1
|
Hofstadter WA, Park JW, Lum KK, Chen S, Cristea IM. HCMV strain- and cell type-specific alterations in membrane contact sites point to the convergent regulation of organelle remodeling. J Virol 2024:e0109924. [PMID: 39480111 DOI: 10.1128/jvi.01099-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Viruses are ubiquitous entities that infect organisms across the kingdoms of life. While viruses can infect a range of cells, tissues, and organisms, this aspect is often not explored in cell culture analyses. There is limited information about which infection-induced changes are shared or distinct in different cellular environments. The prevalent pathogen human cytomegalovirus (HCMV) remodels the structure and function of subcellular organelles and their interconnected networks formed by membrane contact sites (MCSs). A large portion of this knowledge has been derived from fibroblasts infected with a lab-adapted HCMV strain. Here, we assess strain- and cell type-specific alterations in MCSs and organelle remodeling induced by HCMV. Integrating quantitative mass spectrometry, super-resolution microscopy, and molecular virology assays, we compare infections with lab-adapted and low-passage HCMV strains in fibroblast and epithelial cells. We determine that, despite baseline proteome disparities between uninfected fibroblast and epithelial cells, infection induces convergent changes and is remarkably similar. We show that hallmarks of HCMV infection in fibroblasts, mitochondria-endoplasmic reticulum (ER) encapsulations and peroxisome proliferation, are also conserved in infected epithelial and macrophage-like cells. Exploring cell type-specific differences, we demonstrate that fibroblasts rely on endosomal cholesterol transport while epithelial cells rely on cholesterol from the Golgi. Despite these mechanistic differences, infections in both cell types result in phenotypically similar cholesterol accumulation at the viral assembly complex. Our findings highlight the adaptability of HCMV, in that infections can be tailored to the initial cell state by inducing both shared and unique proteome alterations, ultimately promoting a unified pro-viral environment.IMPORTANCEHuman cytomegalovirus (HCMV) establishes infections in diverse cell types throughout the body and is connected to a litany of diseases associated with each of these tissues. However, it is still not fully understood how HCMV replication varies in distinct cell types. Here, we compare HCMV replication with lab-adapted and low-passage strains in two primary sites of infection, lung fibroblasts and retinal epithelial cells. We discover that, despite displaying disparate protein compositions prior to infection, these cell types undergo convergent alterations upon HCMV infection, reaching a more similar cellular state late in infection. We find that remodeling of the subcellular landscape is a pervasive feature of HCMV infection, through alterations to both organelle structure-function and the interconnected networks they form via membrane contact sites. Our findings show how HCMV infection in different cell types induces both shared and divergent changes to cellular processes, ultimately leading to a more unified state.
Collapse
Affiliation(s)
- William A Hofstadter
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ji Woo Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Sophia Chen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Woytinek K, Glitscher M, Hildt E. Antagonism of epidermal growth factor receptor signaling favors hepatitis E virus life cycle. J Virol 2024; 98:e0058024. [PMID: 38856640 PMCID: PMC11265270 DOI: 10.1128/jvi.00580-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.
Collapse
Affiliation(s)
| | - Mirco Glitscher
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Eberhard Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
3
|
Noh SS, Shin HJ. Role of Virus-Induced EGFR Trafficking in Proviral Functions. Biomolecules 2023; 13:1766. [PMID: 38136637 PMCID: PMC10741569 DOI: 10.3390/biom13121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since its discovery in the early 1980s, the epidermal growth factor receptor (EGFR) has emerged as a pivotal and multifaceted player in elucidating the intricate mechanisms underlying various human diseases and their associations with cell survival, proliferation, and cellular homeostasis. Recent advancements in research have underscored the profound and multifaceted role of EGFR in viral infections, highlighting its involvement in viral entry, replication, and the subversion of host immune responses. In this regard, the importance of EGFR trafficking has also been highlighted in recent studies. The dynamic relocation of EGFR to diverse intracellular organelles, including endosomes, lysosomes, mitochondria, and even the nucleus, is a central feature of its functionality in diverse contexts. This dynamic intracellular trafficking is not merely a passive process but an orchestrated symphony, facilitating EGFR involvement in various cellular pathways and interactions with viral components. Furthermore, EGFR, which is initially anchored on the plasma membrane, serves as a linchpin orchestrating viral entry processes, a crucial early step in the viral life cycle. The role of EGFR in this context is highly context-dependent and varies among viruses. Here, we present a comprehensive summary of the current state of knowledge regarding the intricate interactions between EGFR and viruses. These interactions are fundamental for successful propagation of a wide array of viral species and affect viral pathogenesis and host responses. Understanding EGFR significance in both normal cellular processes and viral infections may not only help develop innovative antiviral therapies but also provide a deeper understanding of the intricate roles of EGFR signaling in infectious diseases.
Collapse
Affiliation(s)
- Se Sil Noh
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Jin Shin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Song B, Sheng X, Justice JL, Lum KK, Metzger PJ, Cook KC, Kostas JC, Cristea IM. Intercellular communication within the virus microenvironment affects the susceptibility of cells to secondary viral infections. SCIENCE ADVANCES 2023; 9:eadg3433. [PMID: 37163594 PMCID: PMC10171814 DOI: 10.1126/sciadv.adg3433] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
Communication between infected cells and cells in the surrounding tissue is a determinant of viral spread. However, it remains unclear how cells in close or distant proximity to an infected cell respond to primary or secondary infections. We establish a cell-based system to characterize a virus microenvironment, distinguishing infected, neighboring, and distal cells. Cell sorting, microscopy, proteomics, and cell cycle assays allow resolving cellular features and functional consequences of proximity to infection. We show that human cytomegalovirus (HCMV) infection primes neighboring cells for both subsequent HCMV infections and secondary infections with herpes simplex virus 1 and influenza A. Neighboring cells exhibit mitotic arrest, dampened innate immunity, and altered extracellular matrix. Conversely, distal cells are poised to slow viral spread due to enhanced antiviral responses. These findings demonstrate how infection reshapes the microenvironment through intercellular signaling to facilitate spread and how spatial proximity to an infection guides cell fate.
