1
|
Krajciova D, Holic R. The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol. J Fungi (Basel) 2024; 10:649. [PMID: 39330409 PMCID: PMC11433134 DOI: 10.3390/jof10090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Punicic acid (PuA) is a conjugated fatty acid with a wide range of nutraceutical properties naturally present in pomegranate seed oil. To meet the rising demand for pomegranate seed oil, a single-cell oil enriched in PuA provides a sustainable biomass-derived alternative. This study describes the production of a PuA-enriched single-cell oil through the engineering of the red yeast Rhodotorula toruloides grown in glucose and a low-cost substrate, crude glycerol. The gene for Punica granatum fatty acid conjugase, PgFADX, was randomly integrated into the genome of R. toruloides without disrupting the carotenoid synthesis. In shake flask studies, the effects of three promoters (PPGI1, PNAR1, and PPMA1) on PuA production were evaluated. PuA titers of 105.77 mg/L and 72.81 mg/L were obtained from engineered cells expressing PgFADX from the PPMA1 promoter cultivated for 72 h in glucose and for 168 h in crude glycerol, respectively. Furthermore, the detailed lipid analysis revealed a high enrichment PuA in the triacylglycerol lipid structures, even without substantial modifications to the metabolic pathways. This report demonstrates the high potential of R. toruloides in the upcycling of a low-cost substrate, crude glycerol, into a value-added product such as PuA. The findings support the feasibility of using engineered R. toruloides for sustainable production of PuA-enriched single-cell oil.
Collapse
Affiliation(s)
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia;
| |
Collapse
|
2
|
Diamantopoulou P, Sarris D, Tchakouteu SS, Xenopoulos E, Papanikolaou S. Growth Response of Non-Conventional Yeasts on Sugar-Rich Media: Part 1: High Production of Lipid by Lipomyces starkeyi and Citric Acid by Yarrowia lipolytica. Microorganisms 2023; 11:1863. [PMID: 37513034 PMCID: PMC10384381 DOI: 10.3390/microorganisms11071863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Sugar-rich waste streams, generated in very high quantities worldwide, constitute an important source of environmental pollution. Their eco-friendly conversions into a plethora of added-value compounds through the use of microbial fermentations is currently a very "hot" scientific topic. The aim of this study, was to assess the potential of single cell oil (SCO), microbial mass and citric acid (CA) production by non-conventional yeast strains growing on expired ("waste") glucose. Six yeast strains (viz. Rhodosporidium toruloides DSM 4444, Rhodotorula glutinis NRRL YB-252, R. toruloides NRRL Y-27012, Yarrowia lipolytica LFMB Y-20, Y. lipolytica ACA-DC 50109 and Lipomyces starkeyi DSM 70296) were initially grown in shake flasks with expired glucose used as substrate under nitrogen limitation, in order to "boost" the cellular metabolism towards the synthesis of SCO and CA, and their growth response was quantitatively evaluated. Initial glucose concentration (Glc0) was adjusted at c. 50 g/L. Besides Y. lipolytica, all other yeast strains produced noticeable SCO quantities [lipid in dry cell weight (DCW) ranging from 25.3% w/w to 55.1% w/w]. Lipids of all yeasts contained significant quantities of oleic acid, being perfect candidates for the synthesis of 2nd generation biodiesel. The highest DCW production (=13.6 g/L) was obtained by L. starkeyi DSM 70296, while both Y. lipolytica strains did not accumulate noticeable lipid quantities, but produced non-negligible CA amounts. The most promising CA-producing strain, namely Y. lipolytica ACA-DC 50109 was further studied in stirred-tank bioreactor systems, while the very promising DCW- and SCO-producing L. starkeyi DSM 70296 was further studied in shake flasks. Both strains were grown on media presenting higher Glc0 concentrations and the same initial nitrogen quantity as previously. Indeed, L. starkeyi grown at Glc0 = 85 g/L, produced DCWmax = 34.0 g/L, that contained lipid =34.1% w/w (thus SCO was =11.6 g/L). The strain ACA-DC 50109 in stirred tank bioreactor with Glc0 ≈ 105 g/L produced CA up to 46 g/L (yield of CA produced on glucose consumed; YCA/Glc ≈ 0.45 g/g). Finally, in fed-batch bioreactor experiment, the significant CA quantity of 82.0 g/L (YCA/Glc = 0.50 g/g) was recorded. Concluding, "waste" glucose proved to be a suitable substrate for a number of non-conventional yeast strains. Y. lipolytica ACA-DC 50109 produced significant quantities of CA while L. starkeyi DSM 70296 was a very interesting DCW- and SCO-producing candidate. These strains can be used as potential cell factories amenable to convert glucose-based residues into the mentioned metabolic compounds, that present high importance for food, chemical and biofuel facilities.
