1
|
Nakamura-Hoshi M, Ishii H, Nomura T, Nishizawa M, Hau TTT, Kuse N, Okazaki M, Ainai A, Suzuki T, Hasegawa H, Yoshida T, Yonemitsu K, Suzaki Y, Ami Y, Yamamoto H, Matano T. Prophylactic vaccination inducing anti-Env antibodies can result in protection against HTLV-1 challenge in macaques. Mol Ther 2024; 32:2328-2339. [PMID: 38734900 PMCID: PMC11286815 DOI: 10.1016/j.ymthe.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/21/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Human T cell leukemia/T-lymphotropic virus type 1 (HTLV-1) infection occurs by cell-to-cell transmission and can induce fatal adult T cell leukemia. Vaccine development is critical for the control of HTLV-1 transmission. However, determining whether vaccine-induced anti-Env antibodies can prevent cell-to-cell HTLV-1 transmission is challenging. Here, we examined the protective efficacy of a vaccine inducing anti-Env antibodies against HTLV-1 challenge in cynomolgus macaques. Eight of 10 vaccinated macaques produced anti-HTLV-1 neutralizing antibodies (NAbs) and were protected from an intravenous challenge with 108 HTLV-1-producing cells. In contrast, the 2 vaccinated macaques without NAb induction and 10 unvaccinated controls showed HTLV-1 infection with detectable proviral load after challenge. Five of the eight protected macaques were administered with an anti-CD8 monoclonal antibody, but proviruses remained undetectable and no increase in anti-HTLV-1 antibodies was observed even after CD8+ cell depletion in three of them. Analysis of Env-specific T cell responses did not suggest involvement of vaccine-induced Env-specific T cell responses in the protection. These results indicate that anti-Env antibody induction by vaccination can result in functionally sterile HTLV-1 protection, implying the rationale for strategies aimed at anti-Env antibody induction in prophylactic HTLV-1 vaccine development.
Collapse
Affiliation(s)
- Midori Nakamura-Hoshi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Nozomi Kuse
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Midori Okazaki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Takeshi Yoshida
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Kenzo Yonemitsu
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yuriko Suzaki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
2
|
Ishii H, Matano T. Development of an AIDS vaccine using Sendai virus vectors. Vaccine 2015; 33:6061-5. [PMID: 26232346 DOI: 10.1016/j.vaccine.2015.06.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Development of an effective AIDS vaccine is crucial for the control of global human immunodeficiency virus type 1 (HIV-1) prevalence. We have developed a novel AIDS vaccine using a Sendai virus (SeV) vector and investigated its efficacy in a macaque AIDS model of simian immunodeficiency virus (SIV) infection. Its immunogenicity and protective efficacy have been shown, indicating that the SeV vector is a promising delivery tool for AIDS vaccines. Here, we describe the potential of SeV vector as a vaccine antigen delivery tool to induce effective immune responses against HIV-1 infection.
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
3
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
4
|
Kurihara K, Takahara Y, Nomura T, Ishii H, Iwamoto N, Takahashi N, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Moriya C, Matano T. Immunogenicity of repeated Sendai viral vector vaccination in macaques. Microbes Infect 2012; 14:1169-76. [PMID: 22884717 DOI: 10.1016/j.micinf.2012.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/21/2012] [Accepted: 07/21/2012] [Indexed: 11/29/2022]
Abstract
Induction of durable cellular immune responses by vaccination is an important strategy for the control of persistent pathogen infection. Viral vectors are promising vaccine tools for eliciting antigen-specific T-cell responses. Repeated vaccination may contribute to durable memory T-cell induction, but anti-vector antibodies could be an obstacle to its efficacy. We previously developed a Sendai virus (SeV) vector vaccine and showed the potential of this vector for efficient T-cell induction in macaques. Here, we examined whether repeated SeV vector vaccination with short intervals can enhance antigen-specific CD8(+) T-cell responses. Four rhesus macaques possessing the MHC-I haplotype 90-120-Ia were immunized three times with intervals of three weeks. For the vaccination, we used replication-defective F-deleted SeV vectors inducing CD8(+) T-cell responses specific for simian immunodeficiency virus Gag(206-216) and Gag(241-249), which are dominant epitopes restricted by 90-120-Ia-derived MHC-I molecules. All four animals showed higher Gag(206-216)-specific and Gag(241-249)-specific CD8(+) T-cell responses after the third vaccination than those after the first vaccination, indicating enhancement of antigen-specific CD8(+) T-cell responses by the second/third SeV vector vaccination even with short intervals. These results suggest that repeated SeV vector vaccination can contribute to induction of efficient and durable T-cell responses.