Collapse
Affiliation(s)
| | | | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | - Peter J. Metzger
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | - James C. Kostas
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | |
Collapse
|
5
|
Harabajsa S, Šefčić H, Klasić M, Milavić M, Židovec Lepej S, Grgić I, Zajc Petranović M, Jakopović M, Smojver-Ježek S, Korać P. Infection with human cytomegalovirus, Epstein-Barr virus, and high-risk types 16 and 18 of human papillomavirus in EGFR-mutated lung adenocarcinoma. Croat Med J 2023; 64:84-92. [PMID: 37131310 PMCID: PMC10183960 DOI: 10.3325/cmj.2023.64.84] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2024] Open
Abstract
AIM To assess the frequency of human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), and high-risk types of human papillomavirus (HPV16 and HPV18) infections in lung adenocarcinoma samples. METHODS Lung adenocarcinoma cytological smears and their DNA isolates were obtained from patients hospitalized at the Department for Lung Diseases Jordanovac, Zagreb, in 2016 and 2017. Overall, 67 lung adenocarcinoma samples were examined: 34 with epidermal growth factor receptor gene (EGFR) mutations and 33 without EGFR mutations. The EGFR mutation status and virus presence were assessed with a polymerase chain reaction, and random samples were additionally tested for EBV with Sanger sequencing. HCMV, EBV, HPV16, and HPV18 infections were evaluated in relation to EGFR mutation, smoking status, and sex. A meta-analysis of available data about HPV infection in non-small cell lung cancer was performed. RESULTS More frequent HCMV, EBV, HPV16, and HPV18 infections were observed in lung adenocarcinoma samples with EGFR mutations than in samples without these mutations. Coinfection of the investigated viruses was observed only in lung adenocarcinoma samples with mutated EGFR. In the group with EGFR mutations, smoking was significantly associated with HPV16 infection. The meta-analysis showed that non-small cell lung cancer patients with EGFR mutations had a higher odds of HPV infection. CONCLUSION HCMV, EBV, and high-risk HPV infections are more frequent in EGFR-mutated lung adenocarcinomas, which indicates a possible viral impact on the etiology of this lung cancer subtype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Petra Korać
- Petra Korać, Department of Biology, Division of Molecular Biology, University of Zagreb, Faculty of Science, Horvatovac 102a, 10000 Zagreb, Croatia,
| |
Collapse
|
6
|
Cook KC, Tsopurashvili E, Needham JM, Thompson SR, Cristea IM. Restructured membrane contacts rewire organelles for human cytomegalovirus infection. Nat Commun 2022; 13:4720. [PMID: 35953480 PMCID: PMC9366835 DOI: 10.1038/s41467-022-32488-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
Membrane contact sites (MCSs) link organelles to coordinate cellular functions across space and time. Although viruses remodel organelles for their replication cycles, MCSs remain largely unexplored during infections. Here, we design a targeted proteomics platform for measuring MCS proteins at all organelles simultaneously and define functional virus-driven MCS alterations by the ancient beta-herpesvirus human cytomegalovirus (HCMV). Integration with super-resolution microscopy and comparisons to herpes simplex virus (HSV-1), Influenza A, and beta-coronavirus HCoV-OC43 infections reveals time-sensitive contact regulation that allows switching anti- to pro-viral organelle functions. We uncover a stabilized mitochondria-ER encapsulation structure (MENC). As HCMV infection progresses, MENCs become the predominant mitochondria-ER contact phenotype and sequentially recruit the tethering partners VAP-B and PTPIP51, supporting virus production. However, premature ER-mitochondria tethering activates STING and interferon response, priming cells against infection. At peroxisomes, ACBD5-mediated ER contacts balance peroxisome proliferation versus membrane expansion, with ACBD5 impacting the titers of each virus tested.
Collapse
Affiliation(s)
- Katelyn C Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US
| | - Elene Tsopurashvili
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US
| | - Jason M Needham
- Department of Microbiology, University of Alabama Birmingham, Birmingham, AL, 35294, US
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama Birmingham, Birmingham, AL, 35294, US
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US.
| |
Collapse
|
7
|
Zuo Q, Gao Z, Cai L, Bai L, Pei Y, Liu M, Xue H, Xu J, Wang S. A predicting model of child-bearing-aged women' spontaneous abortion by co-infections of TORCH and reproductive tract. Congenit Anom (Kyoto) 2022; 62:142-152. [PMID: 35322463 DOI: 10.1111/cga.12466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
To develop a predicting model of child-bearing-aged women' spontaneous abortion (SA) by co-infections of TORCH and reproductive tract, in order to provide a reference tool for accurately predicting the risk of SA and guide the early prevention, diagnosis and treatment of SA. A prospective cohort study was designed based on 218 958 child-bearing-aged women following up in Hebei province in China from 2010 to 2017. Multivariable logistic regression analysis was used to select candidate predictive variables. Fisher's discriminant analysis was performed to build a predictive model, and the validity of the model was evaluated. The incidence rate of SA was 2.4%. Multivariable logistic regression analysis showed that age (OR = 3.507), adverse pregnancy history (OR = 1.509), co-infections status of Candida and HBsAg (ORCandida positive×HBsAg negative = 4.091, ORCandida negative×HBsAg positive = 3.327, and ORCandida positive×HBsAg positive = 13.762), and co-infections status of HBsAg, Rubella (IgG) and CMV (IgG) (ORHBs-Ag negative×Rubella (IgG) negative×CMV (IgG) positive = 1.789, ORHBs-Ag positive×Rubella (IgG) positive×CMV (IgG) negative = 3.809, and ORHBsAg positive×Rubella (IgG) positive×CMV (IgG) positive = 11.919) were the independent predictors of SA. The total discriminant rate reached 91%, with 82% of the sensitivity and 91% of the specificity. The predicting model of child-bearing-aged women' SA by co-infections status has a good performance. The co-infection status of TORCH and reproductive tract are suggested to be considered in pre-pregnancy physical examination.