Collapse
Affiliation(s)
- Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, Attiki, 14123 Lykovryssi, Greece
| | - Dimitris Sarris
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, Attiki, 14123 Lykovryssi, Greece
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, Metropolite Ioakeim 2, 81400 Myrina, Greece
| | - Sidoine Sadjeu Tchakouteu
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Evangelos Xenopoulos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
3
|
Filippousi R, Diamantopoulou P, Stavropoulou M, Makris DP, Papanikolaou S. Lipid production by Rhodosporidium toruloides from biodiesel-derived glycerol in shake flasks and bioreactor: Impact of initial C/N molar ratio and added onion-peel extract. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Effect of Metabolic Regulators and Aeration on Isocitric Acid Synthesis by Yarrowia lipolytica Grown on Ester-Aldehyde Fraction. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isocitric acid (ICA) has found wide application in medicine as a promising compound with powerful antioxidant activity to combat oxidative stress. In the known microbiological processes of ICA production by non-conventional yeast Yarrowia lipolytica, the pure carbon sources are commonly used. ICA can be also synthetized by Y. lipolytica from ester-aldehyde fraction (EAF)-waste of the ethanol production process. A highly effective method of ICA production from EAF based on regulation of key enzymes (aconitate hydratase and isocitrate lyase) by metabolic regulators (iron and itaconic acid) and aeration was developed. It is recommended to cultivate Y. lipolytica VKM Y-2373 under nitrogen deficiency conditions, a high aeration (60% of air saturation), an addition of 15 mM itaconic acid, and 2.4 mg/L iron. Under optimal conditions, Y. lipolytica VKM Y-2373 produced 83 g/L ICA with isocitrate to citrate ratio of 4.1:1 and mass yield of 1.1 g/g. The putative mechanism of ICA overproduction from EAF by Y. lipolytica was suggested.
Collapse
|
5
|
Hambalko J, Gajdoš P, Nicaud JM, Ledesma-Amaro R, Tupec M, Pichová I, Čertík M. Production of Long Chain Fatty Alcohols Found in Bumblebee Pheromones by Yarrowia lipolytica. Front Bioeng Biotechnol 2021; 8:593419. [PMID: 33490049 PMCID: PMC7820814 DOI: 10.3389/fbioe.2020.593419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Fatty alcohols (FA-OH) are aliphatic unbranched primary alcohols with a chain of four or more carbon atoms. Besides potential industrial applications, fatty alcohols have important biological functions as well. In nature, fatty alcohols are produced as a part of a mixture of pheromones in several insect species, such as moths, termites, bees, wasps, etc. In addition, FA-OHs have a potential for agricultural applications, for example, they may be used as a suitable substitute for commercial insecticides. The insecticides have several drawbacks associated with their preparation, and they exert a negative impact on the environment. Currently, pheromone components are prepared mainly through the catalytic hydrogenation of plant oils and petrochemicals, which is an unsustainable, ecologically unfriendly, and highly expensive process. The biotechnological production of the pheromone components using engineered microbial strains and through the expression of the enzymes participating in the biosynthesis of these components is a promising approach that ensures ecological sustenance as well. The present study was aimed at evaluating the production of FA-OHs in the oleaginous yeast, Yarrowia lipolytica, with different lengths of fatty-acyl chains by expressing the fatty acyl-CoA reductase (FAR) BlapFAR4 from B. lapidarius, producing C16:0-OH, C16:1Δ9-OH, and lower quantities of both C14:0-OH and C18:1Δ9-OH, and BlucFAR1 from B. lucorum, producing FA-OHs with a chain length of 18-26 carbon atoms, in this yeast. Among the different novel Y. lipolytica strains used in the present study, the best results were obtained with JMY7086, which carried several lipid metabolism modifications and expressed the BlucFAR1 gene under the control of a strong constitutive promoter 8UAS-pTEF. JMY7086 produced only saturated fatty alcohols with chain lengths from 18 to 24 carbon atoms. The highest titer and accumulation achieved were 166.6 mg/L and 15.6 mg/g DCW of fatty alcohols, respectively. Unlike JMY7086, the BlapFAR4-expressing strain JMY7090 produced only 16 carbon atom-long FA-OHs with a titer of 14.6 mg/L.