Collapse
Affiliation(s)
- Kyoko Kurihara
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Moriya C, Horiba S, Kurihara K, Kamada T, Takahara Y, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Matano T. Intranasal Sendai viral vector vaccination is more immunogenic than intramuscular under pre-existing anti-vector antibodies. Vaccine 2011; 29:8557-63. [PMID: 21939708 DOI: 10.1016/j.vaccine.2011.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 11/16/2022]
Abstract
Viral vectors are promising vaccine tools for eliciting potent cellular immune responses. Pre-existing anti-vector antibodies, however, can be an obstacle to their clinical use in humans. We previously developed a Sendai virus (SeV) vector vaccine and showed the potential of this vector for efficient CD8(+) T-cell induction in macaques. Here, we investigated the immunogenicity of SeV vector vaccination in the presence of anti-SeV antibodies. We compared antigen-specific CD8(+) T-cell responses after intranasal or intramuscular immunization with a lower dose (one-tenth of that in our previous studies) of SeV vector expressing simian immunodeficiency virus Gag antigen (SeV-Gag) between naive and pre-SeV-infected cynomolgus macaques. Intranasal SeV-Gag immunization efficiently elicited Gag-specific CD8(+) T-cell responses not only in naive but also in pre-SeV-infected animals. In contrast, intramuscular SeV-Gag immunization induced Gag-specific CD8(+) T-cell responses efficiently in naive but not in pre-SeV-infected animals. These results indicate that both intranasal and intramuscular SeV administrations are equivalently immunogenic in the absence of anti-SeV antibodies, whereas intranasal SeV vaccination is more immunogenic than intramuscular in the presence of anti-SeV antibodies. It is inferred from a recent report investigating the prevalence of anti-SeV antibodies in humans that SeV-specific neutralizing titers in more than 70% of people are no more than those at the SeV-Gag vaccination in pre-SeV-infected macaques in the present study. Taken together, this study implies the potential of intranasal SeV vector vaccination to induce CD8(+) T-cell responses even in humans, suggesting a rationale for proceeding to a vaccine clinical trial using this vector.
Collapse
Affiliation(s)
- Chikaya Moriya
- The Institute of Medical Science, The University of Tokyo, Shirokanedai, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Excler JL, Parks CL, Ackland J, Rees H, Gust ID, Koff WC. Replicating viral vectors as HIV vaccines: summary report from the IAVI-sponsored satellite symposium at the AIDS vaccine 2009 conference. Biologicals 2011; 38:511-21. [PMID: 20537552 DOI: 10.1016/j.biologicals.2010.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/29/2010] [Indexed: 01/30/2023] Open
Abstract
In October 2009, The International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled 'Replicating Viral Vectors for use in AIDS Vaccines' at the AIDS Vaccine 2009 Conference in Paris. The purpose of the symposium was to gather together researchers, representatives from regulatory agencies, and vaccine developers to discuss issues related to advancement of replication-competent viral vector- based HIV vaccines into clinical trials. The meeting introduced the rationale for accelerating the development of replicating viral vectors for use as AIDS vaccines. It noted that the EMEA recently published draft guidelines that are an important first step in providing guidance for advancing live viral vectors into clinical development. Presentations included case studies and development challenges for viral vector-based vaccine candidates. These product development challenges included cell substrates used for vaccine manufacturing, the testing needed to assess vaccine safety, conducting clinical trials with live vectors, and assessment of vaccination risk versus benefit. More in depth discussion of risk and benefit highlighted the fact that AIDS vaccine efficacy trials must be conducted in the developing world where HIV incidence is greatest and how inequities in global health dramatically influence the political and social environment in developing countries.