Collapse
Affiliation(s)
- Qun Zuo
- School of Public Health, Hebei University/Key Laboratory of Public Health Safety of Hebei Province, Baoding, China
| | - Zhangquan Gao
- Hebei Institute of Reproductive Health Science and Technology (formerly known as Hebei Province Family Planning Science and Technology Institute)/NHC Key Laboratory of Family Planning and Healthy/Hebei Key Laboratory of Reproductive Medicine Key Laboratory of Public Health Safety of Hebei Province, Shijiazhuang, China
| | - Li Cai
- School of Public Health, Hebei University/Key Laboratory of Public Health Safety of Hebei Province, Baoding, China
| | - Linlin Bai
- School of Public Health, Hebei University/Key Laboratory of Public Health Safety of Hebei Province, Baoding, China
| | - Yu Pei
- Hebei Institute of Reproductive Health Science and Technology (formerly known as Hebei Province Family Planning Science and Technology Institute)/NHC Key Laboratory of Family Planning and Healthy/Hebei Key Laboratory of Reproductive Medicine Key Laboratory of Public Health Safety of Hebei Province, Shijiazhuang, China
| | - Mengchao Liu
- School of Public Health, Hebei University/Key Laboratory of Public Health Safety of Hebei Province, Baoding, China
| | - Hongmei Xue
- School of Public Health, Hebei University/Key Laboratory of Public Health Safety of Hebei Province, Baoding, China
| | - Juan Xu
- School of Public Health, Hebei University/Key Laboratory of Public Health Safety of Hebei Province, Baoding, China
| | - Shusong Wang
- Hebei Institute of Reproductive Health Science and Technology (formerly known as Hebei Province Family Planning Science and Technology Institute)/NHC Key Laboratory of Family Planning and Healthy/Hebei Key Laboratory of Reproductive Medicine Key Laboratory of Public Health Safety of Hebei Province, Shijiazhuang, China
| |
Collapse
|
8
|
Carlin CR. Role of EGF Receptor Regulatory Networks in the Host Response to Viral Infections. Front Cell Infect Microbiol 2022; 11:820355. [PMID: 35083168 PMCID: PMC8785968 DOI: 10.3389/fcimb.2021.820355] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this review article, we will first provide a brief overview of EGF receptor (EGFR) structure and function, and its importance as a therapeutic target in epithelial carcinomas. We will then compare what is currently known about canonical EGFR trafficking pathways that are triggered by ligand binding, versus ligand-independent pathways activated by a variety of intrinsic and environmentally induced cellular stresses. Next, we will review the literature regarding the role of EGFR as a host factor with critical roles facilitating viral cell entry and replication. Here we will focus on pathogens exploiting virus-encoded and endogenous EGFR ligands, as well as EGFR-mediated trafficking and signaling pathways that have been co-opted by wild-type viruses and recombinant gene therapy vectors. We will also provide an overview of a recently discovered pathway regulating non-canonical EGFR trafficking and signaling that may be a common feature of viruses like human adenoviruses which signal through p38-mitogen activated protein kinase. We will conclude by discussing the emerging role of EGFR signaling in innate immunity to viral infections, and how viral evasion mechanisms are contributing to our understanding of fundamental EGFR biology.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Cathleen R. Carlin,
| |
Collapse
|
9
|
HCMV-induced signaling through gB-EGFR engagement is required for viral trafficking and nuclear translocation in primary human monocytes. Proc Natl Acad Sci U S A 2020; 117:19507-19516. [PMID: 32723814 DOI: 10.1073/pnas.2003549117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous analysis of postentry events revealed that human cytomegalovirus (HCMV) displays a unique, extended nuclear translocation pattern in monocytes. We determined that c-Src signaling through pentamer engagement of integrins is required upon HCMV entry to avoid sorting of the virus into late endosomes and subsequent degradation. To follow up on this previous study, we designed experiments to investigate how HCMV-induced signaling through the other major axis-the epidermal growth factor receptor (EGFR) kinase-regulates viral postentry events. Here we show that HCMV induces chronic and functional EGFR signaling that is distinct to the virus as compared to the natural EGFR ligand: EGF. This chronic EGFR kinase activity in infected monocytes is required for the proper subcellular localization of the viral particle during trafficking events, as well as for promoting translocation of viral DNA into the host nucleus. Our data indicate that HCMV glycoprotein B (gB) binds to EGFR at the monocyte surface, the virus and EGFR are internalized together, and gB remains bound to EGFR throughout viral postentry events until de-envelopment to promote the chronic EGFR kinase activity required for viral trafficking and nuclear translocation. These data highlight how initial EGFR signaling via viral binding is necessary for entry, but not sufficient to promote each viral trafficking event. HCMV appears to manipulate the EGFR kinase postentry, via gB-EGFR interaction, to be active at the critical points throughout the trafficking process that leads to nuclear translocation and productive infection of peripheral blood monocytes.
Collapse
|
10
|
Mlera L, Moy M, Maness K, Tran LN, Goodrum FD. The Role of the Human Cytomegalovirus UL133-UL138 Gene Locus in Latency and Reactivation. Viruses 2020; 12:E714. [PMID: 32630219 PMCID: PMC7411667 DOI: 10.3390/v12070714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency, the means by which the virus persists indefinitely in an infected individual, is a major frontier of current research efforts in the field. Towards developing a comprehensive understanding of HCMV latency and its reactivation from latency, viral determinants of latency and reactivation and their host interactions that govern the latent state and reactivation from latency have been identified. The polycistronic UL133-UL138 locus encodes determinants of both latency and reactivation. In this review, we survey the model systems used to investigate latency and new findings from these systems. Particular focus is given to the roles of the UL133, UL135, UL136 and UL138 proteins in regulating viral latency and how their known host interactions contribute to regulating host signaling pathways towards the establishment of or exit from latency. Understanding the mechanisms underlying viral latency and reactivation is important in developing strategies to block reactivation and prevent CMV disease in immunocompromised individuals, such as transplant patients.
