatment markedly reduced syncytium formation, which occurs at a relatively late stage of the ARV life cycle and is involved in cell-cell transmission and release. Furthermore, the addition of exogenous cholesterol reversed the effects mentioned above. Colocalization data also showed that the ARV proteins σC, μNS, and p10 prefer to localize to cholesterol-rich lipid raft regions during ARV infection. Altogether, these results suggest that cellular cholesterol in lipid rafts plays a critical role in ARV replication.
Collapse
Affiliation(s)
- Yuyang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Testing Center, Yangzhou University, Yangzhou, China
| | - Yangyang Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chengcheng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Maozhi Hu
- Testing Center, Yangzhou University, Yangzhou, China
| | - Qiuxiang Yan
- Testing Center, Yangzhou University, Yangzhou, China
| | - Hongyan Zhao
- Testing Center, Yangzhou University, Yangzhou, China
| | - Xiaorong Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yantao Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Liu L, Cheng J, Fu Y, Liu H, Jiang D, Xie J. New insights into reovirus evolution: implications from a newly characterized mycoreovirus. J Gen Virol 2017; 98:1132-1141. [DOI: 10.1099/jgv.0.000752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of PR China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huiquan Liu
- NWAFU-PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shanxi Province, PR China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
8
|
Sellers HS. Current limitations in control of viral arthritis and tenosynovitis caused by avian reoviruses in commercial poultry. Vet Microbiol 2016; 206:152-156. [PMID: 28024855 DOI: 10.1016/j.vetmic.2016.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Avian reoviruses are the causative agent of viral arthritis/tenosynovitis in chickens and turkeys. Clinical signs of disease include swelling of the hock joints accompanied by lesions in the gastrocnemius and digital flexor tendons causing lameness in addition to hydropericardium. The economic impact is significant as it results in poor weight gain, increased feed conversion ratios and condemnations at the processing plant. Vaccination with both live attenuated and inactivated oil emulsion vaccines have been used successfully for decades to control the disease. Current commercial vaccine strains belong to the same serotype and are antigenically and serologically distinct from circulating variant field viruses isolated from clinical cases of tenosynovitis. Since 2012, there has been a dramatic increase in the number of clinical cases of tenosynovitis in commercial poultry and commercial vaccines are unable to provide adequate levels of protection against disease. Producers have elected to use custom inactivated vaccines in the absence of any commercially available homologous vaccines. Identification and selection of field isolates for use in autogenous vaccines can be difficult especially when multiple reoviruses are co-circulating among flocks. In addition, field data suggests that in some cases the custom vaccines are providing adequate protection against disease but as new genetic variants emerge, new vaccines are needed.
Collapse
Affiliation(s)
- Holly S Sellers
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA, 30602, USA.
| |
Collapse
|
9
|
Ha HJ, Lee JY, Kang W, Yang JK. Role of C-Terminal Tail Region of Human MtnB Enzyme for Its Tetramer Stability. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hee Jung Ha
- Department of Chemistry, College of Natural Sciences; Soongsil University; Seoul 156-743 Korea
| | - Ji Young Lee
- Department of Chemistry, College of Natural Sciences; Soongsil University; Seoul 156-743 Korea
| | - Wonchull Kang
- Department of Chemistry, College of Natural Sciences; Soongsil University; Seoul 156-743 Korea
| | - Jin Kuk Yang
- Department of Chemistry, College of Natural Sciences; Soongsil University; Seoul 156-743 Korea
| |
Collapse
|
10
|
Markussen T, Dahle MK, Tengs T, Løvoll M, Finstad ØW, Wiik-Nielsen CR, Grove S, Lauksund S, Robertsen B, Rimstad E. Sequence analysis of the genome of piscine orthoreovirus (PRV) associated with heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). PLoS One 2013; 8:e70075. [PMID: 23922911 PMCID: PMC3726481 DOI: 10.1371/journal.pone.0070075] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/16/2013] [Indexed: 12/20/2022] Open
Abstract
Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13) protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.
