1
|
Qu Q, Zhang X, Muhire J, Yang A, Xie M, Xiong R, Cheng W, Pei D, Huang C. Biomimetic triggered release from hydroxyethyl cellulose @ Prussian blue microparticles for tri-modality biofilm removal. Colloids Surf B Biointerfaces 2024; 244:114184. [PMID: 39214032 DOI: 10.1016/j.colsurfb.2024.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Human health is under growing threat from the increasing incidence of bacterial infections. Through their antimicrobial mechanisms, bacteria use appropriate strategies to overcome the antimicrobial effects of antibiotics. The enhanced effects of synergistic strategies on drug-resistant bacteria and biofilms have led to increasing interest in these approaches in recent years. Herein, biomimetic hydroxyethyl cellulose @ Prussian blue microparticles (HEC@PB MPs) generated by the gas-shearing method show a synergistic antibacterial property induced by antibiotic-, photothermal- and photodynamic- effect. MPs, as tri-modality antibacterial agents, exhibit ideal antibacterial activity and biofilm removal effect, and their mode of action on bacteria was investigated. Additionally, a drug release concept encouraged by the ROS-driven breakdown of cellulose, as seen in brown-rot fungi, was introduced. It combines ROS-responsive HEC and photodynamic PB and is likely to fit a niche in many applications.
Collapse
Affiliation(s)
- Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jules Muhire
- Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Min Xie
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Dong Pei
- Research Center for Natural Medicine and Chemical Metrology and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
2
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
3
|
Goranov AI, Chen H, Duan J, Myneni SCB, Hatcher PG. Potentially Massive and Global Non-Pyrogenic Production of Condensed "Black" Carbon through Biomass Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2750-2761. [PMID: 38294931 PMCID: PMC10867845 DOI: 10.1021/acs.est.3c05448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
With the increased occurrences of wildfires worldwide, there has been an increase in scientific interest surrounding the chemistry of fire-derived "black" carbon (BC). Traditionally, wildfire research has assumed that condensed aromatic carbon (ConAC) is exclusively produced via combustion, and thus, ConAC is equated to BC. However, the lack of correlations between ConAC in soils or rivers and wildfire history suggests that ConAC may be produced non-pyrogenically. Here, we show quantitative evidence that this occurs during the oxidation of biomass with environmentally ubiquitous hydroxyl radicals. Pine wood boards exposed to iron nails and natural weather conditions for 12 years yielded a charcoal-like ConAC-rich material. ConAC was also produced during laboratory oxidations of pine, maple, and brown-rotted oak woods, as well as algae, corn root, and tree bark. Back-of-the-envelope calculations suggest that biomass oxidation could be producing massive non-pyrogenic ConAC fluxes to terrestrial and aquatic environments. These estimates (e.g., 163-182 Tg-ConAC/year to soils) are much higher than the estimated pyrogenic "BC" fluxes (e.g., 128 Tg-ConAC/year to soils) implying that environmental ConAC is primarily non-pyrogenic. This novel perspective suggests that wildfire research trajectories should shift to assessing non-pyrogenic ConAC sources and fluxes, developing new methods for quantifying true BC, and establishing a new view of ConAC as an intermediate species in the biogeochemical processing of biomass during soil humification, aquatic photochemistry, microbial degradation, or mineral-organic matter interactions. We also advise against using BC or pyrogenic carbon (pyC) terminologies for ConAC measured in environmental matrices, unless a pyrogenic source can be confidently assigned.