Collapse
Affiliation(s)
- Luwanika Mlera
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
| | - Melissa Moy
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
| | - Kristen Maness
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Linh N. Tran
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| | - Felicia D. Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA;
- Graduate Interdisciplinary Program in Cancer Biology, Tucson, AZ 85719, USA;
- Immunobiology Department, University of Arizona, Tucson, AZ 85719, USA; (K.M.); (L.N.T.)
| |
Collapse
|
11
|
Buehler J, Carpenter E, Zeltzer S, Igarashi S, Rak M, Mikell I, Nelson JA, Goodrum F. Host signaling and EGR1 transcriptional control of human cytomegalovirus replication and latency. PLoS Pathog 2019; 15:e1008037. [PMID: 31725811 PMCID: PMC6855412 DOI: 10.1371/journal.ppat.1008037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Sustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of alpha and beta herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. How signaling downstream of EGFR is regulated and how this impacts CMV infection and latency is not fully understood. We demonstrate that CMV downregulates EGFR early in the productive infection, which blunts the activation of EGFR and its downstream pathways in response to stimuli. However, CMV infection sustains basal levels of EGFR and downstream pathway activity in the context of latency in CD34+ hematopoietic progenitor cells (HPCs). Inhibition of MEK/ERK, STAT or PI3K/AKT pathways downstream of EGFR increases viral reactivation from latently infected CD34+ HPCs, defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription important to latency. Indeed, EGF-stimulation increased expression of the UL138 latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through the MEK/ERK pathway and is important for the maintenance of hematopoietic stemness. We demonstrate that EGR1 binds the viral genome upstream of UL138 and is sufficient to promote UL138 expression. Further, disruption of EGR1 binding upstream of UL138 prevents the establishment of latency in CD34+ HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 gene expression and suppression of replication for latency. By this mechanism, the virus has hardwired itself into host cell biology to sense and respond to changes in homeostatic host cell signaling. Host signaling is important for regulating states of cytomegalovirus (CMV) replication and latency. We have shown that human cytomegalovirus regulates EGFR levels and trafficking and that sustained EGFR or downstream PI3K signaling is a requirement for viral latency. Changes in host signaling have the ability to alter viral and host gene expression to impact the outcome of infection. Here we show that EGFR signaling through MEK/ERK pathway induces the host EGR1 transcription factor that is highly expressed in hematopoietic stem cells and necessary for the maintenance of hematopoietic stemness. Downregulation of EGR1 promotes stem cell mobilization and differentiation, known stimuli for CMV reactivation. We identified functional EGR1 binding sites upstream of the UL138 CMV latency gene and EGR1 stimulated UL138 expression to reinforce the latent infection. Mutant viruses where the regulation of UL138 by EGR1 is disrupted are unable to establish latency in CD34+ HPCs. This study advances our understanding of how host signaling impacts decisions to enter into or exit from latency. The regulation of viral gene expression by host signaling allows the virus to sense and respond to changes in host stress or differentiation.
Collapse
Affiliation(s)
- Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Ethan Carpenter
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Suzu Igarashi
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Michael Rak
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Iliyana Mikell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
12
|
Rak MA, Buehler J, Zeltzer S, Reitsma J, Molina B, Terhune S, Goodrum F. Human Cytomegalovirus UL135 Interacts with Host Adaptor Proteins To Regulate Epidermal Growth Factor Receptor and Reactivation from Latency. J Virol 2018; 92:e00919-18. [PMID: 30089695 PMCID: PMC6158428 DOI: 10.1128/jvi.00919-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus, HCMV, is a betaherpesvirus that establishes a lifelong latent infection in its host that is marked by recurrent episodes of reactivation. The molecular mechanisms by which the virus and host regulate entry into and exit from latency remain poorly understood. We have previously reported that UL135 is critical for reactivation, functioning in part by overcoming suppressive effects of the latency determinant UL138 We have demonstrated a role for UL135 in diminishing cell surface levels and targeting epidermal growth factor receptor (EGFR) for turnover. The attenuation of EGFR signaling promotes HCMV reactivation in combination with cellular differentiation. In this study, we sought to define the mechanisms by which UL135 functions in regulating EGFR turnover and viral reactivation. Screens to identify proteins interacting with pUL135 identified two host adaptor proteins, CIN85 and Abi-1, with overlapping activities in regulating EGFR levels in the cell. We mapped the amino acids in pUL135 necessary for interaction with Abi-1 and CIN85 and generated recombinant viruses expressing variants of pUL135 that do not interact with CIN85 or Abi-1. These recombinant viruses replicate in fibroblasts but are defective for reactivation in an experimental model for latency using primary CD34+ hematopoietic progenitor cells (HPCs). These UL135 variants have altered trafficking of EGFR and are defective in targeting EGFR for turnover. These studies demonstrate a requirement for pUL135 interactions with Abi-1 and CIN85 for regulation of EGFR and mechanistically link the regulation of EGFR to reactivation.IMPORTANCE Human cytomegalovirus (HCMV) establishes a lifelong latent infection in the human host. While the infection is typically asymptomatic in healthy individuals, HCMV infection poses life-threatening disease risk in immunocompromised individuals and is the leading cause of birth defects. Understanding how HCMV controls the lifelong latent infection and reactivation of replication from latency is critical to developing strategies to control HCMV disease. Here, we identify the host factors targeted by a viral protein that is required for reactivation. We define the importance of this virus-host interaction in reactivation from latency, providing new insights into the molecular underpinnings of HCMV latency and reactivation.
Collapse
Affiliation(s)
- Michael A Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Sebastian Zeltzer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Justin Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Belen Molina
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Scott Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Felicia Goodrum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- University of Arizona Center on Aging, Tucson, Arizona, USA
| |
Collapse
|
13
|
Falcão ASC, da Costa Vasconcelos PF, Lobato da Silva DDF, Viana Pinheiro JDJ, Falcão LFM, Quaresma JAS. Mechanisms of human cytomegalovirus infection with a focus on epidermal growth factor receptor interactions. Rev Med Virol 2017; 27. [PMID: 29024283 DOI: 10.1002/rmv.1955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread opportunistic herpesvirus that causes severe diseases in immunocompromised individuals. It has a high prevalence worldwide that is linked with socioeconomic factors. Similar to other herpesviruses, HCMV has the ability to establish lifelong persistence and latent infection following primary exposure. HCMV infects a broad range of cell types. This broad tropism suggests that it may use multiple receptors for host cell entry. The identification of receptors used by HCMV is essential for understanding viral pathogenesis, because these receptors mediate the early events necessary for infection. Many cell surface components have been identified as virus receptors, such as epidermal growth factor receptor (EGFR), which is characterized by tyrosine kinase activity and plays a crucial role in the control of key cellular transduction pathways. EGFR is essential for HCMV binding, signaling, and host cell entry. This review focuses on HCMV infection via EGFR on different cell types and its implications for the cellular environment, viral persistence, and infection.
