1
|
Balagurusamy R, Gopi L, Kumar DSS, Viswanathan K, Meganathan V, Sathiyamurthy K, Athmanathan B. Significance of Viable But Non-culturable (VBNC) State in Vibrios and Other Pathogenic Bacteria: Induction, Detection and the Role of Resuscitation Promoting Factors (Rpf). Curr Microbiol 2024; 81:417. [PMID: 39432128 DOI: 10.1007/s00284-024-03947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Still, it remains a debate after four decades of research on surviving cells, several bacterial species were naturally inducted and found to exist in a viable but non-culturable (VBNC) state, an adaptive strategy executed by most bacterial species under different stressful conditions. VBNC state are generally attributed when the cells lose its culturability on standard culture media, diminish in conventional detection methods, but retaining its viability, virulence and antibiotic resistance over a period of years and may poses a risk to marine animals as well as public health and food safety. In this present review, we mainly focus the VBNC state of Vibrios and other human bacterial pathogens. Exposure to several factors like nutrient depletion, temperature fluctuation, changes in salinity and oxidative stress, antibiotic and other chemical stress can induce the cells to VBNC state. The transcriptomic and proteomic changes during VBNC, modification in detection techniques and the most significant role of Rpf in conversion of VBNC into culturable cells. Altogether, detection of unculturable VBNC forms has significant importance, since it may not only regain its culturability, but also reactivate its putative virulence determinants causing serious outbreaks and illness to the individual.
Collapse
Affiliation(s)
- Rakshana Balagurusamy
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Lekha Gopi
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Dhivya Shre Senthil Kumar
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kamalalakshmi Viswanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Baskaran Athmanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
2
|
Pan H, Ren Q. Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application. Foods 2022; 12:82. [PMID: 36613298 PMCID: PMC9818539 DOI: 10.3390/foods12010082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
The viable but nonculturable (VBNC) state is a survival strategy for bacteria when encountered with unfavorable conditions. Under favorable environments such as nutrient supplementation, external stress elimination, or supplementation with resuscitation-promoting substances, bacteria will recover from the VBNC state, which is termed "resuscitation". The resuscitation phenomenon is necessary for proof of VBNC existence, which has been confirmed in different ways to exclude the possibility of culturable-cell regrowth. The resuscitation of VBNC cells has been widely studied for the purpose of risk control of recovered pathogenic or spoilage bacteria. From another aspect, the resuscitation of functional bacteria can also be considered a promising field to explore. To support this point, the resuscitation mechanisms were comprehensively reviewed, which could provide the theoretical foundations for the application of resuscitated VBNC cells. In addition, the proposed applications, as well as the prospects for further applications of resuscitated VBNC bacteria in the food industry are discussed in this review.
Collapse
Affiliation(s)
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Yadav M, Dhyani S, Joshi P, Awasthi S, Tanwar S, Gupta V, Rathore DK, Chaudhuri S. Formic acid, an organic acid food preservative, induces viable-but-non-culturable state, and triggers new Antimicrobial Resistance traits in Acinetobacter baumannii and Klebsiella pneumoniae. Front Microbiol 2022; 13:966207. [PMID: 36504816 PMCID: PMC9730046 DOI: 10.3389/fmicb.2022.966207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous human pathogens, especially Gram-negative bacteria, are able to enter the viable-but-non-culturable (VBNC) state when they are exposed to environmental stressors and pose the risk of being resuscitated and causing infection after the removal of the trigger. Widely used food preservatives like weak organic acids are potential VBNC inducers in food processing and packaging facilities but have only been reported for food-borne pathogens. In the present study, it is demonstrated for the first time that one such agent, formic acid (FA), can induce a VBNC state at food processing, storage, and distribution temperatures (4, 25, and 37°C) with a varied time of treatment (days 4-10) in pathogenic Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. The use of hospital-associated pathogens is critical based on the earlier reports that demonstrated the presence of these bacteria in hospital kitchens and commonly consumed foods. VBNC induction was validated by multiple parameters, e.g., non-culturability, metabolic activity as energy production, respiratory markers, and membrane integrity. Furthermore, it was demonstrated that the removal of FA was able to resuscitate VBNC with an increased expression of multiple virulence and Antimicrobial Resistance (AMR) genes in both pathogens. Since food additives/preservatives are significantly used in most food manufacturing facilities supplying to hospitals, contamination of these packaged foods with pathogenic bacteria and the consequence of exposure to food additives emerge as pertinent issues for infection control, and control of antimicrobial resistance in the hospital setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susmita Chaudhuri
- Department of Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
4
|
First Report of Physico-Chemical Agents of Viable But Non Culturable (Vbnc) forms of Ralstonia pseudosolanacearum. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The germicidal efficacy of various physico-chemical agents against culturable bacterial cells and bacterial spores is well studied and reviewed; except for the dormant Viable But Non Culturable state (VBNCs). VBNC is a special physiological state, where the bacterium is not culturable in culture media, but remains alive, infective and virulent. The aim of this study is to evaluate the germicidal efficacy of three physico-chemical agents against the VBNC forms of destructive phytopathogen Ralstonia pseudosolanacearum. Effect of thermotherapy Formalin and Sodium Hypochlorite on these forms was evaluated using standard plate count and reverse culturability tests. The disinfectants were found equally effective against the culturable cells and VBNC forms at recommended concentrations.
Collapse
|
5
|
Progulske-Fox A, Chukkapalli SS, Getachew H, Dunn WA, Oliver JD. VBNC, previously unrecognized in the life cycle of Porphyromonas gingivalis?. J Oral Microbiol 2022; 14:1952838. [PMID: 35035782 PMCID: PMC8759725 DOI: 10.1080/20002297.2021.1952838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacteria are exposed to stresses during their growth and multiplication in their ecological systems to which they respond in multiple ways as expert survivalists. One such response mechanism is to convert to a viable but not culturable (VBNC) state. As the name indicates, bacteria in the VBNC state have lost their ability to grow on routine growth medium. A large number of bacteria including many pathogenic species have been reported to be able to enter a VBNC state. VBNC differs from culturable cells in various physiological properties which may result in changes in chemical resistance, adhesion, cellular morphology, metabolism, gene expression, membrane and cell wall composition and/or virulence. The ability of VBNC bacteria to return to the culturable state or resuscitate, when the stressor is removed poses a considerable threat to public health. There have been few publications that overtly describe the ability of oral pathogenic species to enter the VBNC state. However, the presence of VBNCs among oral pathogens such as Porphyromonas gingivalis in human chronic infections may be an important virulence factor and have severe implications for therapy. In this review, we intend to i) define and summarize the significance of the VBNC state in general and ii) discuss the VBNC state of oral bacteria with regard to P. gingivalis. Future studies focused on this phenomenon of intraoral VBNC would provide novel molecular insights on the virulence and persistence of oral pathogens during chronic infections and identify potential novel therapies.