Collapse
Affiliation(s)
- J L Excler
- International AIDS Vaccine Initiative, 110 William Street, 27th Floor, New York, NY 10038-3901, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
OBJECTIVE In our prior study on a prophylactic T-cell-based vaccine, some vaccinated macaques controlled a simian immunodeficiency virus (SIV) challenge. These animals allowed viremia in the acute phase but showed persistent viral control after the setpoint. Here, we examined the breadth of postchallenge virus-specific cellular immune responses in these SIV controllers. DESIGN We previously reported that in a group of Burmese rhesus macaques possessing the MHC haplotype 90-120-Ia, immunization with a Gag-expressing vaccine results in nonsterile control of a challenge with SIVmac239 but not a mutant SIV carrying multiple cytotoxic T lymphocyte (CTL) escape gag mutations. In the present study, we investigated whether broader cellular immune responses effective against the mutant SIV replication are induced after challenge in those vaccinees that maintained wild-type SIVmac239 control. METHODS We analyzed cellular immune responses in these SIV controllers (n = 8). RESULTS These controllers elicited CTL responses directed against SIV non-Gag antigens as well as Gag in the chronic phase. Postvaccinated, prechallenge CD8(+) cells obtained from these animals suppressed wild-type SIV replication in vitro, but mostly had no suppressive effect on the mutant SIV replication, whereas CD8(+) cells in the chronic phase after challenge showed efficient antimutant SIV efficacy. The levels of in-vitro antimutant SIV efficacy of CD8(+) cells correlated with Vif-specific CD8(+) T-cell frequencies. Plasma viremia was kept undetectable even after the mutant SIV superchallenge in the chronic phase. CONCLUSION These results suggest that vaccine-based wild-type SIV controllers can acquire CD8(+) cells with the potential to suppress replication of SIV variants carrying CTL escape mutations.
Collapse
|
8
|
Takeda A, Igarashi H, Kawada M, Tsukamoto T, Yamamoto H, Inoue M, Iida A, Shu T, Hasegawa M, Matano T. Evaluation of the immunogenicity of replication-competent V-knocked-out and replication-defective F-deleted Sendai virus vector-based vaccines in macaques. Vaccine 2008; 26:6839-43. [DOI: 10.1016/j.vaccine.2008.09.074] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/14/2008] [Accepted: 09/27/2008] [Indexed: 11/16/2022]
|
9
|
Feng X, Yu SQ, Shu T, Matano T, Hasegawa M, Wang XL, Ma HT, Li HX, Zeng Y. Immunogenicity of DNA and recombinant Sendai virus vaccines expressing the HIV-1 gag gene. Virol Sin 2008. [DOI: 10.1007/s12250-008-2946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Moriya C, Horiba S, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Matano T. Antigen-specific T-cell induction by vaccination with a recombinant Sendai virus vector even in the presence of vector-specific neutralizing antibodies in rhesus macaques. Biochem Biophys Res Commun 2008; 371:850-4. [DOI: 10.1016/j.bbrc.2008.04.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
|
11
|
Hosoya N, Miura T, Kawana-Tachikawa A, Koibuchi T, Shioda T, Odawara T, Nakamura T, Kitamura Y, Kano M, Kato A, Hasegawa M, Nagai Y, Iwamoto A. Comparison between Sendai virus and adenovirus vectors to transduce HIV-1 genes into human dendritic cells. J Med Virol 2008; 80:373-82. [DOI: 10.1002/jmv.21052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Moriya C, Igarashi H, Takeda A, Tsukamoto T, Kawada M, Yamamoto H, Inoue M, Iida A, Shu T, Hasegawa M, Nagai Y, Matano T. Abrogation of AIDS vaccine-induced cytotoxic T-lymphocyte efficacy in vivo due to a change in viral epitope flanking sequences. Microbes Infect 2007; 10:285-92. [PMID: 18316225 DOI: 10.1016/j.micinf.2007.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/25/2007] [Accepted: 12/03/2007] [Indexed: 11/16/2022]
Abstract
A current promising AIDS vaccine strategy is to elicit CD8(+) cytotoxic T lymphocyte (CTL) responses that broadly recognize highly-diversified HIVs. In our previous vaccine trial eliciting simian immunodeficiency virus (SIV) mac239 Gag-specific CTL responses, a group of Burmese rhesus macaques possessing a major histocompatibility complex haplotype 90-120-Ia have shown vaccine-based viral control against a homologous SIVmac239 challenge. Vaccine-induced Gag(206-216) epitope-specific CTL responses exerted strong selective pressure on the virus in this control. Here, we have evaluated in vivo efficacy of vaccine-induced Gag(206-216)-specific CTL responses in two 90-120-Ia-positive macaques against challenge with a heterologous SIVsmE543-3 that has the same Gag(206-216) epitope sequence with SIVmac239. Despite efficient Gag(206-216)-specific CTL induction by vaccination, both vaccinees failed to control SIVsmE543-3 replication and neither of them showed mutations within the Gag(206-216) epitope. Further analysis indicated that Gag(206-216)-specific CTLs failed to show responses against SIVsmE543-3 infection due to a change from aspartate to glutamate at Gag residue 205 immediately preceding the amino terminus of Gag(206-216) epitope. Our results suggest that even vaccine-induced CTL efficacy can be abrogated by a single amino acid change in viral epitope flanking region, underlining the influence of viral epitope flanking sequences on CTL-based AIDS vaccine efficacy.