Collapse
Affiliation(s)
| | | | | | - João de Jesus Viana Pinheiro
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Pará, Belém, Pará, Brazil.,Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Juarez Antonio Simões Quaresma
- Division of Infectious Diseases, Evandro Chagas Institute, Ananindeua, Pará, Brazil.,Center for Biological Sciences and Health, Pará State University, Belém, Pará, Brazil.,Division of Infectious Diseases, Tropical Medicine Center, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
14
|
Abstract
Herpesviruses have evolved exquisite virus-host interactions that co-opt or evade a number of host pathways to enable the viruses to persist. Persistence of human cytomegalovirus (CMV), the prototypical betaherpesvirus, is particularly complex in the host organism. Depending on host physiology and the cell types infected, CMV persistence comprises latent, chronic, and productive states that may occur concurrently. Viral latency is a central strategy by which herpesviruses ensure their lifelong persistence. Although much remains to be defined about the virus-host interactions important to CMV latency, it is clear that checkpoints composed of viral and cellular factors exist to either maintain a latent state or initiate productive replication in response to host cues. CMV offers a rich platform for defining the virus-host interactions and understanding the host biology important to viral latency. This review describes current understanding of the virus-host interactions that contribute to viral latency and reactivation.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
15
|
Buehler J, Zeltzer S, Reitsma J, Petrucelli A, Umashankar M, Rak M, Zagallo P, Schroeder J, Terhune S, Goodrum F. Opposing Regulation of the EGF Receptor: A Molecular Switch Controlling Cytomegalovirus Latency and Replication. PLoS Pathog 2016; 12:e1005655. [PMID: 27218650 PMCID: PMC4878804 DOI: 10.1371/journal.ppat.1005655] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/02/2016] [Indexed: 12/15/2022] Open
Abstract
Herpesviruses persist indefinitely in their host through complex and poorly defined interactions that mediate latent, chronic or productive states of infection. Human cytomegalovirus (CMV or HCMV), a ubiquitous β-herpesvirus, coordinates the expression of two viral genes, UL135 and UL138, which have opposing roles in regulating viral replication. UL135 promotes reactivation from latency and virus replication, in part, by overcoming replication-suppressive effects of UL138. The mechanism by which UL135 and UL138 oppose one another is not known. We identified viral and host proteins interacting with UL138 protein (pUL138) to begin to define the mechanisms by which pUL135 and pUL138 function. We show that pUL135 and pUL138 regulate the viral cycle by targeting that same receptor tyrosine kinase (RTK) epidermal growth factor receptor (EGFR). EGFR is a major homeostatic regulator involved in cellular proliferation, differentiation, and survival, making it an ideal target for viral manipulation during infection. pUL135 promotes internalization and turnover of EGFR from the cell surface, whereas pUL138 preserves surface expression and activation of EGFR. We show that activated EGFR is sequestered within the infection-induced, juxtanuclear viral assembly compartment and is unresponsive to stress. Intriguingly, these findings suggest that CMV insulates active EGFR in the cell and that pUL135 and pUL138 function to fine-tune EGFR levels at the cell surface to allow the infected cell to respond to extracellular cues. Consistent with the role of pUL135 in promoting replication, inhibition of EGFR or the downstream phosphoinositide 3-kinase (PI3K) favors reactivation from latency and replication. We propose a model whereby pUL135 and pUL138 together with EGFR comprise a molecular switch that regulates states of latency and replication in HCMV infection by regulating EGFR trafficking to fine tune EGFR signaling. Cytomegalovirus, a herpesvirus, persists in its host through complex interactions that mediate latent, chronic or productive states of infection. Defining the mechanistic basis viral persistence is important for defining the costs and possible benefits of viral persistence and to mitigate pathologies associated with reactivation. We have identified two genes, UL135 and UL138, with opposing roles in regulating states of latency and replication. UL135 promotes replication and reactivation from latency, in part, by overcoming suppressive effects of UL138. Intriguingly, pUL135 and pUL138 regulate the viral cycle by targeting the same receptor tyrosine kinase, epidermal growth factor receptor (EGFR). EGFR is a major homeostatic regulator controlling cellular proliferation, differentiation, and survival, making it an ideal target for viruses to manipulate during infection. We show that CMV insulates and regulates EGFR levels and activity by modulating its trafficking. This work defines a molecular switch that regulates latent and replicative states of infection through the modulation of host trafficking and signaling pathways. The regulation of EGFR at the cell surface provides a novel means by which the virus may sense and respond to changes in the host environment to enter into or exit the latent state.
Collapse
Affiliation(s)
- Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Reitsma
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alex Petrucelli
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | | | - Mike Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Patricia Zagallo
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Joyce Schroeder
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Scott Terhune
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
16
|
Qiao GH, Zhao F, Cheng S, Luo MH. Multipotent mesenchymal stromal cells are fully permissive for human cytomegalovirus infection. Virol Sin 2016; 31:219-28. [PMID: 27105639 DOI: 10.1007/s12250-016-3754-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/05/2016] [Indexed: 01/03/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading infectious cause of birth defects. Previous studies have reported birth defects with multiple organ maldevelopment in congenital HCMV-infected neonates. Multipotent mesenchymal stromal cells (MSCs) are a group of stem/progenitor cells that are multi-potent and can self-renew, and they play a vital role in multi-organ formation. Whether MSCs are susceptible to HCMV infection is unclear. In this study, MSCs were isolated from Wharton's jelly of the human umbilical cord and identified by their plastic adherence, surface marker pattern, and differentiation capacity. Then, the MSCs were infected with the HCMV Towne strain, and infection status was assessed via determination of viral entry, replication initiation, viral protein expression, and infectious virion release using western blotting, immunofluorescence assays, and plaque forming assays. The results indicate that the isolated MSCs were fully permissive for HCMV infection and provide a preliminary basis for understanding the pathogenesis of HCMV infection in non-nervous system diseases, including multi-organ malformation during fetal development.
Collapse
Affiliation(s)
- Guan-Hua Qiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuang Cheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
17
|
Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 2014; 12:154-69. [PMID: 25263490 PMCID: PMC4654299 DOI: 10.1038/cmi.2014.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.