Collapse
Affiliation(s)
- A Progulske-Fox
- Department of Oral Biology, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA.,Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - S S Chukkapalli
- Department of Oral Biology, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA.,Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - H Getachew
- Department of Oral Biology, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA.,Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - W A Dunn
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, USA
| | - J D Oliver
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA
| |
Collapse
|
6
|
Abstract
Most bacteria are protected from environmental offenses by a cell wall consisting of strong yet elastic peptidoglycan. The cell wall is essential for preserving bacterial morphology and viability, and thus the enzymes involved in the production and turnover of peptidoglycan have become preferred targets for many of our most successful antibiotics. In the past decades, Vibrio cholerae, the gram-negative pathogen causing the diarrheal disease cholera, has become a major model for understanding cell wall genetics, biochemistry, and physiology. More than 100 articles have shed light on novel cell wall genetic determinants, regulatory links, and adaptive mechanisms. Here we provide the first comprehensive review of V. cholerae's cell wall biology and genetics. Special emphasis is placed on the similarities and differences with Escherichia coli, the paradigm for understanding cell wall metabolism and chemical structure in gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Sara B Hernandez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| |
Collapse
|
7
|
Moon HJ, Lee JY, Lim JY, Kim SJ, Song KY, Yoon KS. The fate of cold‐stressed or
tetracycline‐resistant
Vibrio
spp. in precooked shrimp during frozen storage. J Food Saf 2020. [DOI: 10.1111/jfs.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hye J. Moon
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Jeong Y. Lee
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ju Y. Lim
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Su J. Kim
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ki Y. Song
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ki S. Yoon
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
8
|
Theis KR, Romero R, Motomura K, Galaz J, Winters AD, Pacora P, Miller D, Slutsky R, Florova V, Levenson D, Para R, Varrey A, Kacerovsky M, Hsu CD, Gomez-Lopez N. Microbial burden and inflammasome activation in amniotic fluid of patients with preterm prelabor rupture of membranes. J Perinat Med 2020; 48:115-131. [PMID: 31927525 PMCID: PMC7147952 DOI: 10.1515/jpm-2019-0398] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
Abstract
Background Intra-amniotic inflammation, which is associated with adverse pregnancy outcomes, can occur in the presence or absence of detectable microorganisms, and involves activation of the inflammasome. Intra-amniotic inflammasome activation has been reported in clinical chorioamnionitis at term and preterm labor with intact membranes, but it has not yet been investigated in women with preterm prelabor rupture of membranes (preterm PROM) in the presence/absence of detectable microorganisms. The aim of this study was to determine whether, among women with preterm PROM, there is an association between detectable microorganisms in amniotic fluid and intra-amniotic inflammation, and whether intra-amniotic inflammasome activation correlates with microbial burden. Methods Amniotic fluids from 59 cases of preterm PROM were examined for the presence/absence of microorganisms through culture and 16S ribosomal RNA (rRNA) gene quantitative real-time polymerase chain reaction (qPCR), and concentrations of interleukin-6 (IL-6) and ASC [apoptosis-associated spec-like protein containing a caspase recruitment domain (CARD)], an indicator of inflammasome activation, were determined. Results qPCR identified more microbe-positive amniotic fluids than culture. Greater than 50% of patients with a negative culture and high IL-6 concentration in amniotic fluid yielded a positive qPCR signal. ASC concentrations were greatest in patients with high qPCR signals and elevated IL-6 concentrations in amniotic fluid (i.e. intra-amniotic infection). ASC concentrations tended to increase in patients without detectable microorganisms but yet with elevated IL-6 concentrations (i.e. sterile intra-amniotic inflammation) compared to those without intra-amniotic inflammation. Conclusion qPCR is a valuable complement to microbiological culture for the detection of microorganisms in the amniotic cavity in women with preterm PROM, and microbial burden is associated with the severity of intra-amniotic inflammatory response, including inflammasome activation.
Collapse
Affiliation(s)
- Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Violetta Florova
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dustyn Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marian Kacerovsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
9
|
Parlindungan E, Dekiwadia C, May BK, Jones OA. Nutrient stress as a means to enhance the storage stability of spray dried microencapsulated Lactobacillus plantarum B21. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Kumar SS, Ghosh AR. Assessment of bacterial viability: a comprehensive review on recent advances and challenges. Microbiology (Reading) 2019; 165:593-610. [DOI: 10.1099/mic.0.000786] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shravanthi S. Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Asit Ranjan Ghosh
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
11
|
Yin H, Hao J, Zhu Y, Li Y, Wang F, Deng Y. Thermosonication and inactivation of viable putative non-culturableLactobacillus acetotoleransin beer. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266061 People's Republic of China
| | - Junguang Hao
- Guangxi Colleges of University Key Laboratory of Development and High-value Utilisation of Beibu Gulf Seafood Resources; Qinzhou University; Qinzhou 535011 People's Republic of China
| | - Yinglian Zhu
- College of Food Science and Engineering; Qingdao Agricultural University; Qingdao 266109 People's Republic of China
| | - Yan Li
- College of Food Science and Engineering; Qingdao Agricultural University; Qingdao 266109 People's Republic of China
- Qingdao AgroResearch Co. Ltd; Qingdao 266109 People's Republic of China
| | - Fengwu Wang
- College of Food Science and Engineering; Qingdao Agricultural University; Qingdao 266109 People's Republic of China
| | - Yang Deng
- College of Food Science and Engineering; Qingdao Agricultural University; Qingdao 266109 People's Republic of China
- Qingdao AgroResearch Co. Ltd; Qingdao 266109 People's Republic of China
| |
Collapse
|
12
|
Purevdorj-Gage L, Nixon B, Bodine K, Xu Q, Doerrler WT. Differential Effect of Food Sanitizers on Formation of Viable but Nonculturable Salmonella enterica in Poultry. J Food Prot 2018; 81:386-393. [PMID: 29419335 DOI: 10.4315/0362-028x.jfp-17-335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A method for microscopic enumeration of viable Salmonella enterica in meat samples was developed by using the LIVE/DEAD BacLight kit technology. A two-step centrifugation and wash process was developed to clean the samples from food and chemical impurities that might otherwise interfere with the appropriate staining reactions. The accuracy of the BacLight kit-based viability assessments was confirmed with various validation tests that were conducted by following the manufacturer's instructions. For the biocide challenge tests, chicken parts each bearing around 8.5 log of S. enterica were sprayed with common food sanitizers such as 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), lactic acid (LA), and peracetic acid (PAA). The log reduction (LR) of S. enterica for each test biocide was evaluated by microscopic and conventional culture plate methods. The results show that both LA and PAA treatments generated a greater number of microscopic counts compared with the corresponding plate counts with differences being around half a log. This discrepancy is believed to occur when cells enter a so-called viable but nonculturable (VBNC) state, and to our knowledge, this is the first report documenting the presence of VBNC in PAA- and LA-treated food samples. In contrast, the BacLight-based viable counts were comparable to the culture-based enumerations of all DBDMH-treated samples. Therefore, we concluded that DBDMH-treated meat did not contain significant VBNC populations of S. enterica. A detailed description of our spray system, the dye validation, and the treatment reproducibility are also provided in this work.
Collapse
Affiliation(s)
- Laura Purevdorj-Gage
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Brian Nixon
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Kyle Bodine
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Qilong Xu
- 2 Southern Microbiological Services, 8000 Innovation Park Drive, Baton Rouge, Louisiana 70820
| | - William T Doerrler
- 2 Southern Microbiological Services, 8000 Innovation Park Drive, Baton Rouge, Louisiana 70820.,3 Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
13
|
Inactivation Kinetics ofVibrio parahaemolyticuson Sand Shrimp(Metapenaeus ensis)by Cinnamaldehyde at 4°C. J FOOD QUALITY 2017. [DOI: 10.1155/2017/5767925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sand shrimp(Metapenaeus ensis), shrimp shell, and shrimp meat were inoculated with a three-strain cocktail ofVibrio parahaemolyticuswith or without the natural antimicrobial cinnamaldehyde (2.5 mg/ml) and were, then, stored at 4°C for up to 25 days and 18 inactivation curves were obtained.V. parahaemolyticuswere inactivated down to the minimum level of detection (2.48 log CFU/g) on thiosulfate citrate bile salts sucrose agar (TCBS) plates within 7 and 10 days with low and high densities ofV. parahaemolyticusinoculation, 4.5 log CFU/g and 8.2 log CFU/g, respectively. With adding cinnamaldehyde, the inactivation process ofV. parahaemolyticuswith low populations, 4.5 log CFU/g, lasted for only 4 days. Therefore, cinnamaldehyde inactivated cells faster as expected. However, unexpectedly, in shrimp meat cases, cells have much more persistence of over even 25 days before entering the minimum level of detection both with and without cinnamaldehyde treatment. Therefore, a hypothesis was formed that when cells kept in cold environments (4°C) after several days recovered to up to 103–104CFU/g towards the end of the experiments and with starvation (shell and shrimp studies), cells might render a viable but nonculturable (VBNC) state.