Collapse
Affiliation(s)
- Chikaya Moriya
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tsukamoto T, Yuasa M, Yamamoto H, Kawada M, Takeda A, Igarashi H, Matano T. Induction of CD8+ cells able to suppress CCR5-tropic simian immunodeficiency virus SIVmac239 replication by controlled infection of CXCR4-tropic simian-human immunodeficiency virus in vaccinated rhesus macaques. J Virol 2007; 81:11640-9. [PMID: 17728225 PMCID: PMC2168777 DOI: 10.1128/jvi.01475-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Yamamoto H, Kawada M, Tsukamoto T, Takeda A, Igarashi H, Miyazawa M, Naruse T, Yasunami M, Kimura A, Matano T. Vaccine-based, long-term, stable control of simian/human immunodeficiency virus 89.6PD replication in rhesus macaques. J Gen Virol 2007; 88:652-659. [PMID: 17251584 DOI: 10.1099/vir.0.82469-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The X4-tropic simian/human immunodeficiency virus (SHIV) 89.6P (or 89.6PD) causes rapid CD4(+) T-cell depletion leading to an acute crash of the host immune system, whereas pathogenic R5-tropic simian immunodeficiency virus (SIV) infection, like HIV-1 infection in humans, results in chronic disease progression in macaques. Recent pre-clinical vaccine trials inducing cytotoxic T lymphocyte (CTL) responses have succeeded in controlling replication of the former but shown difficulty in control of the latter. Analysis of the immune responses involved in consistent control of SHIV would contribute to elucidation of the mechanism for consistent control of SIV replication. This study followed up rhesus macaques that showed vaccine-based control of primary SHIV89.6PD replication and found that all of these controllers maintained viraemia control for more than 2 years. SHIV89.6PD control was observed in vaccinees of diverse major histocompatibility complex (MHC) haplotypes and was maintained without rapid selection of CTL escape mutations, a sign of particular CTL pressure. Despite the vaccine regimen not targeting Env, all of the SHIV controllers showed efficient elicitation of de novo neutralizing antibodies by 6 weeks post-challenge. These results contrast with our previous observation of particular MHC-associated control of SIV replication without involvement of neutralizing antibodies and suggest that vaccine-based control of SHIV89.6PD replication can be stably maintained in the presence of multiple functional immune effectors.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Miki Kawada
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tetsuo Tsukamoto
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akiko Takeda
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroko Igarashi
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Taeko Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Michio Yasunami
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
15
|
Kawada M, Igarashi H, Takeda A, Tsukamoto T, Yamamoto H, Dohki S, Takiguchi M, Matano T. Involvement of multiple epitope-specific cytotoxic T-lymphocyte responses in vaccine-based control of simian immunodeficiency virus replication in rhesus macaques. J Virol 2006; 80:1949-58. [PMID: 16439550 PMCID: PMC1367167 DOI: 10.1128/jvi.80.4.1949-1958.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T-lymphocyte (CTL) responses are crucial for the control of immunodeficiency virus replication. Possible involvement of a dominant single epitope-specific CTL in control of viral replication has recently been indicated in preclinical AIDS vaccine trials, but it has remained unclear if multiple epitope-specific CTLs can be involved in the vaccine-based control. Here, by following up five rhesus macaques that showed vaccine-based control of primary replication of a simian immunodeficiency virus, SIVmac239, we present evidence indicating involvement of multiple epitope-specific CTL responses in this control. Three macaques maintained control for more than 2 years without additional mutations in the provirus. However, in the other two that shared a major histocompatibility complex haplotype, viral mutations were accumulated in a similar order, leading to viral evasion from three epitope-specific CTL responses with viral fitness costs. Accumulation of these multiple escape mutations resulted in the reappearance of plasma viremia around week 60 after challenge. Our results implicate multiple epitope-specific CTL responses in control of immunodeficiency virus replication and furthermore suggest that sequential accumulation of multiple CTL escape mutations, if allowed, can result in viral evasion from this control.