Collapse
|
18
|
Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang ECY, Aicheler R, Murrell I, Wilkinson GWG, Lehner PJ, Gygi SP. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 2014; 157:1460-1472. [PMID: 24906157 PMCID: PMC4048463 DOI: 10.1016/j.cell.2014.04.028] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/18/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called “quantitative temporal viromics” (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model. PaperClip
>8,000 proteins quantified over eight time points, including 1,200 cell-surface proteins Temporal profiles of 139/171 canonical HCMV proteins and 14 noncanonical HCMV ORFs Multiple families of cell-surface receptors selectively modulated by HCMV Multiple signaling pathways modulated during HCMV infection
Collapse
Affiliation(s)
- Michael P Weekes
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Peter Tomasec
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Ceri A Fielding
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - David Nusinow
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Richard J Stanton
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Eddie C Y Wang
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Rebecca Aicheler
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Isa Murrell
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Gavin W G Wilkinson
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Zheng K, Kitazato K, Wang Y. Viruses exploit the function of epidermal growth factor receptor. Rev Med Virol 2014; 24:274-86. [PMID: 24888553 DOI: 10.1002/rmv.1796] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that regulates cellular homeostatic processes. Following ligand binding, EGFR activates different downstream signalling cascades that promote cell survival, proliferation, motility, and angiogenesis and induces F-actin-dependent EGFR endocytosis, which relocalises the activated receptors for degradation or recycling. The responses that are induced by ligand binding to EGFR, including cell signalling activation, protein kinase phosphorylation and cytoskeletal network rearrangement, resemble those induced by virus infection. Increasing evidence demonstrates that many viruses usurp EGFR endocytosis or EGFR-mediated signalling for entry, replication, inflammation, and viral antagonism to the host antiviral system. In addition, viruses have acquired sophisticated mechanisms to regulate EGFR functions by interrupting the EGFR-recycling process and modulating EGFR expression. In this review, we provide an overview of the mechanisms by which viruses alter EGFR signalling in favour of their continued survival.
Collapse
Affiliation(s)
- Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering, Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of Life Science and Technology, Jinan University, Guangzhou, China
| | | | | |
Collapse
|
20
|
Aljumaili ZKM, Alsamarai AM, Najem WS. Cytomegalovirus seroprevalence in women with bad obstetric history in Kirkuk, Iraq. J Infect Public Health 2014; 7:277-88. [PMID: 24629348 DOI: 10.1016/j.jiph.2013.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/01/2022] Open
Abstract
The human cytomegalovirus (CMV) is a major cause of congenital infections. A case-control descriptive study was conducted in Kirkuk, Iraq to determine the seroprevalence of CMV in women with bad obstetric history (BOH) compared to women with a normal previous pregnancy. The CMV IgG and IgM seroprevalence was higher in women with BOH. The CMV IgG seroprevalence was significantly influenced by pregnancy, age, residence and level of education. In addition, the current CMV infection was significantly associated with pregnancy, age, residence and education. Large families (crowding index >3) exhibited higher seroprevalence for CMV IgM (8.3%) and IgG (98.3%), but odd ratio (OR) showed no significant association between family size and seropositivity. The CMV IgG seropositivity was higher in working women (100%) compared to housewives (95.4%). However, the CMV IgM (current infection) was 6.8% in housewives and was not detected in any working women (0%). The OR exhibited no significant association between occupation and both IgM and IgG levels.
Collapse
Affiliation(s)
| | - Abdulghani Mohamed Alsamarai
- Department of Medicine, Tikrit University College of Medicine, Tikrit, Iraq; Department of Microbiology, Tikrit University College of Medicine, Tikrit, Iraq; Asthma, Allergy Centre, Tikrit Teaching Hospital, Tikrit, Iraq
| | - Wesam Suhail Najem
- Department of Dermatology, Tikrit University College of Medicine, Tikrit, Iraq
| |
Collapse
|
21
|
Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Cell Host Microbe 2013; 12:86-96. [PMID: 22817990 DOI: 10.1016/j.chom.2012.05.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/16/2012] [Accepted: 05/04/2012] [Indexed: 12/22/2022]
Abstract
In response to virus infection, cells can alter protein expression to modify cellular functions and limit viral replication. To examine host protein expression during infection with human cytomegalovirus (HCMV), an enveloped DNA virus, we performed a semiquantitative, temporal analysis of the cell surface proteome in infected fibroblasts. We determined that resident low density lipoprotein related receptor 1 (LRP1), a plasma membrane receptor that regulates lipid metabolism, is elevated early after HCMV infection, resulting in decreased intracellular cholesterol. siRNA knockdown or antibody-mediated inhibition of LRP1 increased intracellular cholesterol and concomitantly increased the infectious virus yield. Virions produced under these conditions contained elevated cholesterol, resulting in increased infectivity. Depleting cholesterol from virions reduced their infectivity by blocking fusion of the virion envelope with the cell membrane. Thus, LRP1 restricts HCMV infectivity by controlling the availability of cholesterol for the virion envelope, and increased LRP1 expression is likely a defense response to infection.
Collapse
|
22
|
Lee JY, Song JJ, Wooming A, Li X, Zhou H, Bottje WG, Kong BW. Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus. BMC Genomics 2010; 11:445. [PMID: 20663125 PMCID: PMC3091642 DOI: 10.1186/1471-2164-11-445] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 07/21/2010] [Indexed: 01/04/2023] Open
Abstract
Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Human herpesvirus miRNAs statistically preferentially target host genes involved in cell signaling and adhesion/junction pathways. Cell Res 2009; 19:665-7. [PMID: 19381166 DOI: 10.1038/cr.2009.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
24
|
Jafferji I, Bain M, King C, Sinclair JH. Inhibition of epidermal growth factor receptor (EGFR) expression by human cytomegalovirus correlates with an increase in the expression and binding of Wilms' Tumour 1 protein to the EGFR promoter. J Gen Virol 2009; 90:1569-1574. [PMID: 19321755 DOI: 10.1099/vir.0.009670-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection with human cytomegalovirus (HCMV) modulates the expression of a number of cellular receptors and is known to inhibit expression of the epidermal growth factor receptor (EGFR), a cell surface receptor that can promote cell proliferation through a cascade of intracellular signalling events. We have examined the mechanisms by which HCMV mediates downregulation of EGFR expression and show that virus infection results in the profound upregulation of Wilms' Tumour 1 (WT1) protein, a transcription factor associated with the negative regulation of a number of growth factors and growth factor receptors, including EGFR. Moreover, chromatin immunoprecipitation experiments also show that HCMV infection results in increased binding of WT1 to the EGFR promoter. Finally, we show that depleting the cell of WT1 using small interfering RNA abrogates virus-mediated downregulation of EGFR. Taken together, our observations suggest that HCMV-mediated repression of EGFR expression results from a virus-mediated increase in cellular WT1, a known pleiotropic regulator of mitogenesis, apoptosis and differentiation.