Collapse
|
14
|
Wu YT, Tam C, Zhu LS, Evans DJ, Fleiszig SMJ. Human Tear Fluid Reduces Culturability of Contact Lens-Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence-Associated Type III Secretion System. Ocul Surf 2016; 15:88-96. [PMID: 27670247 DOI: 10.1016/j.jtos.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/11/2016] [Accepted: 09/11/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. METHODS P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. RESULTS With or without tear fluid, biofilms grew to ∼108 CFU viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ∼180-fold (P<.001). CL growth increased T3SS gene expression versus planktonic bacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (P=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (P=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (P=.04) and 1.89 ± 0.26-fold (P<.001), respectively. CONCLUSIONS Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Yvonne T Wu
- School of Optometry, University of California, Berkeley, CA, USA
| | - Connie Tam
- School of Optometry, University of California, Berkeley, CA, USA
| | - Lucia S Zhu
- School of Optometry, University of California, Berkeley, CA, USA
| | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| | - Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Groups in Vision Science, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| |
Collapse
|
15
|
Kamjumphol W, Chareonsudjai P, Taweechaisupapong S, Chareonsudjai S. Morphological Alteration and Survival of Burkholderia pseudomallei in Soil Microcosms. Am J Trop Med Hyg 2015; 93:1058-65. [PMID: 26324731 DOI: 10.4269/ajtmh.15-0177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022] Open
Abstract
The resilience of Burkholderia pseudomallei, the causative agent of melioidosis, was evaluated in control soil microcosms and in soil microcosms containing NaCl or FeSO4 at 30°C. Iron (Fe(II)) promoted the growth of B. pseudomallei during the 30-day observation, contrary to the presence of 1.5% and 3% NaCl. Scanning electron micrographs of B. pseudomallei in soil revealed their morphological alteration from rod to coccoid and the formation of microcolonies. The smallest B. pseudomallei cells were found in soil with 100 μM FeSO4 compared with in the control soil or soil with 0.6% NaCl (P < 0.05). The colony count on Ashdown's agar and bacterial viability assay using the LIVE/DEAD(®) BacLight(™) stain combined with flow cytometry showed that B. pseudomallei remained culturable and viable in the control soil microcosms for at least 120 days. In contrast, soil with 1.5% NaCl affected their culturability at day 90 and their viability at day 120. Our results suggested that a low salinity and iron may influence the survival of B. pseudomallei and its ability to change from a rod-like to coccoid form. The morphological changes of B. pseudomallei cells may be advantageous for their persistence in the environment and may increase the risk of their transmission to humans.
Collapse
Affiliation(s)
- Watcharaporn Kamjumphol
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand; Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand; Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Suwimol Taweechaisupapong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand; Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand; Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
16
|
Jia J, Chen Y, Jiang Y, Li Z, Zhao L, Zhang J, Tang J, Feng L, Liang C, Xu B, Gu P, Ye X. Proteomic analysis of Vibrio metschnikovii under cold stress using a quadrupole Orbitrap mass spectrometer. Res Microbiol 2015; 166:618-25. [PMID: 26277298 DOI: 10.1016/j.resmic.2015.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/25/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022]
Abstract
Vibrio metschnikovii is a food-borne pathogen found in seafood worldwide. We studied the global proteome responses of V. metschnikovii under cold stress by nano-flow ultra-high-performance liquid chromatography coupled to a quadrupole Orbitrap mass spectrometer. A total of 2066 proteins were identified, among which 288 were significantly upregulated and 572 were downregulated. Functional categorization of these proteins revealed distinct differences between cold-stressed and control cells. Quantitative reverse transcription polymerase chain reaction analysis was also performed to determine the mRNA expression levels of seventeen cold stress-related genes. The results of this study should improve our understanding of the metabolic activities of cold-adapted bacteria and will facilitate a better systems-based understanding of V. metschnikovii.
Collapse
Affiliation(s)
- Juntao Jia
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Ying Chen
- Research Institute for Food Safety, Chinese Academy of Inspection and Quarantine, No. A3, Road Gaobeidian, 100123 Beijing, China.
| | - Yinghui Jiang
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Zhengyi Li
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Liqing Zhao
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Jian Zhang
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Jing Tang
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Liping Feng
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Chengzhu Liang
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Biao Xu
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| | - Peiming Gu
- Demo Center of Thermo Fisher Scientific Inc., 201206 Shanghai, China
| | - Xiwen Ye
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, 266002 Qingdao, China
| |
Collapse
|
17
|
Froelich BA, Noble RT. Factors affecting the uptake and retention of Vibrio vulnificus in oysters. Appl Environ Microbiol 2014; 80:7454-9. [PMID: 25261513 PMCID: PMC4249221 DOI: 10.1128/aem.02042-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus, a bacterium ubiquitous in oysters and coastal water, is capable of causing ailments ranging from gastroenteritis to grievous wound infections or septicemia. The uptake of these bacteria into oysters is often examined in vitro by placing oysters in seawater amended with V. vulnificus. Multiple teams have obtained similar results in studies where laboratory-grown bacteria were observed to be rapidly taken up by oysters but quickly eliminated. This technique, along with suggested modifications, is reviewed here. In contrast, the natural microflora within oysters is notoriously difficult to eliminate via depuration. The reason for the transiency of exogenous bacteria is that those bacteria are competitively excluded by the oyster's preexisting microflora. Evidence of this phenomenon is shown using in vitro oyster studies and a multiyear in situ case study. Depuration of the endogenous oyster bacteria occurs naturally and can also be artificially induced, but both of these events require extreme conditions, natural or otherwise, as explained here. Finally, the "viable but nonculturable" (VBNC) state of Vibrio is discussed. This bacterial torpor can easily be confused with a reduction in bacterial abundance, as bacteria in this state fail to grow on culture media. Thus, oysters collected from colder months may appear to be relatively free of Vibrio but in reality harbor VBNC cells that respond to exogenous bacteria and prevent colonization of oyster matrices. Bacterial-uptake experiments combined with studies involving cell-free spent media are detailed that demonstrate this occurrence, which could explain why the microbial community in oysters does not always mirror that of the surrounding water.
Collapse
Affiliation(s)
- Brett A Froelich
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, North Carolina, USA
| | - Rachel T Noble
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, North Carolina, USA
| |
Collapse
|
18
|
Jia J, Chen Y, Jiang Y, Tang J, Yang L, Liang C, Jia Z, Zhao L. Visualized analysis of cellular fatty acid profiles of Vibrio parahaemolyticus strains under cold stress. FEMS Microbiol Lett 2014; 357:92-8. [PMID: 24910303 DOI: 10.1111/1574-6968.12498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 12/01/2022] Open
Abstract
Vibrio parahaemolyticus is a common foodborne bacterial pathogen, which survives in cold environments and is sometimes difficult to culture. Fatty acid analysis under cold stress was conducted for several V. parahaemolyticus strains using gas chromatography/mass spectrometry, and the results were compared with those of the controls. All the fatty acid profiles obtained were visualized by multidimensional scaling (MDS) and self-organized map (SOM). It was observed that the fatty acid profiles of V. parahaemolyticus substantially changed under cold stress. The percentage of methyl palmitate remarkably decreased and that of methyl palmitoleate (except for two strains) and methyl oleate increased. These findings demonstrate the role of fatty acids in cold stress. The changes in the fatty acid profiles illustrated by MDS and SOM could differentiate strains under cold stress from the controls and can potentially lead to a method of detecting injured cold-stressed V. parahaemolyticus.