Collapse
Affiliation(s)
- Aleksandar I. Goranov
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529 United States
| | - Hongmei Chen
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529 United States
| | - Jianshu Duan
- Department
of Geosciences, Princeton University, Princeton, New Jersey 08544 United States
| | - Satish C. B. Myneni
- Department
of Geosciences, Princeton University, Princeton, New Jersey 08544 United States
| | - Patrick G. Hatcher
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529 United States
| |
Collapse
|
4
|
Chen S, Davaritouchaee M. Nature-inspired pretreatment of lignocellulose - Perspective and development. BIORESOURCE TECHNOLOGY 2023; 369:128456. [PMID: 36503090 DOI: 10.1016/j.biortech.2022.128456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
As sustainability gains increasing importance in addition to cost-effectiveness as a criterion for evaluating engineering systems and practices, biological processes for lignocellulose pretreatment have attracted growing attention. Biological systems such as white and brown rot fungi and wood-consuming insects offer fascinating examples of processes and systems built by nature to effectively deconstruct plant cell walls under environmentally benign and energy-conservative environments. Research in the last decade has resulted in new knowledge that advanced the understanding of these systems, provided additional insights into these systems' functional mechanisms, and demonstrated various applications of these processes. The new knowledge and insights enable the adoption of a nature-inspired strategy aiming at developing technologies that are informed by the biological systems but superior to them by overcoming the inherent weakness of the natural systems. This review discusses the nature-inspired perspective and summarizes related advancements, including the evolution from biological systems to nature-inspired processes, the features of biological pretreatment mechanisms, the development of nature-inspired pretreatment processes, and future perspective. This work aims to highlight a different strategy in the research and development of novel lignocellulose pretreatment processes and offer some food for thought.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Maryam Davaritouchaee
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Ontiveros-Moreno Y, Colín-Urieta S, Corral-Rivas JJ, Hernández-Díaz JC, Prieto-Ruíz JÁ, Carrillo-Parra A. Natural durability of timber species exposed to xylophagous fungi in southern Durango, Mexico. PeerJ 2023; 11:e14541. [PMID: 36923506 PMCID: PMC10010173 DOI: 10.7717/peerj.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/18/2022] [Indexed: 03/12/2023] Open
Abstract
Introduction Wood is a natural resource used for construction and the manufacture of many products. This material is exposed to damage due to biotic and abiotic factors. An important biotic factor is wood-degrading fungi that generate large economic losses. The objectives of this study were to determine the effect of xylophagous fungi (Coniophora puteana and Trametes versicolor) on the natural durability of six timber species in southern Durango, Mexico, and to establish differences between fungal effects on each tree species. Materials and Methods Samples of Pinus durangensis, P. cooperi, P. strobiformis, Juniperus deppeana, Quercus sideroxyla, and Alnus acuminata were exposed to fungi for 4 months under laboratory conditions according to European Standard EN350-1. Samples of Fagus sylvatica were used as control. Durability was determined as the percentage of wood mass loss for each species. Welch ANOVA tests were performed to establish differences among tree species. Welch t-tests were used to prove loss mass differences between fungi for each tree species. Results The most resistant species to C. puteana were P. durangensis, J. deppeana, P. cooperi and P. strobiformis, showing mean mass losses lower than 8.08%. The most resistant species to T. versicolor were J. deppeana, P. strobiformis and P. durangensis (mean mass losses lower than 7.39%). Pinus strobiformis and Q. sideroxyla were more susceptible to C. puteana effect; in contrast, P. durangensis and P. cooperi showed more damage due to T. versicolor degradation. Conclusions Woods of P. durangensis, P. cooperi, P. strobiformis and Juniperus deppeana are well adapted to infection by these xylophagous fungi and are therefore highly recommended for commercial use in southern Durango, Mexico.