Collapse
Affiliation(s)
- Jaroslav Hambalko
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Gajdoš
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| | - Jean-Marc Nicaud
- French National Research Institute for Agriculture (INRAE), Food and Environment, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Michal Tupec
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Čertík
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
6
|
Abstract
The microbiological production of isocitric acid (ICA) is more preferable for its application in medicine and food, because the resulting product contains only the natural isomer—threo-DS. The aim of the present work was to study ICA production by yeast using sunflower oil as carbon source. 30 taxonomically different yeast strains were assessed for their capability for ICA production, and Y. lipolytica VKM Y-2373 was selected as a promising producer. It was found that ICA production required: the limitation of Y. lipolytica growth by nitrogen, phosphorus, sulfur or magnesium, and an addition of iron, activating aconitate hydratase, a key enzyme of isocitrate synthesis. Another regulatory approach capable to shift acid formation to a predominant ICA synthesis is the use of inhibitors (itaconic and oxalic acids), which blocks the conversion of isocitrate at the level of isocitrate lyase. It is recommended to cultivate Y. lipolytica VKM Y-2373 under nitrogen deficiency conditions with addition of 1.5 mg/L iron and 30 mM itaconic acid. Such optimized nutrition medium provides 70.6 g/L ICA with a ratio between ICA and citric acid (CA) equal 4:1, a mass yield (YICA) of 1.25 g/g and volume productivity (QICA) of 1.19 g/L·h.
Collapse
|
7
|
Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters. Processes (Basel) 2020. [DOI: 10.3390/pr8070819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Six yeast strains belonging to Rhodosporidium toruloides, Lipomyces starkeyi, Rhodotorula glutinis and Cryptococcus curvatus were shake-flask cultured on xylose (initial sugar—S0 = 70 ± 10 g/L) under nitrogen-limited conditions. C. curvatus ATCC 20509 and L. starkeyi DSM 70296 were further cultured in media where process waters were partially replaced by the phenol-containing olive mill wastewaters (OMWs). In flasks with S0 ≈ 100 g/L and OMWs added yielding to initial phenolic compounds concentration (PCC0) between 0.0 g/L (blank experiment) and 2.0 g/L, C. curvatus presented maximum total dry cell weight—TDCWmax ≈ 27 g/L, in all cases. The more the PCC0 increased, the fewer lipids were produced. In OMW-enriched media with PCC0 ≈ 1.2 g/L, TDCW = 20.9 g/L containing ≈ 40% w/w of lipids was recorded. In L. starkeyi cultures, when PCC0 ≈ 2.0 g/L, TDCW ≈ 25 g/L was synthesized, whereas lipids in TDCW = 24–28% w/w, similar to the experiments without OMWs, were recorded. Non-negligible dephenolization and species-dependent decolorization of the wastewater occurred. A batch-bioreactor trial by C. curvatus only with xylose (S0 ≈ 110 g/L) was performed and TDCW = 35.1 g/L (lipids in TDCW = 44.3% w/w) was produced. Yeast total lipids were composed of oleic and palmitic and to lesser extent linoleic and stearic acids. C. curvatus lipids were mainly composed of nonpolar fractions (i.e., triacylglycerols).