Collapse
Affiliation(s)
- Turhan Markussen
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Maria K. Dahle
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Torstein Tengs
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Marie Løvoll
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Øystein W. Finstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Søren Grove
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Silje Lauksund
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
11
|
Huang WR, Wang YC, Chi PI, Wang L, Wang CY, Lin CH, Liu HJ. Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein. J Biol Chem 2011; 286:30780-30794. [PMID: 21705803 DOI: 10.1074/jbc.m111.257154] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Very little is known about the mechanism of cell entry of avian reovirus (ARV). The aim of this study was to explore the mechanism of ARV entry and subsequent infection. Cholesterol mainly affected the early steps of the ARV life cycle, because the presence of cholesterol before and during viral adsorption greatly blocked ARV infectivity. Although we have demonstrated that ARV facilitating p38 MAPK is beneficial for virus replication, its mechanism remains unknown. Here, we show that ARV-induced phosphorylation of caveolin-1 (Tyr(14)), dynamin-2 expression, and Rac1 activation through activation of p38 MAPK and Src in the early stage of the virus life cycle is beneficial for virus entry and productive infection. The strong inhibition by dynasore, a specific inhibitor of dynamin-2, and depletion of endogenous caveolin-1 or dynamin-2 by siRNAs as well as the caveolin-1 colocalization study implicate caveolin-1-mediated and dynamin-2-dependent endocytosis as a significant avenue of ARV entry. By means of pharmacological inhibitors, dominant negative mutants, and siRNA of various cellular proteins and signaling molecules, phosphorylation of caveolin-1, dynamin-2 expression, and Rac1 activation were suppressed, suggesting that by orchestrating p38 MAPK, Src, and Rac1 signaling cascade in the target cells, ARV creates an appropriate intracellular environment facilitating virus entry and productive infection. Furthermore, disruption of microtubules, Rab5, or endosome acidification all inhibited ARV infection, suggesting that microtubules and small GTPase Rab5, which regulate transport to early endosome, are crucial for survival of ARV and that exposure of the virus to acidic pH is required for productive infection.
Collapse
Affiliation(s)
- Wei R Huang
- Institute of Molecular Biology, National Chung Ching University, Taichung 402
| | - Ying C Wang
- Institute of Molecular Biology, National Chung Ching University, Taichung 402; Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung 912
| | - Pei I Chi
- Institute of Molecular Biology, National Chung Ching University, Taichung 402; Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung 912
| | - Lai Wang
- Institute of Molecular Biology, National Chung Ching University, Taichung 402
| | - Chi Y Wang
- Department of Veterinary Medicine, National Chung Ching University, Taichung 402
| | - Chi H Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hung J Liu
- Institute of Molecular Biology, National Chung Ching University, Taichung 402.
| |
Collapse
|
12
|
Lu SW, Wang KC, Liu HJ, Chang CD, Huang HJ, Chang CC. Expression of avian reovirus minor capsid protein in plants. J Virol Methods 2011; 173:287-93. [PMID: 21354211 DOI: 10.1016/j.jviromet.2011.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/17/2010] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
Abstract
The minor coat protein of the avian reovirus (ARV), σC, encoded by the S1 genome segment, is one of the major candidates for the development of a subunit vaccine against ARV infection. To develop a plant-based vaccine to immunize poultry against ARV infection, we constructed 4 plant nuclear expression vectors with or without codon modification of the S1 gene, and their expression was driven by a CaMV 35S promoter or rice actin1 promoter. In addition, the expressed σC proteins were targeted subcellularly to cytosol or chloroplasts, respectively. Agrobacterium containing the S1 expression constructs was used to transform tobacco leaf disks, and transformants were selected with kanamycin (100 μg/ml). The integration of the S1 transgene into the tobacco chromosome was confirmed by PCR and Southern blot analysis. Western blot analysis with antiserum against σC was performed to determine the expression of σC protein in transgenic tobacco plants. The highest expression levels of σC protein in the cellular extracts of selected p35S1, pActS1 and p35UmS1 transgenic lines were 0.013%, 0.021% and 0.0013% of the total soluble protein, respectively, but the protein was barely detectable in p35TmS1 transgenic lines. However, the level of σC protein expression was not associated with the level of corresponding RNA transcripts in selected transgenic lines. Taken together, the results suggest that the major limiting factor for the expression of σC protein in plants might be at the post-transcriptional level.