Collapse
Affiliation(s)
- Juntao Jia
- Technological Center, Shandong Entry-Exit Inspection and Quarantine Bureau, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014; 5:258. [PMID: 24917854 PMCID: PMC4040921 DOI: 10.3389/fmicb.2014.00258] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - James D Oliver
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
20
|
Zhao F, Bi X, Hao Y, Liao X. Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics. PLoS One 2013; 8:e62388. [PMID: 23626816 PMCID: PMC3633907 DOI: 10.1371/journal.pone.0062388] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022] Open
Abstract
The viable but nonculturable (VBNC) state is a survival strategy adopted by many pathogens when exposed to harsh environmental stresses. In this study, we investigated for the first time that whether high pressure CO2 (HPCD), one of the nonthermal pasteurization techniques, can induce Escherichia coli O157:H7 into the VBNC state. By measuring plate counts, viable cell counts and total cell counts, E. coli O157:H7 in 0.85% NaCl solution (pH 7.0) was able to enter the VBNC state by HPCD treatment at 5 MPa and four temperatures (25°C, 31°C, 34°C and 37°C). Meanwhile, with the improvement of treatment temperature, the time required for E. coli O157:H7 to enter VBNC state would shorten. Enzymatic activities in these VBNC cells were lower than those in the exponential-phase cells by using API ZYM kit, which were also reduced with increasing the treatment temperature, but the mechanical resistance of the VBNC cells to sonication was enhanced. These results further confirmed VBNC state was a self-protection mechanism for some bacteria, which minimized cellular energetic requirements and increased the cell resistance. When incubated in tryptic soy broth at 37°C, the VBNC cells induced by HPCD treatment at 25°C, 31°C and 34°C achieved resuscitation, but their resuscitation capabilities decreased with increasing the treatment temperature. Furthermore, electron microscopy revealed changes in the morphology and interior structure of the VBNC cells and the resuscitated cells. These results demonstrated that HPCD could induce E. coli O157:H7 into the VBNC state. Therefore, it is necessary to detect if there exist VBNC microorganisms in HPCD-treated products by molecular-based methods for food safety.
Collapse
Affiliation(s)
- Feng Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Chinese National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Xiufang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Chinese National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Yanling Hao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Chinese National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- * E-mail: (XJL); (YLH)
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Chinese National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- * E-mail: (XJL); (YLH)
| |
Collapse
|
21
|
Morishige Y, Fujimori K, Amano F. Differential resuscitative effect of pyruvate and its analogues on VBNC (viable but non-culturable) Salmonella. Microbes Environ 2013; 28:180-6. [PMID: 23595023 PMCID: PMC4070669 DOI: 10.1264/jsme2.me12174] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/18/2012] [Indexed: 11/12/2022] Open
Abstract
An environmental isolate of Salmonella Enteritidis (SE), grown to the logarithmic phase, rapidly lost culturability by the addition of 3 mM H2O2 to cultures grown in Luria-Bertani (LB) medium; however, some H2O2-treated bacteria regained their culturability in M9 minimal medium, if sodium pyruvate was present at at least 0.3 mM. In addition, most pyruvate analogues, such as bromopyruvate or phenylpyruvate, did not show restoration activity similar to that of pyruvate, except in the case of α-ketobutyrate. Further analysis of the mechanism underlying the resuscitation by pyruvate revealed that although many of the bacteria showed respiratory activity on CTC (5-cyano-2,3-di-(p-tolyl) tetrazolium chloride) reduction with or without pyruvate, the biosynthesis of DNA and protein synthesis were quite different in the presence or absence of pyruvate, i.e., pyruvate endowed the cells with the ability to incorporate much more radio-label into precursors during the resuscitation process. These results suggest that pyruvate is one of the key molecules working in the resuscitation process by taking bacteria from the non-culturable state to the growing and colony-forming state by triggering the synthesis of macromolecules such as DNA and protein.
Collapse
Affiliation(s)
- Yuta Morishige
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka 569–1094, Japan
| | - Ko Fujimori
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka 569–1094, Japan
| | - Fumio Amano
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka 569–1094, Japan
| |
Collapse
|
22
|
Nowakowska J, Oliver JD. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol Ecol 2013; 84:213-22. [PMID: 23228034 DOI: 10.1111/1574-6941.12052] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/05/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
Vibrio vulnificus is responsible for 95% of all seafood-associated fatalities in the United States. When water temperatures drop below c. 13 °C, the cells enter into the viable but nonculturable (VBNC) state wherein they are unable to grow on routine media but retain viability and the ability to return to the culturable state. The aim of this study was to determine whether V. vulnificus cells in the VBNC state are protected against a variety of potentially lethal challenges (heat, oxidative, osmotic, pH, ethanol, antibiotic and heavy metal) and to examine genetic regulators that might underlie such protection. The data presented here indicate that VBNC cells of this pathogen are protected against a wide variety of stresses and retain the ability to return to the culturable state. Surprisingly, we found no significant difference in the expression of relA and spoT between VBNC and logarithmic cells, nor any significant difference in the expression of rpoS in the case of the clinical (C) genotype of this pathogen. However, expression of relA was significantly different in VBNC cells of the environmental (E) genotype compared with logarithmic cells. This might account for findings indicating an enhanced ability for E-genotype cells to withstand environmental changes better than C-genotype cells.
Collapse
Affiliation(s)
- Joanna Nowakowska
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|
23
|
Su CP, Jane WN, Wong HC. Changes of ultrastructure and stress tolerance of Vibrio parahaemolyticus upon entering viable but nonculturable state. Int J Food Microbiol 2012; 160:360-6. [PMID: 23290246 DOI: 10.1016/j.ijfoodmicro.2012.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 07/21/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
This study examined the change of ultrastructure and stress tolerance of the marine foodborne pathogen, Vibrio parahaemolyticus 1137, when incubated under viable but nonculturable (VBNC) state induction conditions for different time intervals. The rod-shaped V. parahaemolyticus cells in the exponential phase became coccoid cells in the VBNC state, with aberrantly shaped cells formed in the initial stage. In the aberrantly shaped cells, the cell wall was loosened, flexible and allowed the cell to bulge, and the formation of new and thin cell wall or the expansion of cell wall was also discerned primarily at the polar position, enclosing an empty cellular space. The thickness of the cell wall increased with the VBNC induction time, and was increased in cultures that were removed from the induction conditions and whose temperature was upshifted to 25°C for 1 or 2days. The incubation of V. parahaemolyticus under the VBNC induction conditions significantly enhanced its tolerance to heat, H(2)O(2) and low salinity, but sensitized it to bile salts. Tolerance to heat, bile salts and low salinity was significantly higher in the temperature upshifted cultures than in the corresponding unheated cultures, and the heated cultures were also more susceptible to H(2)O(2). The V. parahaemolyticus cultures that were incubated in the VBNC state induction conditions and the corresponding temperature-upshifted cultures exhibited unique changes in ultrastructure and tolerance to various stresses, unlike the nutrient-starved cells.
Collapse
Affiliation(s)
- Chao-Ping Su
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China
| | | | | |
Collapse
|
24
|
Wood RR, Arias CR. Evaluation of global gene expression during cold shock in the human pathogen Vibrio vulnificus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:942-954. [PMID: 21246233 DOI: 10.1007/s10126-010-9356-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 12/22/2010] [Indexed: 05/30/2023]
Abstract
Vibrio vulnificus can adapt to cold temperatures by changing the expression profiles of certain genes and their resulting proteins. In this study, the complete V. vulnificus transcriptome was analyzed under cold shock by looking at gene expression changes occurring during the shift from 35°C to 4°C. A DNA microarray-based global transcript profiling of V. vulnificus showed that 165 genes out of 4,488 altered their expression profiles by more than twofold. From 35°C to 10°C, an overall gene repression was observed while changes occurring below 10°C mainly resulted in upregulation. The highest induction observed occurred in two of the five categorized cold-shock genes, cspA and cspB, which showed a complementary expression pattern during cold shock suggesting a homologous role. Other genes showing a significant fold increase included ribosomal genes, protein folding regulators, and membrane genes. Repressions were observed in all orthologous groups. Genes with top fold changes in repression include those coding for catalytic enzymes responsible for non temperature-related stress regulation. These included antioxidants, sugar uptake, and amino acid scavengers. V. vulnificus maintained a high level of cspA and cspB transcripts during the entire experiment suggesting that these class I cold-shock genes are required beyond the initial phase of the acclimation period.