Collapse
|
8
|
Cui J, Sun T, Li S, Xie Y, Song X, Wang F, Chen L, Zhang W. Improved Salt Tolerance and Metabolomics Analysis of Synechococcus elongatus UTEX 2973 by Overexpressing Mrp Antiporters. Front Bioeng Biotechnol 2020; 8:500. [PMID: 32528943 PMCID: PMC7264159 DOI: 10.3389/fbioe.2020.00500] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
The fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) is a promising candidate for photosynthetic microbial factory. Seawater utilization is necessary for large-scale cultivation of Syn2973 in the future. However, Syn2973 is sensitive to salt stress, making it necessary to improve its salt tolerance. In this study, 21 exogenous putative transporters were individually overexpressed in Syn2973 to evaluate their effects on salt tolerance. The results showed the overexpression of three Mrp antiporters significantly improved the salt tolerance of Syn2973. Notably, overexpressing the Mrp antiporter from Synechococcus sp. PCC 7002 improved cell growth by 57.7% under 0.4 M NaCl condition. In addition, the metabolomics and biomass composition analyses revealed the possible mechanisms against salt stress in both Syn2973 and the genetically engineered strain. The study provides important engineering strategies to improve salt tolerance of Syn2973 and is valuable for understanding mechanisms of salt tolerance in cyanobacteria.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Cui J, Diao J, Sun T, Shi M, Liu L, Wang F, Chen L, Zhang W. 13C Metabolic Flux Analysis of Enhanced Lipid Accumulation Modulated by Ethanolamine in Crypthecodinium cohnii. Front Microbiol 2018; 9:956. [PMID: 29867861 PMCID: PMC5963191 DOI: 10.3389/fmicb.2018.00956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
The heterotrophic microalga Crypthecodinium cohnii has attracted considerable attention due to its capability of accumulating lipids with a high fraction of docosahexaenoic acid (DHA). In our previous study, ethanolamine (ETA) was identified as an effective chemical modulator for lipid accumulation in C. cohnii. In this study, to gain a better understanding of the lipid metabolism and mechanism for the positive effects of modulator ETA, metabolic flux analysis was performed using 13C-labeled glucose with and without 1 mM ETA modulator. The analysis of flux distribution showed that with the addition of ETA, flux in glycolysis pathway and citrate pyruvate cycle was strengthened while flux in pentose phosphate pathway was decreased. In addition, flux in TCA cycle was slightly decreased compared with the control without ETA. The enzyme activity of malic enzyme (ME) was significantly increased, suggesting that NADP+-dependent ME might be the major source of NADPH for lipid accumulation. The flux information obtained by this study could be valuable for the further efforts in improving lipid accumulation and DHA production in C. cohnii.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Garay LA, Sitepu IR, Cajka T, Xu J, Teh HE, German JB, Pan Z, Dungan SR, Block DE, Boundy-Mills KL. Extracellular fungal polyol lipids: A new class of potential high value lipids. Biotechnol Adv 2018; 36:397-414. [DOI: 10.1016/j.biotechadv.2018.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/07/2017] [Accepted: 01/03/2018] [Indexed: 01/30/2023]
|
11
|
Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc Natl Acad Sci U S A 2018; 115:2096-2101. [PMID: 29440400 DOI: 10.1073/pnas.1721203115] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Polyketides represent an extremely diverse class of secondary metabolites often explored for their bioactive traits. These molecules are also attractive building blocks for chemical catalysis and polymerization. However, the use of polyketides in larger scale chemistry applications is stymied by limited titers and yields from both microbial and chemical production. Here, we demonstrate that an oleaginous organism (specifically, Yarrowia lipolytica) can overcome such production limitations owing to a natural propensity for high flux through acetyl-CoA. By exploring three distinct metabolic engineering strategies for acetyl-CoA precursor formation, we demonstrate that a previously uncharacterized pyruvate bypass pathway supports increased production of the polyketide triacetic acid lactone (TAL). Ultimately, we establish a strain capable of producing over 35% of the theoretical conversion yield to TAL in an unoptimized tube culture. This strain also obtained an averaged maximum titer of 35.9 ± 3.9 g/L with an achieved maximum specific productivity of 0.21 ± 0.03 g/L/h in bioreactor fermentation. Additionally, we illustrate that a β-oxidation-related overexpression (PEX10) can support high TAL production and is capable of achieving over 43% of the theoretical conversion yield under nitrogen starvation in a test tube. Next, through use of this bioproduct, we demonstrate the utility of polyketides like TAL to modify commodity materials such as poly(epichlorohydrin), resulting in an increased molecular weight and shift in glass transition temperature. Collectively, these findings establish an engineering strategy enabling unprecedented production from a type III polyketide synthase as well as establish a route through O-functionalization for converting polyketides into new materials.