Collapse
Affiliation(s)
- Miki Kawada
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mori K, Sugimoto C, Ohgimoto S, Nakayama EE, Shioda T, Kusagawa S, Takebe Y, Kano M, Matano T, Yuasa T, Kitaguchi D, Miyazawa M, Takahashi Y, Yasunami M, Kimura A, Yamamoto N, Suzuki Y, Nagai Y. Influence of glycosylation on the efficacy of an Env-based vaccine against simian immunodeficiency virus SIVmac239 in a macaque AIDS model. J Virol 2005; 79:10386-96. [PMID: 16051831 PMCID: PMC1182680 DOI: 10.1128/jvi.79.16.10386-10396.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency viruses (HIVs) and simian immunodeficiency viruses (SIVs) is heavily glycosylated, and this feature has been speculated to be a reason for the insufficient immune control of these viruses by their hosts. In a macaque AIDS model, we demonstrated that quintuple deglycosylation in Env altered a pathogenic virus, SIVmac239, into a novel attenuated mutant virus (delta5G). In delta5G-infected animals, strong protective immunity against SIVmac239 was elicited. These HIV and SIV studies suggested that an understanding of the role of glycosylation is critical in defining not only the virological properties but also the immunogenicity of Env, suggesting that glycosylation in Env could be modified for the development of effective vaccines. To examine the effect of deglycosylation, we constructed prime-boost vaccines consisting of Env from SIVmac239 and delta5G and compared their immunogenicities and vaccine efficacies by challenge infection with SIVmac239. Vaccination-induced immune responses differed between the two vaccine groups. Both Env-specific cellular and humoral responses were higher in wild-type (wt)-Env-immunized animals than in delta5G Env-immunized animals. Following the challenge, viral loads in SIVmac239 Env (wt-Env)-immunized animals were significantly lower than in vector controls, with controlled viral replication in the chronic phase. Unexpectedly, viral loads in delta5G Env-immunized animals were indistinguishable from those in vector controls. This study demonstrated that the prime-boost Env vaccine was effective against homologous SIVmac239 challenge. Changes in glycosylation affected both cell-mediated and humoral immune responses and vaccine efficacy.
Collapse
Affiliation(s)
- Kazuyasu Mori
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kato M, Igarashi H, Takeda A, Sasaki Y, Nakamura H, Kano M, Sata T, Iida A, Hasegawa M, Horie S, Higashihara E, Nagai Y, Matano T. Induction of Gag-specific T-cell responses by therapeutic immunization with a Gag-expressing Sendai virus vector in macaques chronically infected with simian-human immunodeficiency virus. Vaccine 2005; 23:3166-73. [PMID: 15837216 DOI: 10.1016/j.vaccine.2004.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 11/19/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Recent prophylactic vaccine trials inducing virus-specific CD8+ T-cell responses have shown control of primary infections of a pathogenic simian-human immunodeficiency virus (SHIV) in macaques. In the chronic phase, therapeutic immunization replenishing virus-specific CD8+ T-cells is likely to contribute to sustained control of virus replication. In this study, we have administered a recombinant Sendai virus (SeV) vector into five rhesus macaques that had received prophylactic vaccinations and had controlled SHIV replication for more than 1 year after challenge. Our results indicate that virus-specific CD8+ T-cell responses can be expanded and broadened by therapeutic immunization with SeV vectors in the chronic phase after prophylactic vaccine-based control of primary immunodeficiency virus infections.