Collapse
Affiliation(s)
- Yolanda Ontiveros-Moreno
- Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales (PIDCAF), Universidad Juárez del Estado de Durango (UJED), Durango, Durango, México
| | - Serafín Colín-Urieta
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - José Javier Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales (FCFyA), Universidad Juárez del Estado de Durango, Durango, Durango, México
| | - José Ciro Hernández-Díaz
- Instituto de Silvicultura e Industria de la Madera (ISIMA), Universidad Juárez del Estado de Durango (UJED), Durango, Durango, Mexico
| | - José Ángel Prieto-Ruíz
- Facultad de Ciencias Forestales y Ambientales (FCFyA), Universidad Juárez del Estado de Durango, Durango, Durango, México
| | - Artemio Carrillo-Parra
- Instituto de Silvicultura e Industria de la Madera (ISIMA), Universidad Juárez del Estado de Durango (UJED), Durango, Durango, Mexico
| |
Collapse
|
6
|
Xiong BJ, Kleinsteuber S, Sträuber H, Dusny C, Harms H, Wick LY. Impact of Fungal Hyphae on Growth and Dispersal of Obligate Anaerobic Bacteria in Aerated Habitats. mBio 2022; 13:e0076922. [PMID: 35638736 PMCID: PMC9239063 DOI: 10.1128/mbio.00769-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/05/2022] [Indexed: 01/21/2023] Open
Abstract
Anoxic microsites arising in fungal biofilms may foster the presence of obligate anaerobes. Here, we analyzed whether and to which degree hyphae of Coprinopsis cinerea thriving in oxic habitats enable the germination, growth, and dispersal of the obligate anaerobic soil bacterium Clostridium acetobutylicum. Time-resolved optical oxygen mapping, microscopy, and metabolite analysis revealed the formation and persistence of anoxic circum hyphal niches, allowing for spore germination, growth, and fermentative activity of the obligate anaerobe in an otherwise inhabitable environment. Hypoxic liquid films containing 80% ± 10% of atmospheric oxygen saturation around single air-exposed hyphae thereby allowed for efficient clostridial dispersal amid spatially separated (>0.5 cm) anoxic sites. Hyphae hence may serve as good networks for the activity and spatial organization of obligate anaerobic bacteria in oxygenated heterogeneous environments such as soil. IMPORTANCE Although a few studies have reported on the presence of anoxic microniches in fungal biofilms, knowledge of the effects of fungal oxygen consumption on bacterial-fungal interactions is limited. Here, we demonstrate the existence and persistence of oxygen-free zones in air-exposed mycelia enabling spore germination, growth, fermentative activity, and dispersal of the obligate anaerobe. Our study points out a previously overlooked role of aerobic fungi in creating and bridging anoxic microniches in ambient oxic habitats. Air-exposed hyphae hence may act as a scaffold for activity and dispersal of strictly anaerobic microbes. Given the short-term tolerance of strict anaerobes to oxygen and reduced oxygen content in the mycosphere, hyphae can promote spatial organization of both obligate anaerobic and aerobic bacteria. Such finding may be important for a better understanding of previously observed co-occurrences of aerobes and anaerobes in well-aerated habitats such as upland soils.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Christian Dusny
- Department of Solar Materials, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| |
Collapse
|
7
|
Xiong BJ, Stanley CE, Dusny C, Schlosser D, Harms H, Wick LY. pH Distribution along Growing Fungal Hyphae at Microscale. J Fungi (Basel) 2022; 8:599. [PMID: 35736082 PMCID: PMC9224906 DOI: 10.3390/jof8060599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Creating unique microenvironments, hyphal surfaces and their surroundings allow for spatially distinct microbial interactions and functions at the microscale. Using a microfluidic system and pH-sensitive whole-cell bioreporters (Synechocystis sp. PCC6803) attached to hyphae, we spatially resolved the pH along surfaces of growing hyphae of the basidiomycete Coprinopsis cinerea. Time-lapse microscopy analysis of ratiometric fluorescence signals of >2400 individual bioreporters revealed an overall pH drop from 6.3 ± 0.4 (n = 2441) to 5.0 ± 0.3 (n = 2497) within 7 h after pH bioreporter loading to hyphal surfaces. The pH along hyphal surfaces varied significantly (p < 0.05), with pH at hyphal tips being on average ~0.8 pH units lower than at more mature hyphal parts near the entrance of the microfluidic observation chamber. Our data represent the first dynamic in vitro analysis of surface pH along growing hyphae at the micrometre scale. Such knowledge may improve our understanding of spatial, pH-dependent hyphal processes, such as the degradation of organic matter or mineral weathering.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Claire E. Stanley
- Department of Bioengineering, Imperial College of London, South Kensington Campus, London SW7 2AZ, UK;
| | - Christian Dusny
- Helmholtz Centre for Environmental Research-UFZ, Department of Solar Materials, Permoserstraβe 15, 04318 Leipzig, Germany;
| | - Dietmar Schlosser
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| |
Collapse
|
8
|