Collapse
|
12
|
Fermentation Conditions and Media Optimization for Isocitric Acid Production from Ethanol by Yarrowia lipolytica. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2543210. [PMID: 29568744 PMCID: PMC5820659 DOI: 10.1155/2018/2543210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023]
Abstract
Isocitric acid exists in the form of four stereoisomers, of which only the threo-Ds-form (ICA) is a natural active compound, an intermediate of Krebs cycle, and suitable for nutritional and pharmaceutical use. In this paper, we propose a method for ICA production from ethanol by yeast Yarrowia lipolytica. The effects of temperature, pH of the medium, and aeration on the growth of the producer Y. lipolytica VKM Y-2373 and synthesis of ICA were studied. An optimal fermentation regime, which ensures a good growth of the producer and directed synthesis of the target product, was determined. The producer is advised to carry out cultivation at 29°C and various pH of the medium and the oxygen concentration (pH 5 and pO2 20–25% (of saturation) during the growth period and pH 6 and pO2 50–55% (of saturation) during the acid formation) on a nutrient medium containing an increased content of zinc (0.6 mg/L), iron (1.2 mg/L), and 30 mM itaconic acid (inhibitor of isocitrate lyase—the key enzyme of ICA metabolism) should also be introduced into the nutrition medium. Such fermentation production mode provides 90.5 g/L ICA with process selectivity of 80%, mass yield (YICA) of 0.77 g/g, and energy yield (ηICA) of 0.278 g/g.
Collapse
|
13
|
Redistribution of metabolic fluxes in Chlorella protothecoides by variation of media nitrogen concentration. Metab Eng Commun 2015; 2:124-131. [PMID: 34150515 PMCID: PMC8193236 DOI: 10.1016/j.meteno.2015.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/30/2015] [Accepted: 09/30/2015] [Indexed: 01/17/2023] Open
Abstract
In this study, the Elementary Metabolite Unit (EMU) algorithm was employed to calculate intracellular fluxes for Chlorella protothecoides using previously generated growth and mass spec data. While the flux through glycolysis remained relatively constant, the pentose phosphate pathway (PPP) flux increased from 3% to 20% of the glucose uptake during nitrogen-limited growth. The TCA cycle flux decreased from 94% to 38% during nitrogen-limited growth while the flux of acetyl-CoA into lipids increased from 58% to 109% of the glucose uptake, increasing total lipid accumulation. Phosphoenolpyruvate carboxylase (PEPCase) activity was higher during nitrogen-sufficient growth. The glyoxylate shunt was found to be partially active in both cases, indicating the nutrient nature has an impact on flux distribution. It was found that the total NADPH supply within the cell remained almost constant under both conditions. In summary, algal cells substantially reorganize their metabolism during the switch from carbon-limited (nitrogen-sufficient) to nitrogen-limited (carbon-sufficient) growth. Flux through central metabolism of a Chlorella strain in two growth conditions. Increased PPP flux helps meet NADPH demands in nitrogen-limited growth. Flux redirection towards lipid production decreased TCA flux during low nitrogen. Partially active glyoxylate shunt to metabolize glycine carbons.
Collapse
|
14
|
Kurtzman CP, Mateo RQ, Kolecka A, Theelen B, Robert V, Boekhout T. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res 2015; 15:fov050. [PMID: 26136514 DOI: 10.1093/femsyr/fov050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Detection, identification and classification of yeasts have undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences is leading to a major revision of yeast systematics that will result in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules are presented in the recently implemented International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed, as will use of phylogeny for prediction of biotechnological applications.