Collapse
MESH Headings
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Blotting, Southern
- Blotting, Western
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Genetic Vectors
- Mutagenesis, Insertional
- Orthoreovirus, Avian/genetics
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Polymerase Chain Reaction
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombination, Genetic
- Rhizobium/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Transformation, Genetic
- Viral Vaccines/biosynthesis
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Shih-Wei Lu
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Xu W, Coombs KM. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein. Virol J 2008; 5:153. [PMID: 19091125 PMCID: PMC2615760 DOI: 10.1186/1743-422x-5-153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/17/2008] [Indexed: 12/01/2022] Open
Abstract
Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp) enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV) and aquareovirus (AqRV) genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55%) amongst all currently known ARV and MRV proteins. This implies significant evolutionary constraints are placed on dsRNA RdRp molecules, particularly in regions comprising the canonical polymerase motifs and residues thought to interact directly with template and nascent mRNA. This may point the way to improved design of anti-viral agents specifically targeting this enzyme.
Collapse
Affiliation(s)
- Wanhong Xu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Manitoba, Canada.
| | | |
Collapse
|
14
|
Jenkins MC, O'Brien CN, Trout JM. Detection of Cryptosporidium parvum Oocysts by Dot-Blotting Using Monoclonal Antibodies to Cryptosporidium parvum Virus 40-kDa Capsid Protein. J Parasitol 2008; 94:94-8. [DOI: 10.1645/ge-1313.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Benavente J, Martínez-Costas J. Avian reovirus: Structure and biology. Virus Res 2007; 123:105-19. [PMID: 17018239 DOI: 10.1016/j.virusres.2006.09.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/28/2022]
Abstract
Avian reoviruses are important pathogens that cause considerable losses to the poultry industry, but they have been poorly characterized at the molecular level in the past, mostly because they have been considered to be very similar to the well-studied mammalian reoviruses. Studies performed over the last 20 years have revealed that avian reoviruses have unique properties and activities, different to those displayed by their mammalian counterparts, and of considerable interest to molecular virologists. Notably, the avian reovirus S1 gene is unique, in that it is a functional tricistronic gene that possesses three out-of-phase and partially overlapping open reading frames; the identification of the mechanisms that govern the initiation of translation of the three S1 cistrons, and the study of the properties and activities displayed by their encoded proteins, are particularly interesting areas of research. For instance, avian reoviruses are one of the few nonenveloped viruses that cause cell-cell fusion, and their fusogenic phenotype has been associated with a nonstructural 10 kDa transmembrane protein, which is expressed by the second cistron of the S1 gene; the small size of this atypical fusion protein offers an interesting model for studying the mechanisms of cell-cell fusion and for identifying fusogenic domains. Finally, avian reoviruses are highly resistant to interferon, and therefore they may be useful for investigating the mechanisms and strategies that viruses utilize to counteract the antiviral actions of interferons.