Collapse
Affiliation(s)
- Moriaki Kato
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Matano T, Kobayashi M, Igarashi H, Takeda A, Nakamura H, Kano M, Sugimoto C, Mori K, Iida A, Hirata T, Hasegawa M, Yuasa T, Miyazawa M, Takahashi Y, Yasunami M, Kimura A, O'Connor DH, Watkins DI, Nagai Y. Cytotoxic T lymphocyte-based control of simian immunodeficiency virus replication in a preclinical AIDS vaccine trial. ACTA ACUST UNITED AC 2004; 199:1709-18. [PMID: 15210746 PMCID: PMC2212812 DOI: 10.1084/jem.20040432] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, encouraging AIDS vaccine trials in macaques have implicated cytotoxic T lymphocytes (CTLs) in the control of the simian human immunodeficiency virus SHIV89.6P that induces acute CD4+ T cell depletion. However, none of these vaccine regimens have been successful in the containment of replication of the pathogenic simian immunodeficiency viruses (SIVs) that induce chronic disease progression. Indeed, it has remained unclear if vaccine-induced CTL can control SIV replication. Here, we show evidence suggesting that vaccine-induced CTLs control SIVmac239 replication in rhesus macaques. Eight macaques vaccinated with DNA-prime/Gag-expressing Sendai virus vector boost were challenged intravenously with SIVmac239. Five of the vaccinees controlled viral replication and had undetectable plasma viremia after 5 wk of infection. CTLs from all of these five macaques rapidly selected for escape mutations in Gag, indicating that vaccine-induced CTLs successfully contained replication of the challenge virus. Interestingly, analysis of the escape variant selected in three vaccinees that share a major histocompatibility complex class I haplotype revealed that the escape variant virus was at a replicative disadvantage compared with SIVmac239. These findings suggested that the vaccine-induced CTLs had “crippled” the challenge virus. Our results indicate that vaccine induction of highly effective CTLs can result in the containment of replication of a highly pathogenic immunodeficiency virus.
Collapse
Affiliation(s)
- Tetsuro Matano
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lun WH, Takeda A, Nakamura H, Kano M, Mori K, Sata T, Nagai Y, Matano T. Loss of virus-specific CD4(+) T cells with increases in viral loads in the chronic phase after vaccine-based partial control of primary simian immunodeficiency virus replication in macaques. J Gen Virol 2004; 85:1955-1963. [PMID: 15218180 DOI: 10.1099/vir.0.79890-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus-specific cellular immune responses play an important role in the control of immunodeficiency virus replication. However, preclinical trials of vaccines that induce virus-specific cellular immune responses have failed to contain simian immunodeficiency virus (SIV) replication in macaques. A defective provirus DNA vaccine system that efficiently induces virus-specific CD8(+) T-cell responses has previously been developed. The vaccinated macaques showed reduced viral loads, but failed to contain SIVmac239 replication. In this study, macaques that showed partial control of SIV replication were followed up to see if or how they lost this control in the chronic phase. Two of them showed increased viral loads about 4 or 8 months after challenge and finally developed AIDS. Analysis of SIV-specific T-cell levels by detection of SIV-specific gamma interferon (IFN-gamma) production revealed that these two macaques maintained SIV-specific CD8(+) T cells, even after loss of control, but lost SIV-specific CD4(+) T cells when plasma viral loads increased. The remaining macaque kept viral loads at low levels and maintained SIV-specific CD4(+) T cells, as well as CD8(+) T cells, for more than 3 years. Additional analysis using macaques vaccinated with a Gag-expressing Sendai virus vector also found loss of viraemia control, with loss of SIV-specific CD4(+) T cells in the chronic phase of SIV infection. Thus, SIV-specific CD4(+) T cells that were able to produce IFN-gamma in response to SIV antigens were preserved by the vaccine-based partial control of primary SIV replication, but were lost with abrogation of control in the chronic phase.