Capturing an Early Gene Induction Event during Wood Decay by the Brown Rot Fungus Rhodonia placenta. Appl Environ Microbiol 2022; 88:e0018822. [PMID: 35348388 PMCID: PMC9040566 DOI: 10.1128/aem.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brown rot fungi dominate wood decomposition in coniferous forests, and their carbohydrate-selective mechanisms are of commercial interest. Brown rot was recently described as a two-step, sequential mechanism orchestrated by fungi using differentially expressed genes (DEGs) and consisting of oxidation via reactive oxygen species (ROS) followed by enzymatic saccharification. There have been indications, however, that the initial oxidation step itself might require induction. To capture this early gene regulation event, here, we integrated fine-scale cryosectioning with whole-transcriptome sequencing to dissect gene expression at the single-hyphal-cell scale (tens of micrometers). This improved the spatial resolution 50-fold, relative to previous work, and we were able to capture the activity of the first 100 μm of hyphal front growth by Rhodonia placenta in aspen wood. This early decay period was dominated by delayed gene expression patterns as the fungus ramped up its mechanism. These delayed DEGs included many genes implicated in ROS pathways (lignocellulose oxidation [LOX]) that were previously and incorrectly assumed to be constitutively expressed. These delayed DEGs, which include those with and without predicted functions, also create a focused subset of target genes for functional genomics. However, this delayed pattern was not universal, with a few genes being upregulated immediately at the hyphal front. Most notably, this included a gene commonly implicated in hydroquinone and iron redox cycling: benzoquinone reductase. IMPORTANCE Earth's aboveground terrestrial biomass is primarily wood, and fungi dominate wood decomposition. Here, we studied these fungal pathways in a common "brown rot"-type fungus, Rhodonia placenta, that selectively extracts sugars from carbohydrates embedded within wood lignin. Using a space-for-time design to map fungal gene expression at the extreme hyphal front in wood, we made two discoveries. First, we found that many genes long assumed to be "on" (constitutively expressed) from the very beginning of decay were instead "off" before being upregulated, when mapped (via transcriptome sequencing [RNA-seq]) at a high resolution. Second, we found that the gene encoding benzoquinone reductase was "on" in incipient decay and quickly downregulated, implying a key role in "kick-starting" brown rot.
Collapse
|
9
|
Xiong BJ, Dusny C, Wang L, Appel J, Lindstaedt K, Schlosser D, Harms H, Wick LY. Illuminate the hidden: in vivo mapping of microscale pH in the mycosphere using a novel whole-cell biosensor. ISME COMMUNICATIONS 2021; 1:75. [PMID: 36765263 PMCID: PMC9723660 DOI: 10.1038/s43705-021-00075-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
The pH of an environment is both a driver and the result of diversity and functioning of microbial habitats such as the area affected by fungal hyphae (mycosphere). Here we used a novel pH-sensitive bioreporter, Synechocystis sp. PCC6803_peripHlu, and ratiometric fluorescence microscopy, to spatially and temporally resolve the mycosphere pH at the micrometre scale. Hyphae of the basidiomycete Coprionopsis cinerea were allowed to overgrow immobilised and homogeneously embedded pH bioreporters in an agarose microcosm. Signals of >700 individual cells in an area of 0.4 × 0.8 mm were observed over time and used to create highly resolved (3 × 3 µm) pH maps using geostatistical approaches. C. cinerea changed the pH of the agarose from 6.9 to ca. 5.0 after 48 h with hyphal tips modifying pH in their vicinity up to 1.8 mm. pH mapping revealed distinct microscale spatial variability and temporally stable gradients between pH 4.4 and 5.8 over distances of ≈20 µm. This is the first in vivo mapping of a mycosphere pH landscape at the microscale. It underpins the previously hypothesised establishment of pH gradients serving to create spatially distinct mycosphere reaction zones.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Christian Dusny
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lin Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jens Appel
- Department of Biology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 5, 24118, Kiel, Germany
| | - Kristin Lindstaedt
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
10
|
Manavalan T, Stepnov AA, Hegnar OA, Eijsink VGH. Sugar oxidoreductases and LPMOs - two sides of the same polysaccharide degradation story? Carbohydr Res 2021; 505:108350. [PMID: 34049079 DOI: 10.1016/j.carres.2021.108350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides such as chitin and cellulose and their discovery has revolutionized our understanding of enzymatic biomass conversion. The discovery of LPMOs raises interesting new questions regarding the roles of other oxidoreductases and abiotic redox processes in biomass conversion. LPMOs need reducing power and an oxygen co-substrate and biomass degrading ecosystems contain a multitude of redox enzymes that affect the availability of both. For example, biomass degrading fungi produce multiple sugar oxidoreductases whose biological functions so far have remained somewhat enigmatic. It is now conceivable that these redox enzymes, in particular H2O2-producing sugar oxidases, could play a role in fueling and controlling LPMO reactions. Here, we shortly review contemporary issues in the LPMO field, paying particular attention to the possible roles of sugar oxidoreductases.