Collapse
Affiliation(s)
- Javier Benavente
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | |
Collapse
|
16
|
Zhang Y, Guo D, Geng H, Liu M, Hu Q, Wang J, Tong G, Kong X, Liu N, Liu C. Characterization of M-class genome segments of muscovy duck reovirus S14. Virus Res 2007; 125:42-53. [PMID: 17218035 DOI: 10.1016/j.virusres.2006.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/07/2006] [Accepted: 12/08/2006] [Indexed: 11/26/2022]
Abstract
This report documents the first sequence analysis of the entire M1, M2, and M3 genome segments of the muscovy duck reovirus (DRV) S14. The complete sequence of each of the three M gene segments was determined. The M1 genome segment was 2283 nucleotides in length and was predicted to encode muA protein of 732 residues. The Escherichia coli expressed M1 transcripts generated a 108kDa protein, as expected for muA. A cleavage product of muA, muA1, could be detected by Western blotting with duck anti-reovirus and mouse anti-muA polyclonal serum. muA was distributed diffusely in the cytoplasma and nucleus of transfected Vero cells, which provides evidence that muA might be functional related to the mammalian reovirus (MRV) mu2. The M2 gene was 2155 nucleotides in length and was predicted to encode muB major outer capsid protein of 676 amino acids. The M3 genome segment was 1996 nucleotides in length and was predicted to encode a muNS protein of 635 amino acids. It was unexpectedly found that 5'-termini of the M1 and M2 genes ended with 5'-ACUUUU and 5'-UCUUUU, respectively, instead of 5'-GCUUUU, which is present on most mRNAs of other avian reoviruses (ARV). The UCAUC 3'-terminal sequences of the S14 M1, M2, and M3 genome segments are shared by DRV, ARV, and MRV. Alignment of the DRV muA-, muB-, and muNS-encoding genes with ARV revealed 72.9-73.9%, 67.1-69.6%, and 69.4-70.8% nucleotide identity, respectively. The amino acid sequence homology between DRV and ARV ranged from 85.3 to 86.2% (muA), 75.0 to 76.5% (muB), and 78.4 to 79.8% (muNS). Phylogenetic analyses of the M1, M2, M3, and S-class [Kuntz-Simon, G., Le Gall-Recule, G., de Boisseson, C., Jestin, V., 2002. Muscovy duck reovirus sigmaC protein is a typically encoded by the smallest genome segment. J. Gen. Virol. 83, 1189-1200; Zhang, Y., Liu, M., Hu, Q.L., Ouyang, S.D., Tong, G.Z., 2006a. Characterization of the sigmaC-encoding gene from muscovy duck reovirus. Virus Genes 36, 169-174; Zhang, Y., Liu, M., Ouyan, S.D., Hu, Q.L., Guo, D.C., Han, Z., 2006b. Detection and identification of avian, duck, and goose reoviruses by RT-PCR: goose and duck reoviruses aggregated the same specified genogroup in Orthoreovirus Genus II. Arch. Virol. 151, 1525-1538] genome segments suggests that DRV and ARV share a recent common ancestor and that the two lineages have subsequently undergone host dependent evolution.
Collapse
Affiliation(s)
- Yun Zhang
- Avian Infectious Disease Division of National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Avian reoviruses are important pathogens that may cause considerable economic losses in poultry farming. Their genome expresses at least eight structural and four nonstructural proteins, three of them encoded by the S1 gene. These viruses enter cells by receptor-mediated endocytosis, and acidification of virus-containing endosomes is necessary for the virus to uncoat and release transcriptionally active cores into the cytosol. Avian reoviruses replicate within cytoplasmic inclusions of globular morphology, termed viral factories, which are not microtubule-associated, and which are formed by the nonstructural protein muNS. This protein also mediates the association of some viral proteins (but not of others) with inclusions, suggesting that the recruitment of viral proteins into avian reovirus factories has specificity. Avian reovirus morphogenesis is a complex and temporally controlled process that takes place exclusively within viral factories of infected cells. Core assembly takes place within the first 30 min after the synthesis of their protein components, and fully formed cores are then coated by outer-capsid polypeptides over the next 30 min to generate mature infectious reovirions. Based on data from avian reovirus studies and on results reported for other members of the Reoviridae family, we present a model for avian reovirus gene expression and morphogenesis.