Collapse
Affiliation(s)
- Insiya Jafferji
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Mark Bain
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Christine King
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| | - John H Sinclair
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
25
|
Abstract
Human cytomegalovirus (HCMV) exhibits an exceptionally broad cellular tropism as it is capable of infecting most major organ systems and cell types. Definitive proof of an essential role for a cellular molecule that serves as an entry receptor has proven very challenging. It is widely hypothesized that receptor utilization, envelope glycoprotein requirements and entry pathways may all vary according to cell type, which is partially supported by the data. What has clearly emerged in recent years is that virus entry is not going undetected by the host. Robust and rapid induction of innate immune response is intimately associated with entry-related events. Here we review the state of knowledge on HCMV cellular entry mediators confronting the scientific challenges by accruing a definitive data set. We also review the roles of pattern recognition receptors such as Toll-like receptors in activation of specific innate immune response and discuss how entry events are tightly coordinated with innate immune initiation steps.
Collapse
|
26
|
Isaacson MK, Feire AL, Compton T. Epidermal growth factor receptor is not required for human cytomegalovirus entry or signaling. J Virol 2007; 81:6241-7. [PMID: 17428848 PMCID: PMC1900073 DOI: 10.1128/jvi.00169-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) can bind, fuse, and initiate gene expression in a diverse range of vertebrate cell types. This broad cellular tropism suggests that multiple receptors and/or universally distributed receptors mediate HCMV entry. Our laboratory has recently discovered that certain beta1 and beta3 integrin heterodimers are critical mediators of HCMV entry into permissive fibroblasts (A. L. Feire, H. Koss, and T. Compton, Proc. Natl. Acad. Sci. USA 101:15470-15475, 2004). It has also been reported that epidermal growth factor receptor (EGFR) is necessary for HCMV-mediated signaling and entry (X. Wang, S. M. Huong, M. L. Chiu, N. Raab-Traub, and E. E. Huang, Nature 424:456-461, 2003). Integrins are known to signal synergistically with growth factor receptors, and this coordination was recently reported for EGFR and beta3 integrins in the context of HCMV entry (X. Wang, D. Y. Huang, S. M. Huong, and E. S. Huang, Nat. Med. 11:515-521, 2005). However, EGFR-negative cell lines, such as hematopoietic cells, are known to be infected by HCMV. Therefore, we wished to confirm a role for EGFR in HCMV entry and then examine any interaction between beta1 integrins and EGFR during the entry process. Surprisingly, we were unable to detect any role for EGFR in the process of HCMV entry into fibroblast, epithelial, or endothelial cell lines. Additionally, HCMV did not activate the EGFR kinase in fibroblast cell lines. We first examined HCMV entry into two EGFR-positive or -negative cell lines but observed no increase in entry when EGFR was expressed to high levels. Physically blocking EGFR with a neutralizing antibody in fibroblast, epithelial, or endothelial cell lines or blocking EGFR kinase signaling with a chemical inhibitor in fibroblast cells did not inhibit virus entry. Lastly, we were unable to detect phosphorylation of EGFR in fibroblasts cells in response to HCMV stimulation. Our findings demonstrate that EGFR does not play a significant role in HCMV entry or signaling. These results suggest that specific integrin heterodimers either act alone as the primary entry receptors or interact in conjunction with an additional receptor(s), other than EGFR, to facilitate virus entry.
Collapse
Affiliation(s)
- Marisa K Isaacson
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison Medical School 53706, USA
| | | | | |
Collapse
|
27
|
King CA, Baillie J, Sinclair JH. Human cytomegalovirus modulation of CCR5 expression on myeloid cells affects susceptibility to human immunodeficiency virus type 1 infection. J Gen Virol 2006; 87:2171-2180. [PMID: 16847113 DOI: 10.1099/vir.0.81452-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
For some time there has been evidence suggesting an interaction between human cytomegalovirus (HCMV) and Human immunodeficiency virus (HIV) in the pathogenesis of AIDS. Here, the interaction of HCMV and HIV-1 was examined in monocyte/macrophage cells, two cell types known to be targets for both viruses in vivo. Infection experiments demonstrated that prior infection with HCMV impeded subsequent superinfection with HIV-1. In contrast, uninfected bystander cells within the population were still permissive for HIV-1 infection and were also found to express increased levels of Gag after HIV-1 superinfection. Analysis of CCR5, a co-receptor for HIV-1, on HCMV-infected and bystander cells showed a substantial loss of surface CCR5 expression on infected cells due to HCMV-induced reduction of total cellular CCR5. In contrast, uninfected bystander cells displayed increased surface CCR5 expression. Furthermore, the data suggested that soluble factor(s) secreted from HCMV-infected cells were responsible for the observed upregulation of CCR5 on uninfected bystander cells. Taken together, these results suggest that, whilst HCMV-infected monocytes/macrophages are refractory to infection with HIV-1, HCMV-uninfected bystander cells within a population are more susceptible to HIV-1 infection. On this basis, HCMV infection may contribute to the pathogenesis of HIV-1.
Collapse
Affiliation(s)
- Christine A King
- Department of Medicine, Level 5, Box 157, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Joan Baillie
- Department of Medicine, Level 5, Box 157, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - John H Sinclair
- Department of Medicine, Level 5, Box 157, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
28
|
Abstract
The ability of human cytomegalovirus (HCMV) to infect an extensive range of cell types has complicated efforts to identify cellular receptors for this significant pathogen. Recent findings demonstrate that epidermal growth factor receptor (EGFR) serves also as a receptor for HCMV. Additional evidence has shown that HCMV entry occurs in concert with immune detection through toll-like receptors. Here, the implications of EGFR activation, the existence of other receptors and the coordination of entry with the innate sensing are discussed.