Collapse
Affiliation(s)
- Tamilvendan Manavalan
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway.
| |
Collapse
|
11
|
Miyauchi S, Hage H, Drula E, Lesage-Meessen L, Berrin JG, Navarro D, Favel A, Chaduli D, Grisel S, Haon M, Piumi F, Levasseur A, Lomascolo A, Ahrendt S, Barry K, LaButti KM, Chevret D, Daum C, Mariette J, Klopp C, Cullen D, de Vries RP, Gathman AC, Hainaut M, Henrissat B, Hildén KS, Kües U, Lilly W, Lipzen A, Mäkelä MR, Martinez AT, Morel-Rouhier M, Morin E, Pangilinan J, Ram AFJ, Wösten HAB, Ruiz-Dueñas FJ, Riley R, Record E, Grigoriev IV, Rosso MN. Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus. DNA Res 2021; 27:5856740. [PMID: 32531032 PMCID: PMC7406137 DOI: 10.1093/dnares/dsaa011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.
Collapse
Affiliation(s)
- Shingo Miyauchi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Hayat Hage
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Elodie Drula
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Laurence Lesage-Meessen
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Jean-Guy Berrin
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - David Navarro
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Anne Favel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Delphine Chaduli
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Sacha Grisel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Mireille Haon
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - François Piumi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | | | - Anne Lomascolo
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Steven Ahrendt
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kurt M LaButti
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Didier Chevret
- INRAE, UMR1319, Micalis, Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Chris Daum
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Jérôme Mariette
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | - Christophe Klopp
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Allen C Gathman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Matthieu Hainaut
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | | | - Ursula Kües
- Department of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, Göttingen, Germany.,Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Walt Lilly
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Anna Lipzen
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | | | - Mélanie Morel-Rouhier
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Emmanuelle Morin
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Jasmyn Pangilinan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Han A B Wösten
- Microbiology, Utrecht University, Utrecht, The Netherlands
| | | | - Robert Riley
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Eric Record
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Marie-Noëlle Rosso
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| |
Collapse
|
12
|
The Effect of Acetylation on Iron Uptake and Diffusion in Water Saturated Wood Cell Walls and Implications for Decay. FORESTS 2020. [DOI: 10.3390/f11101121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Acetylation is widely used as a wood modification process that protects wood from fungal decay. The mechanisms by which acetylation protects wood are not fully understood. With these experiments, we expand upon the literature and test whether previously observed differences in iron uptake by wood were a result of decreased iron binding capacity or slower diffusion. We measured the concentration of iron in 2 mm thick wood sections at 0, 10, and 20% acetylation as a function of time after exposure to iron solutions. The iron was introduced either strongly chelated with oxalate or weakly chelated with acetate. The concentrations of iron and oxalate in solution were chosen to be similar to those found during brown rot decay, while the concentration of iron and acetate matched previous work. The iron content of oxalate-exposed wood increased only slightly and was complete within an hour, suggesting little absorption and fast diffusion, or only slight surface adsorption. The increase in iron concentration from acetate solutions with time was consistent with Fickian diffusion, with a diffusion coefficient on the order of 10−16 m2 s−1. The rather slow diffusion rate was likely due to significant binding of iron within the wood cell wall. The diffusion coefficient did not depend on the acetylation level; however, the capacity for iron absorption from acetate solution was greatly reduced in the acetylated wood, likely due to the loss of OH groups. We explored several hypotheses that might explain why the diffusion rate appears to be independent of the acetylation level and found none of them convincing. Implications for brown rot decay mechanisms and future research are discussed.