Collapse
Affiliation(s)
- Raphael R Wood
- Department of Fisheries and Allied Aquaculture, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | | |
Collapse
|
25
|
Krebs SJ, Taylor RK. Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form. MICROBIOLOGY-SGM 2011; 157:2942-2953. [PMID: 21778208 DOI: 10.1099/mic.0.048561-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The acute diarrhoeal disease cholera is caused by the aquatic pathogen Vibrio cholerae upon ingestion of contaminated food or water by the human host. The mechanisms by which V. cholerae is able to persist and survive in the host and aquatic environments have been studied for years; however, little is known about the factors involved in the adaptation or response of V. cholerae transitioning between these two environments. The transition from bacillary to coccoid morphology is thought to be one mechanism of survival that V. cholerae uses in response to environmental stress. Coccoid morphology has been observed for V. cholerae while in a viable but non-culturable (VBNC) state, during times of nutrient limitation, and in the water-diluted stool of cholera-infected patients. In this study we sought conditions to study the coccoid morphology of V. cholerae, and found that coccoid-shaped cells can express and produce the virulence factor toxin co-regulated pilus (TCP) and are able to colonize the infant mouse to the same extent as bacillus-shaped cells. This study suggests that TCP may be one factor that V. cholerae utilizes for adaptation and survival during the transition between the host and the aquatic environment.
Collapse
Affiliation(s)
- Shelly J Krebs
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Ronald K Taylor
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 2009; 34:415-25. [PMID: 20059548 DOI: 10.1111/j.1574-6976.2009.00200.x] [Citation(s) in RCA: 719] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many bacteria, including a variety of important human pathogens, are known to respond to various environmental stresses by entry into a novel physiological state, where the cells remain viable, but are no longer culturable on standard laboratory media. On resuscitation from this 'viable but nonculturable' (VBNC) state, the cells regain culturability and the renewed ability to cause infection. It is likely that the VBNC state is a survival strategy, although several interesting alternative explanations have been suggested. This review describes the VBNC state, the various chemical and physical factors known to induce cells into this state, the cellular traits and gene expression exhibited by VBNC cells, their antibiotic resistance, retention of virulence and ability to attach and persist in the environment, and factors that have been found to allow resuscitation of VBNC cells. Along with simple reversal of the inducing stresses, a variety of interesting chemical and biological factors have been shown to allow resuscitation, including extracellular resuscitation-promoting proteins, a novel quorum-sensing system (AI-3) and interactions with amoeba. Finally, the central role of catalase in the VBNC response of some bacteria, including its genetic regulation, is described.
Collapse
Affiliation(s)
- James D Oliver
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
27
|
Lai CJ, Chen SY, Lin IH, Chang CH, Wong HC. Change of protein profiles in the induction of the viable but nonculturable state of Vibrio parahaemolyticus. Int J Food Microbiol 2009; 135:118-24. [DOI: 10.1016/j.ijfoodmicro.2009.08.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 07/28/2009] [Accepted: 08/16/2009] [Indexed: 11/29/2022]
|
28
|
Abstract
Bacterial populations that are exposed to rapidly changing and sometimes hostile environments constantly switch between growth, survival, and death. Understanding bacterial survival and death are therefore cornerstones in a full comprehension of microbial life. During the last few years, new insights have emerged regarding the mechanisms of bacterial inactivation under stressful conditions. Particularly under mildly lethal stress, the ultimate cause of inactivation often seems mediated by the cell itself and is subject to additional regulation that integrates information about the global state of the cell and its environmental and social surrounding. This article explores the thin line between bacterial growth and inactivation and focuses on some emerging bacterial survival strategies, both from an individual cell and from a population perspective.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
29
|
Basaglia M, Povolo S, Casella S. Resuscitation of Viable But Not Culturable Sinorhizobium meliloti 41 pRP4-luc: Effects of Oxygen and Host Plant. Curr Microbiol 2007; 54:167-74. [PMID: 17253091 DOI: 10.1007/s00284-005-0482-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 10/10/2006] [Indexed: 11/29/2022]
Abstract
A plasmid-borne, firefly-derived, luciferase gene (luc) was inserted and stably inherited in Sinorhizobium meliloti 41 as a reporter gene. The strain obtained, S. meliloti 41/pRP4-luc, and its parental strain served as a model system for viable but not culturable (VBNC) resuscitation experiments in both in vitro and soil samples. Incubation under oxygen (02) concentrations varying from 1% to atmospheric levels did not result in resuscitation. A demonstration of recovery was attained through exposure to the appropriate concentrations of antibiotics, bacteriostatic chloramphenicol, and bactericidal ampicillin. The resuscitation ratio was 1 recovered VBNC cell in every 10(5) 5-cyano-2,3-di-4-tolyl-tetrazolium chloride (CTC+) bacteria. Although isolated VBNC rhizobia were unable to nodulate Medicago sativa, which apparently did not enhance VBNC reversion, resuscitated bacteria maintained their symbiotic properties. Soil experiments showed that the lack of O2 leads to onset of VBNC status as in liquid microcosm, but the number of recoverable and culturable cells decreased more drastically in soil.
Collapse
Affiliation(s)
- Marina Basaglia
- Dipartimento di Biotecnologie Agrarie, Agripolis-Università di Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | | | | |
Collapse
|
30
|
Klancnik A, Botteldoorn N, Herman L, Mozina SS. Survival and stress induced expression of groEL and rpoD of Campylobacter jejuni from different growth phases. Int J Food Microbiol 2006; 112:200-7. [PMID: 16782221 DOI: 10.1016/j.ijfoodmicro.2006.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2006] [Indexed: 11/22/2022]
Abstract
Although Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in humans worldwide, its potential to adapt to the stressful conditions and survive in extra-intestinal environment is still poorly understood. We tested the effect of heat shock (55 degrees C, 3 min) and oxidative stress (3 mM H2O2 for 10 min or prolonged incubation at atmosphere oxygen concentration) on non-starved and starved cells of Campylobacter jejuni from different growth phases. Viability as assessed with the Bacterial Viability Kit LIVE/DEAD BacLighttrade mark dying before fluorescent microscopy and culturability of the cells (CFU ml(-1)) from both growth phases showed that starvation increased heat but not oxidative resistance. High temperature and oxidative stress invoked quick transformation from culturable spiral shaped to nonculturable spiral and coccoid cells. Despite physiological changes of the cells we were not able to document clear differences in the expression of heat shock and starvation genes (dnaK, htpG, groEL), oxidative (ahpC, sodB), virulence (flaA) and housekeeping genes (16S rRNA, rpoD) after heat treatment (55 degrees C, 3 min) or oxidative stresses applied. When starving, no induction of expression of any of these genes was noticed, chloramphenicol had no influence on their gene expression. Quantitative real-time PCR analyses showed that at least 10-20 min of heat shock was necessary to evidently increase the amount of groEL and rpoD transcripts.