Collapse
Affiliation(s)
- J Benavente
- Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | |
Collapse
|
18
|
Noad L, Shou J, Coombs KM, Duncan R. Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Virus Res 2006; 116:45-57. [PMID: 16297481 PMCID: PMC5123877 DOI: 10.1016/j.virusres.2005.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 12/29/2022]
Abstract
We report the first sequence analysis of the entire complement of M-class genome segments of an avian reovirus (ARV). We analyzed the M1, M2 and M3 genome segment sequences, and sequences of the corresponding muA, muB and muNS proteins, of two virus strains, ARV138 and ARV176. The ARV M1 genes were 2,283 nucleotides in length and predicted to encode muA proteins of 732 residues. Alignment of the homologous mammalian reovirus (MRV) mu2 and ARV muA proteins revealed a relatively low overall amino acid identity ( approximately 30%), although several highly conserved regions were identified that may contribute to conserved structural and/or functional properties of this minor core protein (i.e. the MRV mu2 protein is an NTPase and a putative RNA-dependent RNA polymerase cofactor). The ARV M2 genes were 2158 nucleotides in length, encoding predicted muB major outer capsid proteins of 676 amino acids, more than 30 amino acids shorter than the homologous MRV mu1 proteins. In spite of the difference in size, the ARV/MRV muB/mu1 proteins were more conserved than any of the homologous proteins encoded by other M- or S-class genome segments, exhibiting percent amino acid identities of approximately 45%. The conserved regions included the residues involved in the maturation- and entry- specific proteolytic cleavages that occur in the MRV mu1 protein. Notably missing was a region recently implicated in MRV mu1 stabilization and in forming "hub and spokes" complexes in the MRV outer capsid. The ARV M3 genes were 1996 nucleotides in length and predicted to encode a muNS non-structural protein of 635 amino acids, significantly shorter than the homologous MRV muNS protein, which is attributed to several substantial deletions in the aligned ARV muNS proteins. Alignments of the ARV and MRV muNS proteins revealed a low overall amino acid identity ( approximately 25%), although several regions were relatively conserved.
Collapse
Affiliation(s)
- Lindsay Noad
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Jingyun Shou
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| |
Collapse
|
19
|
Wu H, Williams Y, Gunn KS, Singh NK, Locy RD, Giambrone JJ. Yeast-derived sigma C protein-induced immunity against avian reovirus. Avian Dis 2005; 49:281-4. [PMID: 16094835 DOI: 10.1637/7284-092904r1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian reoviruses (ARVs) can result in disease and economic losses in the poultry industry. Vaccines against ARV may not provide full protection and can cause adverse reactions. The coding sequence of the sigma C protein from strain S1133 of avian reovirus was expressed in Schizasaccharomyces pombe. Sigma C protein expression was demonstrated by Western blotting, and the protein was evaluated for its ability to protect specific-pathogen-free (SPF) chickens against challenge with the virulent S1133 strain. Serologic and challenge-infection data showed the efficacy of the recombinant vaccine administered orally each week for 3 consecutive wk. Sigma C protein induced antibody, as determined by enzyme-linked immunosorbent assay. Percentage (%) protection induced by the low dose (125 microg purified yeast-expressed sigma C protein/chicken) or the high dose (250 microg purified yeast-expressed sigma C protein/chicken) was 64 and 91, respectively. The commercial vaccine administered once or twice provided 82% protection. Results supported the feasibility of a plant-derived vaccine for use in poultry immunization schemes.
Collapse
Affiliation(s)
- H Wu
- Department of Biological Sciences, Alabama State University, Auburn, AL 36104, USA
| | | | | | | | | | | |
Collapse
|
20
|
Guardado Calvo P, Fox GC, Hermo Parrado XL, Llamas-Saiz AL, Costas C, Martínez-Costas J, Benavente J, van Raaij MJ. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J Mol Biol 2005; 354:137-49. [PMID: 16236316 DOI: 10.1016/j.jmb.2005.09.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/09/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Avian reovirus fibre, a homo-trimer of the sigmaC protein, is responsible for primary host cell attachment. The protein expressed in bacteria forms elongated fibres comprised of a carboxy-terminal globular head domain and a slender shaft, and partial proteolysis yielded a carboxy-terminal protease-stable domain that was amenable to crystallisation. Here, we show that this fragment retains receptor-binding capability and report its structure, solved using two-wavelength anomalous diffraction and refined using data collected from three different crystal forms at 2.1 angstroms, 2.35 angstroms and 3.0 angstroms resolution. The carboxy-terminal globular domain has a beta-barrel fold with the same overall topology as the mammalian reovirus fibre (sigma1). However, the monomers of the sigmaC trimer show a more splayed-out arrangement than in the sigma1 structure. Also resolved are two triple beta-spiral repeats of the shaft or stalk domain. The presence in the sequence of heptad repeats amino-terminal to these triple beta-spiral repeats suggests that the unresolved portion of the shaft domain contains a triple alpha-helical coiled-coil structure. Implications for the function and stability of the sigmaC protein are discussed.