Collapse
Affiliation(s)
- Wen-Hui Lun
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Akiko Takeda
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hiromi Nakamura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Munehide Kano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazuyasu Mori
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsutaro Sata
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshiyuki Nagai
- Toyama Institute of Health, 17-1 Nakataikou-yama, Kosugi-machi, Imizu-gun, Toyama 939-0363, Japan
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuro Matano
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
20
|
von Messling V, Cattaneo R. Toward novel vaccines and therapies based on negative-strand RNA viruses. Curr Top Microbiol Immunol 2004; 283:281-312. [PMID: 15298173 DOI: 10.1007/978-3-662-06099-5_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The study of negative-strand RNA viruses has suggested new strategies to produce more attenuated viruses. Reverse genetics has allowed the implementation of the strategies, and new or improved monovalent vaccines are being developed. In addition, recombinant viruses expressing foreign proteins or epitopes have been produced with the aim of developing multivalent vaccines capable of stimulating humoral and cellular immune responses against more than one pathogen. Finally, recombinant viruses that selectively enter cells expressing tumor markers or the HIV envelope protein have been engineered and shown to lyse target cells. Preclinical and clinical trials of improved and multivalent vaccines and therapeutic (oncolytic) viruses are ongoing.
Collapse
Affiliation(s)
- V von Messling
- Molecular Medicine Program, Mayo Foundation, 200 1st Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
21
|
Takeda A, Igarashi H, Nakamura H, Kano M, Iida A, Hirata T, Hasegawa M, Nagai Y, Matano T. Protective efficacy of an AIDS vaccine, a single DNA priming followed by a single booster with a recombinant replication-defective Sendai virus vector, in a macaque AIDS model. J Virol 2003; 77:9710-5. [PMID: 12915583 PMCID: PMC187428 DOI: 10.1128/jvi.77.17.9710-9715.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated the excellent protective efficacy of DNA priming followed by Gag-expressing Sendai virus (SeV) boosting (DNA prime/SeV-Gag boost vaccine) against a pathogenic simian-human immunodeficiency virus (SHIV89.6PD) infection in macaques. Here we show that we established a practical, safer AIDS vaccine protocol, a single DNA priming followed by a single booster with a recently developed replication-defective F deletion SeV-expressing Gag, and show its protective efficacy against SHIV89.6PD infections.
Collapse
Affiliation(s)
- Akiko Takeda
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bitzer M, Armeanu S, Lauer UM, Neubert WJ. Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 2003; 5:543-53. [PMID: 12825193 DOI: 10.1002/jgm.426] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The power to manipulate the genome of negative-strand RNA viruses, including the insertion of additional non-viral genes, has led to the development of a new class of viral vectors for gene transfer approaches. The murine parainfluenza virus type I, or Sendai virus (SeV), has emerged as a prototype virus of this vector group, being employed in numerous in vitro as well as animal studies over the last few years. Extraordinary features of SeV are the remarkably brief contact time that is necessary for cellular uptake, a strong but adjustable expression of foreign genes, efficient infection in the respiratory tract despite a mucus layer, transduction of target cells being independent of the cell cycle, and an exclusively cytoplasmic replication cycle without any risk of chromosomal integration. In this review we describe the current knowledge of Sendai virus vector (SeVV) development as well as the results of first-generation vector applications under both in vitro and in vivo conditions. So far, Sendai virus vectors have been identified to be a highly efficient transduction tool for a broad range of different tissues and applications. Future directions in vector design and development are discussed.
Collapse
Affiliation(s)
- Michael Bitzer
- Internal Medicine I, Medical University Clinic Tübingen, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
23
|
Matano T, Kano M, Takeda A, Nakamura H, Nomura N, Furuta Y, Shioda T, Nagai Y. No significant enhancement of protection by Tat-expressing Sendai viral vector-booster in a macaque AIDS model. AIDS 2003; 17:1392-4. [PMID: 12799562 DOI: 10.1097/00002030-200306130-00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tetsuro Matano
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|