Collapse
Affiliation(s)
- Anja Klancnik
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
31
|
Rosche TM, Smith DJ, Parker EE, Oliver JD. RpoS involvement and requirement for exogenous nutrient for osmotically induced cross protection in Vibrio vulnificus. FEMS Microbiol Ecol 2006; 53:455-62. [PMID: 16329963 DOI: 10.1016/j.femsec.2005.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 01/12/2005] [Accepted: 02/03/2005] [Indexed: 11/29/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen which is the causative agent of food-borne disease and wound infections. V. vulnificus is able to adapt to a variety of potentially stressful environmental changes, such as osmotic, nutrient, and temperature variations in estuarine environments, as well as oxidative, osmotic, and acidity differences following infection of a human host. After exposure to sub-lethal levels of a particular environmental stress, many bacteria become resistant to unrelated stresses, a phenomenon termed cross protection. In this study, we examined the ability of osmotic shock to cross protect V. vulnificus to high temperature as well as oxidative stress. Log phase cells of V. vulnificus strain C7184o were cross protected by prior osmotic shock to both heat and oxidative challenge, but only when exogenous nutrient was present during the osmotic upshift. Further, and unlike other bacteria, nutrient starvation alone did not result in cross protection against either stress. When small amounts of nutrient were present during osmotic shock, cross protection to an otherwise lethal heat challenge developed extremely rapidly, with significant protection seen within 10 min. Cross protection to oxidative stress was slower to develop, requiring several hours. Although stationary phase alone conferred some cross protection to heat and oxidative stress, the alternate sigma factor RpoS was required for complete cross protection of log phase cells to oxidative stress but not for resistance to heat challenge. Together these findings suggest that the cross protective response in V. vulnificus is complex and appears to involve multiple mechanisms.
Collapse
Affiliation(s)
- Thomas M Rosche
- Department of Biology, University of North Carolina at Charlotte North Carolina, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
32
|
Ward LN, Bej AK. Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microbiol 2006; 72:2031-42. [PMID: 16517652 PMCID: PMC1393209 DOI: 10.1128/aem.72.3.2031-2042.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We developed a multiplexed real-time PCR assay using four sets of gene-specific oligonucleotide primers and four TaqMan probes labeled with four different fluorophores in a single reaction for detection of total and pathogenic Vibrio parahaemolyticus, including the pandemic O3:K6 serotype in oysters. V. parahaemolyticus has been associated with outbreaks of food-borne gastroenteritis caused by the consumption of raw or undercooked seafood and therefore is a concern to the seafood industry and consumers. We selected specific primers and probes targeting the thermostable direct hemolysin gene (tdh) and tdh-related hemolysin gene (trh) that have been reported to be associated with pathogenesis in this organism. In addition, we targeted open reading frame 8 of phage f237 (ORF8), which is associated with a newly emerged virulent pandemic serotype of V. parahameolyticus O3:K6. Total V. parahaemolyticus was targeted using the thermolabile hemolysin gene (tlh). The sensitivity of the combined four-locus multiplexed TaqMan PCR was found to be 200 pg of purified genomic DNA and 10(4) CFU per ml for pure cultures. Detection of an initial inoculum of 1 CFU V. parahaemolyticus per g of oyster tissue homogenate was possible after overnight enrichment, which resulted in a concentration of 3.3x10(9) CFU per ml. Use of this method with natural oysters resulted in 17/33 samples that were positive for tlh and 4/33 samples that were positive for tdh. This assay specifically and sensitively detected total and pathogenic V. parahaemolyticus and is expected to provide a rapid and reliable alternative to conventional detection methods by reducing the analysis time and obviating the need for multiple assays.
Collapse
Affiliation(s)
- Linda N Ward
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
| | | |
Collapse
|
33
|
Barcina I, Lebaron P, Vives-Rego J. Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00385.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Barer MR. The viable but nonculturable concept, bacteria in urine samples, and Occam's razor. J Clin Microbiol 2005; 42:5434; author reply 5434-5. [PMID: 15528766 PMCID: PMC525162 DOI: 10.1128/jcm.42.11.5434-5435.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Nayak BB, Kamiya E, Nishino T, Wada M, Nishimura M, Kogure K. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting. FEMS Microbiol Ecol 2005; 51:179-86. [PMID: 16329866 DOI: 10.1016/j.femsec.2004.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Revised: 08/07/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022] Open
Abstract
The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.
Collapse
Affiliation(s)
- Binaya Bhusan Nayak
- Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Tokyo 164 8639, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Wong HC, Wang P. Induction of viable but nonculturable state in Vibrio parahaemolyticus and its susceptibility to environmental stresses. J Appl Microbiol 2004; 96:359-66. [PMID: 14723697 DOI: 10.1046/j.1365-2672.2004.02166.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS This work analysed factors that influence the induction of viable but nonculturable (VBNC) state in the common enteric pathogen, Vibrio parahaemolyticus. The susceptibility of the VBNC cells to environmental stresses was investigated. METHODS AND RESULTS Bacterium was cultured in tryptic soy broth-3% NaCl medium, shifted to a nutrient-free Morita mineral salt-0.5% NaCl medium (pH 7.8) and further incubated at 4 degrees C in a static state to induce the VBNC state in 28-35 days. The culturability and viability of the cells were monitored by the plate count method and the Bac Light viable count method, respectively. Cells grown at the optimum growth temperature and in the exponential phase better induced the VBNC state than those grown at low temperature and in the stationary phase. Low salinity of the medium crucially and markedly shortened the induction period. The VBNC cells were highly resistant to thermal (42, 47 degrees C), low salinity (0% NaCl), or acid (pH 4.0) inactivation. CONCLUSIONS Optimal conditions for inducing VBNC V. parahaemolyticus were reported. The increase in resistance of VBNC V. parahaemolyticus to thermal, low salinity and acidic inactivation verified that this state is entered as part of a survival strategy in an adverse environment. SIGNIFICANCE AND IMPACT OF THE STUDY The methods for inducing VBNC V. parahaemolyticus in a markedly short time will facilitate further physiological and pathological study. The enhanced stress resistance of the VBNC cells should attract attention to the increased risk presented by this pathogen in food.
Collapse
Affiliation(s)
- H C Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China.
| | | |
Collapse
|
37
|
Mary P, Sautour M, Chihib NE, Tierny Y, Hornez JP. Tolerance and starvation induced cross-protection against different stresses in Aeromonas hydrophila. Int J Food Microbiol 2003; 87:121-30. [PMID: 12927714 DOI: 10.1016/s0168-1605(03)00061-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aeromonas hydrophila is sometimes considered as a controversial human pathogen and reported to be susceptible to food processing procedures and environmental stresses. In this study, we have shown that early stationary phase cells of A. hydrophila were readily killed during up shifts in temperature (in the range 50-70 degrees C), the course of drying (at relative humidity, temperature and brightness of the laboratory) and after 5 min exposure to 20%, 30% and 40% v/v ethanol. However, this bacterium was found moderately susceptible to down shift to 4 degrees C in nutrient poor water, sodium chloride stresses (1.5 and 2 M) and to 12% and 15% v/v ethanol stresses. Tolerance against 1 M NaCl and 10% v/v ethanol was observed. At ambient temperature (24.5 degrees C), this microorganism exhibited a starvation survival state, which was largely independent of the initial cell concentrations (8.82, 7.71 and 6.76 log units). The cross-protection experiments showed that cells starved for short (1 day) or prolonged (50 days) periods developed increased resistance to down shift at 4 degrees C and ethanol stress. This may be of concern to the food-processing industry from the public health perspective.