Collapse
Affiliation(s)
- Pablo Guardado Calvo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
van Raaij MJ, Hermo Parrado XL, Guardado Calvo P, Fox GC, Llamas-Saiz AL, Costas C, Martínez-Costas J, Benavente J. Crystallization of the C-terminal globular domain of avian reovirus fibre. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:651-4. [PMID: 16511119 PMCID: PMC1952445 DOI: 10.1107/s1744309105016933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 05/27/2005] [Indexed: 11/10/2022]
Abstract
Avian reovirus fibre, a homotrimer of the sigmaC protein, is responsible for primary host-cell attachment. Using the protease trypsin, a C-terminal sigmaC fragment containing amino acids 156-326 has been generated which was subsequently purified and crystallized. Two different crystal forms were obtained, one grown in the absence of divalent cations and belonging to space group P6(3)22 (unit-cell parameters a = 75.6, c = 243.1 A) and one grown in the presence of either zinc or cadmium sulfate and belonging to space group P321 (unit-cell parameters a = 74.7, c = 74.5 A and a = 73.1, c = 69.9 A for the Zn(II)- and Cd(II)-grown crystals, respectively). The first crystal form diffracted synchrotron radiation to 3.0 A resolution and the second form to 2.2-2.3 A. Its closest related structure, the C-terminal fragment of mammalian reovirus fibre, has only 18% sequence identity and molecular-replacement attempts were unsuccessful. Therefore, a search is under way for suitable heavy-atom derivatives and attempts are being made to grow protein crystals containing selenomethionine instead of methionine.
Collapse
Affiliation(s)
- Mark J van Raaij
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tourís-Otero F, Cortez-San Martín M, Martínez-Costas J, Benavente J. Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions. J Mol Biol 2004; 341:361-74. [PMID: 15276829 DOI: 10.1016/j.jmb.2004.06.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/11/2004] [Accepted: 06/11/2004] [Indexed: 11/21/2022]
Abstract
We have recently shown that the avian reovirus non-structural protein microNS forms cytoplasmic inclusions in transfected cells and recruits sigmaNS to these structures. In the present study we further demonstrate that microNS mediates the association of the major core protein lambdaA, but not of sigmaA or sigmaC, with inclusions, indicating that the recruitment of viral proteins into avian reovirus factories has specificity. Thus, some proteins appear to be initially recruited to factories by association with microNS, whereas others are recruited subsequently through interaction with as-yet-unknown factors. We next used metabolic pulse-chase radiolabeling combined with cell fractionation and antibody immunoprecipitation to study the recruitment of newly synthesized viral polypeptides into viral factories and virus particles. The results of this combined approach revealed that avian reovirus morphogenesis is a complex and temporally controlled process that takes place exclusively within globular viral factories that are not microtubule-associated. Our findings further suggest that cores are assembled within the first 30 minutes after the synthesis of their polypeptide components, and that reovirion morphogenesis is completed over the next 30 minutes by the subsequent addition of outer capsid proteins.