Collapse
Affiliation(s)
- Cletus P Kurtzman
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Raquel Quintilla Mateo
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Anna Kolecka
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Bart Theelen
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Vincent Robert
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Teun Boekhout
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| |
Collapse
|
15
|
Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 2011; 6:e27966. [PMID: 22132183 PMCID: PMC3222671 DOI: 10.1371/journal.pone.0027966] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022] Open
Abstract
We previously developed a fermentation protocol for lipid accumulation in the oleaginous yeast Y. lipolytica. This process was used to perform transcriptomic time-course analyses to explore gene expression in Y. lipolytica during the transition from biomass production to lipid accumulation. In this experiment, a biomass concentration of 54.6 g(CDW)/l, with 0.18 g/g(CDW) lipid was obtained in ca. 32 h, with low citric acid production. A transcriptomic profiling was performed on 11 samples throughout the fermentation. Through statistical analyses, 569 genes were highlighted as differentially expressed at one point during the time course of the experiment. These genes were classified into 9 clusters, according to their expression profiles. The combination of macroscopic and transcriptomic profiles highlighted 4 major steps in the culture: (i) a growth phase, (ii) a transition phase, (iii) an early lipid accumulation phase, characterized by an increase in nitrogen metabolism, together with strong repression of protein production and activity; (iv) a late lipid accumulation phase, characterized by the rerouting of carbon fluxes within cells. This study explores the potential of Y. lipolytica as an alternative oil producer, by identifying, at the transcriptomic level, the genes potentially involved in the metabolism of oleaginous species.
Collapse
Affiliation(s)
| | - Julien Cescut
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | | | - Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques, UMR-S 665 - Université Paris 7, INTS, Paris, France
| | - Veronique Le Berre
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- Plateforme Biopuces de la Génopole de Toulouse Midi Pyrénées, INSA/DGBA 135, Toulouse, France
| | - Jean-Louis Uribelarrea
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Carole Molina-Jouve
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Jean-Marc Nicaud
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- CNRS, Micalis, Jouy-en-Josas, France
| |
Collapse
|
16
|
Taha EM, Omar O, Yusoff WMW, Hamid AA. Lipid biosynthesis in Cunninghamella bainieri 2A1 in N-limited and N-excess media. ANN MICROBIOL 2010; 60:615-622. [PMID: 21125005 PMCID: PMC2975058 DOI: 10.1007/s13213-010-0096-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 06/25/2010] [Indexed: 11/29/2022] Open
Abstract
Lipid biosynthesis and fatty acids composition of oleaginous zygomycetes, namely Cunninghamella bainieri 2A1, cultured in media with excess or limited nitrogen were quantitatively determined at different times of culture growth. Accumulation of lipids occurred even when the activity of NAD+-ICDH (β-Nicotinamide adenine dinucleotide-isocitrate dehydrogenase) was still detectable in both media. In C. bainieri 2A1, under nitrogen limitation, the ratio of lipids was around 35%, whereas in nitrogen excess medium (feeding media supplemented with ammonium tartarate), the lipid ratio decreased. The amount of this decrease depended on the level of ammonium tartarate in the media. The main findings in this paper were that C. bainieri 2A1 has the ability to accumulate lipid although nitrogen concentration detected inside the media and that NAD-ICDH was active in all culture periods. These results proved that the strain C. bainieri 2A1 has an alternative behavior in lipid biosynthesis that differs from yeast. According to the old hypotheses, yeasts could not accumulate lipid more than 10% when nitrogen was detected inside the media. Nitrogen-limited and excess media both contained the same fatty acids (palmitic acid, stearic acid, olic acid, linoleic acid and γ-linolenic acid), but at different concentrations. The C:N ratio was also studied and showed no effects on total lipid accumulation, but a significant effect on γ-linolenic acid concentration.