Collapse
Affiliation(s)
- Patrice Mary
- Laboratoire de Microbiologie, Université des Sciences et Technologies de Lille, Bâtiment SN2, F-59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
38
|
Armada SP, Farto R, Pérez MJ, Nieto TP. Effect of temperature, salinity and nutrient content on the survival responses of Vibrio splendidus biotype I. MICROBIOLOGY (READING, ENGLAND) 2003; 149:369-375. [PMID: 12624199 DOI: 10.1099/mic.0.25574-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the survival responses of two strains of Vibrio splendidus, both in natural and in defined media. For this purpose, freshwater and defined media containing different salinities (3.3-0.9 %) and nutrient concentrations (17-0.005 mg x l(-1)) were assayed. The incubation temperatures were established at 4, 10 and 22 degrees C. The acridine orange staining technique was used for total cell enumeration and the number of viable cells was determined using two direct assays, nalidixic acid and tetrazolium salt reduction and plate spreading. Resuscitation assays of viable but non-culturable (VBNC) cells were conducted. According to the counting procedures employed, at least four different subpopulations were found: (i). active (positive response in both nalidixic acid and tetrazolium assays) culturable cells; (ii). active non-culturable cells; (iii). tetrazolium-salt-responsive non-culturable cells and (iv). non-active (responsive to none of the direct viable assays) non-culturable cells. Long-term survival was found at salinities and nutrient concentrations of seawater environments (3.3 % and 5 mg x l(-1) or 1 g l(-1)), whereas the strains entered a VBNC state in freshwater and in brackish (0.9 or 1.6 % salinities) or high nutrient content (17 g x l(-1)) defined medium. The recovery of VBNC cells was not achieved.
Collapse
Affiliation(s)
- Susana P Armada
- Microbiología, Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidad de Vigo, Lagoas-Marcosende s/n, 36200 Vigo, Spain
| | - Rosa Farto
- Microbiología, Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidad de Vigo, Lagoas-Marcosende s/n, 36200 Vigo, Spain
| | - María J Pérez
- Microbiología, Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidad de Vigo, Lagoas-Marcosende s/n, 36200 Vigo, Spain
| | - Teresa P Nieto
- Microbiología, Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidad de Vigo, Lagoas-Marcosende s/n, 36200 Vigo, Spain
| |
Collapse
|
39
|
Eguchi M, Fujiwara-Nagata E, Miyamoto N. Physiological State of Vibrio anguillarum, a Fish Pathogen, under Starved and Low-Osmotic Environments. Microbes Environ 2003. [DOI: 10.1264/jsme2.18.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mitsuru Eguchi
- Department of Fisheries, Faculty of Agriculture, Kinki University
| | | | - Nobukazu Miyamoto
- Department of Fisheries, Faculty of Agriculture, Kinki University
- Institute of Environmental Ecology, Metocean Environment Inc
| |
Collapse
|
40
|
Mukamolova GV, Kaprelyants AS, Kell DB, Young M. Adoption of the transiently non-culturable state — a bacterial survival strategy? Adv Microb Physiol 2003; 47:65-129. [PMID: 14560663 DOI: 10.1016/s0065-2911(03)47002-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microbial culturability can be ephemeral. Cells are not merely either dead or alive but can adopt physiological states in which they appear to be (transiently) non-culturable under conditions in which they are known normally to be able to grow and divide. The reacquisition of culturability from such states is referred to as resuscitation. We here develop the idea that this "transient non-culturability" is a consequence of a special survival strategy, and summarise the morphological, physiological and genetic evidence underpinning such behaviour and its adaptive significance.
Collapse
Affiliation(s)
- Galina V Mukamolova
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DD, UK
| | | | | | | |
Collapse
|
41
|
Ramaiah N, Ravel J, Straube WL, Hill RT, Colwell RR. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state. J Appl Microbiol 2002; 93:108-16. [PMID: 12067379 DOI: 10.1046/j.1365-2672.2002.01666.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Physiological responses of marine luminous bacteria, Vibrio harveyi (ATCC 14216) and V. fischeri (UM1373) to nutrient-limited normal strength (35 ppt iso-osmolarity) and low (10 ppt hypo-osmolarity) salinity conditions were determined. METHODS AND RESULTS Plate counts, direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. Vibrio harveyi incubated at 22 degrees C in nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d in microcosms of 35 ppt and 10 ppt ASW, respectively. In contrast, V. fischeri became nonculturable at approximately 55 and 31 d in similar microcosms. Recovery of both culturability and luminescence of cells in the viable but nonculturable state was achieved by addition of nutrient broth or nutrient broth supplemented with a carbon source, including luminescence-stimulating compounds. Temperature upshift from 22 degrees C to 30 degrees C or 37 degrees C did not result in recovery from nonculturability. CONCLUSIONS The study confirms entry of V. harveyi and V. fischeri into the viable but nonculturable state under low-nutrient conditions and demonstrates nutrient-dependent resuscitation from this state. SIGNIFICANCE AND IMPACT OF THE STUDY This study confirms loss of luminescence of V. harveyi and V. fischeri on entry into the viable but nonculturable state and suggests that enumeration of luminescent cells in water samples may be a rapid method to deduce the nutrient status of a water sample.
Collapse
Affiliation(s)
- N Ramaiah
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202, USA
| | | | | | | | | |
Collapse
|
42
|
Bang W, Drake MA. Resistance of cold- and starvation-stressed Vibrio vulnificus to heat and freeze-thaw exposure. J Food Prot 2002; 65:975-80. [PMID: 12092731 DOI: 10.4315/0362-028x-65.6.975] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of cold storage and starvation on the subsequent heat resistance and freeze-thaw resistance of Vibrio vulnificus were studied. Three strains of V. vulnificus were evaluated. Cold stress had no effect on freeze-thaw resistance (P > 0.05). Starvation enhanced freeze-thaw resistance for one strain compared to controls (P < 0.05). V. vulnificus was not heat resistant; control populations were inactivated within 12 min at 47 degrees C. Starvation increased heat tolerance for one strain, but differences were small from a processing perspective (P < 0.05). Cold stress had no effect on heat resistance (P > 0.05). Cold adaptation (holding 4 h at 15 degrees C) enhanced cold temperature (5 degrees C) tolerance. This information will be helpful in the development of methods to minimize V. vulnificus risk.
Collapse
Affiliation(s)
- W Bang
- Department of Food Science and Technology, Mississippi State University, Mississippi State 39762, USA
| | | |
Collapse
|
43
|
Charteris WP, Kelly PM, Morelli L, Collins JK. Edible table (bio)spread containing potentially probiotic Lactobacillus and Bifidobacterium species. INT J DAIRY TECHNOL 2002. [DOI: 10.1046/j.1471-0307.2002.00024.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Rajkowski KT, Rice EW. Growth and recovery of selected gram-negative bacteria in reconditioned wastewater. J Food Prot 2001; 64:1761-7. [PMID: 11726156 DOI: 10.4315/0362-028x-64.11.1761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous reports indicate that Escherichia coli O157:H7, Salmonella spp., and Vibrio cholerae can grow in nutrient-limited, reconditioned wastewater over the temperature range of 4 to 46 degrees C when the biological oxygen demand of this water is <2, while its coliform growth response (CGR) is >2. In the current study, we investigated the growth response of Vibrio parahaemolyticus, Shigella spp., Vibrio vulnificus, and Pseudomonas aeruginosa in water samples with a CGR of >2 over the temperature range of 4 to 50 degrees C. Both the nonselective media, tryptic soy agar, and the selective media used to identify the pathogen were used for their recovery. The selective media were thiosulfate-citrate-bile-sucrose (TCBS), MacConkey agar (MAC), and Pseudomonas isolation agar (PIA) for the Vibrio, Shigella, and Pseudomonas spp., respectively. V. parahaemolyticus numbers declined rapidly after surviving for 6 days under the nutrient-limiting growth conditions. Shigella spp. did not grow but survived for >28 days at 4 to 25 degrees C. V. vulnificus grew over the narrow temperature range of 12 to 21 degrees C and survived for >21 days at the higher and lower temperature ranges. P. aeruginosa survived and grew during the 14-day test period at 13 to 35 degrees C. Recovery on the nonselective agar gave statistically (P > 0.05) higher numbers than the respective selective media commonly used for these pathogens. These results indicate that caution should be used in attempting direct recoveries using selective media of the four gram-negative bacteria species used in this study from the nutrient-limited water environment.