Collapse
Affiliation(s)
- Fernando Tourís-Otero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
23
|
Abstract
Saliva contacting with solid surfaces in the oral cavity forms a coat termed the pellicle. However, its formation is not fully understood. Although indications for the existence of supramolecular pellicle precursors have been reported, the possible relationship between them and pellicle formation is unclear. This study investigates the ability of supramolecular precursors to form the pellicle via interaction with a solid surface. Fixed and unfixed salivary globes were spread onto a microscopic grid and examined by transmission electron microscopy. Biochemical pretreatment of saliva revealed that neither disulphide links nor transglutaminase-mediated crosslinking are responsible for maintaining the salivary globes, i.e. supramolecular pellicle precursors. However, the detergent, sodium dodecyl sulphate, caused dissociation of the salivary globes, indicating their micellar nature. Saliva contacting a formvar film for 10 s did not form a complete surface coating, but single supramolecular pellicle precursors were observed attached to the surface. After extension of the contact time to 60 s, a surface layer was formed by clustering and fusion of the supramolecular pellicle precursors. The supramolecular pellicle precursors are unstable and attain a thermodynamically more favourable state by adhesion to a solid surface. As a result, a layer of fused precursors covering the solid surface is formed -- the salivary pellicle.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Department of Electron Microscopy, Light Microscopy and Digital Image Acquisition, University of Salzburg, Salzburg, Austria
| | | | | | | |
Collapse
|
24
|
Shih WL, Hsu HW, Liao MH, Lee LH, Liu HJ. Avian reovirus sigmaC protein induces apoptosis in cultured cells. Virology 2004; 321:65-74. [PMID: 15033566 DOI: 10.1016/j.virol.2003.12.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 12/03/2003] [Accepted: 12/03/2003] [Indexed: 10/26/2022]
Abstract
The avian reovirus (ARV) infection is associated with various disease conditions in poultry. However, the pathogenesis mechanisms are poorly characterized. In the present study, we clearly demonstrated that the sigmaC of ARV S1133 strain induced apoptosis in both BHK-21 and Vero cells. Five kinds of assays for apoptosis were used in analyzing ARV-infected BHK-21 and Vero cells: (1) assay for DNA ladders, (2) ELISA detection of cytoplasmic histone-associated DNA fragments, (3) nuclear staining with acridine orange, (4) Western blot, Northern blot, and immunofluorescent assay (IFA), and (5) flow cytometric analysis. The sigmaC protein of ARV could elicit apoptosis occurring in a dose- and time-dependent manner. The current results further our understanding of the function of sigmaC in cultured cells and suggest that sigmaC is a viral-encoded apoptin and possesses apoptosis-inducing ability. Furthermore, deletion analysis of the ARV sigmaC protein suggests that the carboxyl-terminus of sigmaC is important in mediating sigmaC-induced apoptosis because its deletion abolished the induction of apoptosis.
Collapse
Affiliation(s)
- Wen L Shih
- Department of Life Science, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Duncan R, Corcoran J, Shou J, Stoltz D. Reptilian reovirus: a new fusogenic orthoreovirus species. Virology 2004; 319:131-40. [PMID: 14967494 DOI: 10.1016/j.virol.2003.10.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/20/2003] [Accepted: 10/20/2003] [Indexed: 11/26/2022]
Abstract
The fusogenic subgroup of orthoreoviruses contains most of the few known examples of non-enveloped viruses capable of inducing syncytium formation. The only unclassified orthoreoviruses at the species level represent several fusogenic reptilian isolates. To clarify the relationship of reptilian reoviruses (RRV) to the existing fusogenic and nonfusogenic orthoreovirus species, we undertook a characterization of a python reovirus isolate. Biochemical, biophysical, and biological analyses confirmed the designation of this reptilian reovirus (RRV) isolate as an unclassified fusogenic orthoreovirus. Sequence analysis revealed that the RRV S1 and S3 genome segments contain a novel conserved 5'-terminal sequence not found in other orthoreovirus species. In addition, the gene arrangement and the coding potential of the bicistronic RRV S1 genome segment differ from that of established orthoreovirus species, encoding a predicted homologue of the reovirus cell attachment protein and a unique 125 residue p14 protein. The RRV S3 genome segment encodes a homologue of the reovirus sigma-class major outer capsid protein, although it is highly diverged from that of other orthoreovirus species (amino acid identities of only 16-25%). Based on sequence analysis, biological properties, and phylogenetic analysis, we propose this python reovirus be designated as the prototype strain of a fifth species of orthoreoviruses, the reptilian reoviruses.
Collapse
Affiliation(s)
- Roy Duncan
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | | | | | |
Collapse
|