Collapse
Affiliation(s)
- Ekhlass M Taha
- School of Biosciences and Biotechnology , Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | | | | | | |
Collapse
|
17
|
Isocitrate dehydrogenase is important for nitrosative stress resistance in Cryptococcus neoformans, but oxidative stress resistance is not dependent on glucose-6-phosphate dehydrogenase. EUKARYOTIC CELL 2010; 9:971-80. [PMID: 20400467 DOI: 10.1128/ec.00271-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The opportunistic intracellular fungal pathogen Cryptococcus neoformans depends on many antioxidant and denitrosylating proteins and pathways for virulence in the immunocompromised host. These include the glutathione and thioredoxin pathways, thiol peroxidase, cytochrome c peroxidase, and flavohemoglobin denitrosylase. All of these ultimately depend on NADPH for either catalytic activity or maintenance of a reduced, functional form. The need for NADPH during oxidative stress is well established in many systems, but a role in resistance to nitrosative stress has not been as well characterized. In this study we investigated the roles of two sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1) and NADP(+)-dependent isocitrate dehydrogenase (Idp1), in production of NADPH and resistance to oxidative and nitrosative stress. Deletion of ZWF1 in C. neoformans did not result in an oxidative stress sensitivity phenotype or changes in the amount of NADPH produced during oxidative stress compared to those for the wild type. Deletion of IDP1 resulted in greater sensitivity to nitrosative stress than to oxidative stress. The amount of NADPH increased 2-fold over that in the wild type during nitrosative stress, and yet the idp1Delta strain accumulated more mitochondrial damage than the wild type during nitrosative stress. This is the first report of the importance of Idp1 and NADPH for nitrosative stress resistance.
Collapse
|
18
|
Wang Z, Xiang L, Shao J, Węgrzyn A, Węgrzyn G. Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 2006; 5:34. [PMID: 17112383 PMCID: PMC1664580 DOI: 10.1186/1475-2859-5-34] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022] Open
Abstract
Background Although understanding of physiological interactions between plasmid DNA and its host is important for vector design and host optimization in many biotechnological applications, to our knowledge, global studies on plasmid-host interactions have not been performed to date even for well-characterized plasmids. Results Escherichia coli cells, either devoid of plasmid DNA or bearing plasmid pOri1 (with a single ColE1 replication origin) or plasmid pOri2 (with double ColE1 replication origins), were cultured in a chemostat. We used a combination of metabolic flux analysis, DNA microarray and enzyme activity analysis methods to explore differences in the metabolism between these strains. We found that the presence of plasmids significantly influenced various metabolic pathways in the host cells, e.g. glycolysis, the tricarboxylic acid (TCA) cycle and the pentose phosphate (PP) pathway. Expression of rpiA, a gene coding for ribose-5-phosphate isomerase A, was considerably decreased in E. coli carrying a high copy number plasmid relative to E. coli carrying a low copy number plasmid and plasmid-free E. coli. The rpiA gene was cloned into an expression vector to construct plasmid pETrpiA. Following induction of pETrpiA-bearing E. coli, which harbored either pOri1 or pOri2, with isopropyl-β-D-thiogalactopyranoside (IPTG), the copy number of pOri1 and pOri2 was sigificantly higher than that measured in a host devoid of pETrpiA. Conclusion The presence of plasmids can significantly influence some metabolic pathways in the host cell. We believe that the results of detailed metabolic analysis may be useful in optimizing host strains, vectors and cultivation conditions for various biotechnological purposes.
Collapse
Affiliation(s)
- Zhijun Wang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, 14853, NY, USA
| | - Li Xiang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Junjie Shao
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Św. Wojciecha 5, 81-347 Gdynia, Poland
| |
Collapse
|
19
|
Packter NM, Olukoshi ER. Ultrastructural studies of neutral lipid localisation in Streptomyces. Arch Microbiol 1995; 164:420-7. [PMID: 8588744 DOI: 10.1007/bf02529740] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Triacylglycerol is accumulated by Streptomyces spp. when grown in submerged culture. Ultrastructural studies using transmission electron microscopy (TEM), staining and freeze-fracture/freeze-etch procedures, and light microscopy confirmed the accumulation of neutral lipid by S. lividans and S. coelicolor during the stationary phase and its storage within membrane-bound globular structures within the cytoplasm. These structures were of various sizes and occupied up to approximately 80% of the total cell volume at that time. There was no evidence of such material within cells examined during the early exponential phase of growth. The globules visualised by TEM were electron-transparent since they comprised lipids containing saturated fatty acids that did not react with osmium tetroxide. The globules appeared to be bounded by a single membrane.
Collapse
Affiliation(s)
- N M Packter
- Department of Biochemistry and Molecular Biology, The University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|