Collapse
Affiliation(s)
- K T Rajkowski
- US Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, Pennsylvania 19038, USA.
| | | |
Collapse
|
45
|
Bogosian G, Aardema ND, Bourneuf EV, Morris PJ, O'Neil JP. Recovery of hydrogen peroxide-sensitive culturable cells of Vibrio vulnificus gives the appearance of resuscitation from a viable but nonculturable state. J Bacteriol 2000; 182:5070-5. [PMID: 10960089 PMCID: PMC94653 DOI: 10.1128/jb.182.18.5070-5075.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2000] [Accepted: 06/19/2000] [Indexed: 11/20/2022] Open
Abstract
The viabilities of five strains of Vibrio vulnificus were evaluated during the storage of the organisms in sterile seawater at 5 degrees C. The number of CFU was measured by plate count methods on rich media. The total cell numbers were determined by direct microscopic count methods. The titer of CFU declined logarithmically to undetectable levels over a period of 2 to 3 weeks, while the total cell numbers were unchanged. Midway through each study, higher culturable cell counts began to be observed on plates containing catalase or sodium pyruvate; during the latter stages of the study, the plate counts on such media were up to 1,000-fold higher than those on unsupplemented plates. Because autoclaving is known to generate hydrogen peroxide in rich media, and because catalase and sodium pyruvate are known to eliminate hydrogen peroxide, it appears that the conditions of the experiments led to the selection of a hydrogen peroxide-sensitive culturable cell subpopulation. At the time of the final stage of the decline in viability of each culture, hydrogen peroxide-sensitive cells were the only culturable cells present. Warming samples of the cultures to room temperature led to the growth of these residual culturable cells, utilizing nutrients provided by the nonculturable cells. The cells that grew recovered hydrogen peroxide resistance. When mixtures of culturable and nonculturable cells were diluted to the point where only nonculturable cells were present, or when the hydrogen peroxide-sensitive culturable cells had declined to undetectable levels, warming had no effect; no culturable cells were recovered. Warming has been reported to "resuscitate" nonculturable cells. Recognition of the existence of hydrogen peroxide-sensitive culturable cell populations, as well as their ability to grow to high levels in the warmed seawater microcosms, leads instead to the conclusion that while warming permits culturable cells to grow, it has no effect on nonculturable cells.
Collapse
Affiliation(s)
- G Bogosian
- Monsanto Company, Chesterfield, Missouri 63198, USA.
| | | | | | | | | |
Collapse
|
46
|
Rice SA, McDougald D, Kjelleberg S. Vibrio vulnificus: a physiological and genetic approach to the viable but nonculturable response. J Infect Chemother 2000; 6:115-20. [PMID: 11810549 DOI: 10.1007/pl00012150] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 02/07/2000] [Indexed: 11/29/2022]
Abstract
In this review, we focus on studies of the viable but nonculturable response (VBNC) of Vibrio vulnificus, a significant and aggressive human pathogen, as a model system for the general understanding of the VBNC response. This response is characterized physiologically as the inability to culture an organism on media that normally supports its growth, and yet those cells retain indicators of metabolic activity. Implicit in this definition is that it may be possible to return or resuscitate VBNC cells to active division on laboratory media. Since its original description in 1985, the VBNC response has been recognized in a range of bacteria. Study of the VBNC response has traditionally focused on physiological methods aimed at demonstrating that VBNC cells are indeed viable but have a specific block that prevents them from dividing on laboratory media, and such study has attempted to identify conditions that unequivocally demonstrate the resuscitation of VBNC cells. With the advent of molecular genetics, VBNC studies have begun to focus on genetics as a means to determine whether there are specific genes or regulatory pathways responsible for the development of the VBNC response. Thus, by combining information from physiological and genetic experiments, it is hoped that it can be determined whether the VBNC response represents a genetically programmed physiological adaptation similar to sporulation and outgrowth or whether VBNC represents the slow loss of function on the way to cellular death.
Collapse
Affiliation(s)
- S A Rice
- The School of Microbiology and Immunology, The University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
47
|
Abstract
Vibrio vulnificus is capable of causing severe and often fatal infections in susceptible individuals. It causes two distinct disease syndromes, a primary septicemia and necrotizing wound infections. This review discusses the interaction of environmental conditions, host factors, and bacterial virulence determinants that contribute to the epidemiology and pathogenesis of V. vulnificus.
Collapse
Affiliation(s)
- M S Strom
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | | |
Collapse
|
48
|
Tanaka Y, Yamaguchi N, Nasu M. Viability of Escherichia coli O157:H7 in natural river water determined by the use of flow cytometry. J Appl Microbiol 2000; 88:228-36. [PMID: 10735990 DOI: 10.1046/j.1365-2672.2000.00960.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The enzymatic activity and viability of Escherichia coli O157:H7 in natural river water was determined by flow cytometry. River water was collected at two sites (an agricultural area and an industrial area) on the Aigawa River (Osaka, Japan). To facilitate estimation of the physiology of E. coli O157 in natural river water, bacterial cells in the water were stained with 6-carboxyfluorescein diacetate (6CFDA) and propidium iodide (PI). The cells were sorted into two populations, using a flow cytometer, based on their esterase activity. Each population was stained with E. coli O157:H7 fluorescent antibody (FA), and E. coli O157:H7 cells were observed in the esterase-active population. River water samples collected at the same points were incubated with yeast extract containing antibiotics to prevent cell division, and bacterial cells in the incubated samples were stained with PI and FA. Escherichia coli O157:H7 existed in both the viable (elongated and/or fattened) and inactive bacterial population determined by flow cytometry. These results indicate that E. coli O157:H7 may retain metabolic activity and growth potential in the natural aquatic environment.
Collapse
Affiliation(s)
- Y Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | | | | |
Collapse
|
49
|
Abstract
Vibrio cholerae, a Gram-negative, motile, aquatic bacterium, is the causal agent of the diarrheal disease cholera. Cholera is a serious epidemic disease that has killed millions of people and continues to be a major health problem world-wide. The hypothesis that V. cholerae occupies an ecological niche in the estuarine environment requires that this organism is able to survive the dynamics of physiochemical stresses, including nutrient starvation. As a result of these stresses, bacteria in nature often exist in non-growth or very slow growth states with a low metabolic activity. Because microorganisms have little ability to control their environment, environmental changes have led to changes in cell function and structure. Such cellular responses can originate in one of two ways: by changes in genetic constitution or by phenotypic adaptation. In this review, we will focus on the phenotypic responses of V. cholerae of a given genotype to starvation stress.
Collapse
Affiliation(s)
- S N Wai
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
50
|
Abstract
Renewed interest in the relationships between viability and culturability in bacteria stems from three sources: (1) the recognition that there are many bacteria in the biosphere that have never been propagated or characterized in laboratory culture; (2) the proposal that some readily culturable bacteria may respond to certain stimuli by entering a temporarily non-culturable state termed 'viable but non-culturable' (VBNC) by some authors; and (3) the development of new techniques that facilitate demonstration of activity, integrity and composition of non-culturable bacterial cells. We review the background to these areas of interest emphasizing the view that, in an operational context, the term VBNC is self-contradictory (Kell et al., 1998) and the likely distinctions between temporarily non-culturable bacteria and those that have never been cultured. We consider developments in our knowledge of physiological processes in bacteria that may influence the outcome of a culturability test (injury and recovery, ageing, adaptation and differentiation, substrate-accelerated death and other forms of metabolic self-destruction, prophages, toxin-antitoxin systems and cell-to-cell communication). Finally, we discuss whether it is appropriate to consider the viability of individual bacteria or whether, in some circumstances, it may be more appropriate to consider viability as a property of a community of bacteria.
Collapse
Affiliation(s)
- M R Barer
- Department of Microbiology and Immunology, Medical School, Newcastle upon Tyne
| | | |
Collapse
|