Collapse
Affiliation(s)
- Teresa Compton
- McArdle Laboratory for Cancer Research, 1400 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
29
|
Leis M, Marschall M, Stamminger T. Downregulation of the cellular adhesion molecule Thy-1 (CD90) by cytomegalovirus infection of human fibroblasts. J Gen Virol 2004; 85:1995-2000. [PMID: 15218185 DOI: 10.1099/vir.0.79818-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The deregulation of cellular adhesion molecules by human cytomegalovirus (HCMV) appears to be correlated with the development of vascular disease. In this study, it was investigated whether the expression of Thy-1 (CD90), a member of the immunoglobulin superfamily of adhesion molecules with constitutive expression on fibroblast cells, is modulated following infection with HCMV. It was observed that Thy-1 cell surface expression decreased significantly during the course of infection. Addition of neutralizing antibodies, as well as UV inactivation of virus, prevented Thy-1 downregulation. In contrast, inhibition of virus replication by cidofovir did not alter Thy-1 regulation by HCMV, indicating that immediate-early (IE) and/or early (E) gene products are responsible. Interestingly, after infection of fibroblasts with a recombinant GFP-expressing virus, infected as well as non-infected cells showed a reduced Thy-1 cell surface expression. From these findings, it is concluded that IE or E gene products of HCMV induce a so far unidentified soluble factor that mediates Thy-1 downregulation.
Collapse
Affiliation(s)
- Martina Leis
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
30
|
Maglova LM, Crowe WE, Russell JM. Perinuclear localization of Na-K-Cl-cotransporter protein after human cytomegalovirus infection. Am J Physiol Cell Physiol 2004; 286:C1324-34. [PMID: 14749214 DOI: 10.1152/ajpcell.00404.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We (41) previously reported that Na-K-Cl-cotransporter (NKCC) function and microsomal protein expression are both dramatically reduced late in human cytomegalovirus (HCMV) infection of a human fibroblast cell line (MRC-5). We now report DNA microarray data showing that no significant HCMV-dependent NKCC gene repression can be detected 30 h postexposure (PE) to the virus. Consequently, we used plasma membrane biotinylation and subsequent subcellular fractionation in combination with semiquantitative immunoblotting and confocal microscopy to investigate the possibility that intracellular redistribution of the NKCC protein after HCMV infection could be a cause of the HCMV-induced loss of NKCC ion transport function. Our results show that the lifetime of plasmalemmal NKCC protein in quiescent, uninfected MRC-5 cells is approximately 48 h, and <20% of the total expressed NKCC protein are in the plasma membrane. The remainder (approximately 80%) was detected as diffusely distributed, small punctate structures in the cytoplasm. Following HCMV infection: 1) NKCC protein expression in the plasmalemma was sharply reduced (approximately 75%) within 24 h PE and thereafter continued to slowly decrease; 2) total cellular NKCC protein content remained unchanged or slightly increased during the course of the viral infection; and 3) HCMV infection caused NKCC protein to accumulate in the perinuclear region late in the HCMV infection (72 h PE). Thus our results imply that, in the process of productive HCMV infection, NKCC protein continues to be synthesized, but, instead of being delivered to the plasma membrane, it is clustered in a large, detergent-soluble perinuclear structure.
Collapse
Affiliation(s)
- Lilia M Maglova
- Department of Biology, Biological Research Laboratories, Syracuse University, New York 13244, USA.
| | | | | |
Collapse
|
31
|
Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 2003; 424:456-61. [PMID: 12879076 DOI: 10.1038/nature01818] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 05/29/2003] [Indexed: 11/08/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread opportunistic herpesvirus that causes severe and fatal diseases in immune-compromised individuals, including organ transplant recipients and individuals with AIDS. It is also a leading cause of virus-associated birth defects and is associated with atherosclerosis and coronary restenosis. HCMV initiates infection and intracellular signalling by binding to its cognate cellular receptors and by activating several signalling pathways including those mediated by mitogen-activated protein kinase, phosphatidylinositol-3-OH kinase, interferons, and G proteins. But a cellular receptor responsible for viral entry and HCMV-induced signalling has yet to be identified. Here we show that HCMV infects cells by interacting with epidermal growth factor receptor (EGFR) and inducing signalling. Transfecting EGFR-negative cells with an EGFR complementary DNA renders non-susceptible cells susceptible to HCMV. Ligand displacement and crosslinking analyses show that HCMV interacts with EGFR through gB, its principal envelope glycoprotein. gB preferentially binds EGFR and EGFR-ErbB3 oligomeric molecules in Chinese hamster ovary cells transfected with erbB family cDNAs. Taken together, these data indicate that EGFR is a necessary component for HCMV-triggered signalling and viral entry.
Collapse
Affiliation(s)
- Xin Wang
- Lineberger Comprehensive Cancer Center, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | |
Collapse
|
32
|
Baillie J, Sahlender DA, Sinclair JH. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF-alpha receptor. J Virol 2003; 77:7007-16. [PMID: 12768019 PMCID: PMC156201 DOI: 10.1128/jvi.77.12.7007-7016.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with human cytomegalovirus (HCMV) results in complex interactions between viral and cellular factors which perturb many cellular functions. HCMV is known to target the cell cycle, cellular transcription, and immunoregulation, and it is believed that this optimizes the cellular environment for viral DNA replication during productive infection or during carriage in the latently infected host. Here, we show that HCMV infection also prevents external signaling to the cell by disrupting the function of TNFRI, the 55-kDa receptor for tumor necrosis factor alpha (TNF-alpha), one of the receptors for a potent cytokine involved in eliciting a wide spectrum of cellular responses, including antiviral responses. HCMV infection of fully permissive differentiated monocytic cell lines and U373 cells resulted in a reduction in cell surface expression of TNFRI. The reduction appeared to be due to relocalization of TNFRI from the cell surface and was reflected in the elimination of TNF-alpha-induced Jun kinase activity. Analysis of specific phases of infection suggested that viral early gene products were responsible for this relocalization. However, a mutant HCMV in which all viral gene products known to be involved in down-regulation of major histocompatibility complex (MHC) class I were deleted still resulted in relocalization of TNFRI. Consequently, TNFRI relocalization by HCMV appears to be mediated by a novel viral early function not involved in down-regulation of cell surface MHC class I expression. We suggest that upon infection, HCMV isolates the cell from host-mediated signals, forcing the cell to respond only to virus-specific signals which optimize the cell for virus production and effect proviral responses from bystander cells.
Collapse
Affiliation(s)
- J Baillie
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | |
Collapse
|