Collapse
|
13
|
Influence of Mesoporous Inorganic Al–B–P Amphiprotic Surfactant Material Resistances of Wood against Brown and White-Rot Fungi (Part 1). COATINGS 2020. [DOI: 10.3390/coatings10020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study describes the application of aluminum sulfate Al2(SO4)3, boric acid H3BO3, phosphoric acid H3PO4 (Al–B–P) and amphiprotic surfactant material synthesis by the sol-gel process, which were adopted as novel precursors for wood modification. The efficacy of Al–B–P-treated wood was tested against Poria placenta and Coriolus versicolor. Untreated wood samples had higher mass losses (>40%) compared to the treated sample, which had the lowest wood mass losses (of 4%) against P. placenta and C. versicolor. To analyze the reaction mechanism of Al–B–P wood, the mechanical properties, chemical structure, crystallinity, thermal analysis, binding energy and wettability was examined by modulus of rupture (MOR), modulus of elasticity (MOE), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Thermogravimetric analysis (TG) and X-ray photoelectron spectroscopy (XPS), respectively. Scanning electron microscopy- energy-dispersive X-ray spectroscopy (SEM-EDS) confirmed the wood colonization by fungi, and was used to identify the microstructures and morphologies changes that occurred in the cells during degradation by white and brown-rot fungi. At the same time, X-ray photoelectron spectroscopy (XPS) was employed to analyze the physical and chemical properties of the samples. Therefore, the study confirmed that Al–B–P and amphiprotic surfactant could replace the traditional wood preservative products, and have the potential to extend the service life of wood, particularly in soil contact and outdoor usage.
Collapse
|
14
|
Jambon I, Thijs S, Torres-Farradá G, Rineau F, Weyens N, Carleer R, Samyn P, Vangronsveld J. Fenton-Mediated Biodegradation of Chlorendic Acid - A Highly Chlorinated Organic Pollutant - By Fungi Isolated From a Polluted Site. Front Microbiol 2019; 10:1892. [PMID: 31474967 PMCID: PMC6702520 DOI: 10.3389/fmicb.2019.01892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Chlorendic acid is a recalcitrant, highly chlorinated organic pollutant for which no microbial degrader has yet been identified. To address this knowledge gap, fungi were isolated from bulk soil, rhizosphere, and roots of the common bent (Agrostis capillaris) and the hybrid poplar [Populus deltoides × (Populus trichocarpa × P. deltoides) cv. Grimminge], both of which grow on a chlorendic acid polluted site in Belgium. Isolates were taxonomically identified and phenotypically screened for chlorendic acid degradation. Several fungal isolates could degrade chlorendic acid in liquid media up to 45%. The chlorendic acid degrading fungal isolates produced higher levels of hydroxyl radicals when exposed to the pollutant when compared to non-exposed controls, suggesting that the oxidative degradation of chlorendic acid occurs through production of Fenton-mediated hydroxyl radicals. In addition, the isolated Ascomycete Penicillium sp. 1D-2a degraded 58% of the original chlorendic acid concentration in the soil after 28 days. This study demonstrates that the presence of fungi in a chlorendic acid polluted soil can degrade this highly chlorinated organic pollutant. These results indicate that recalcitrant, seemingly non-biologically degradable organic pollutants, such as chlorendic acid, can be remediated by using bioremediation, which opens new perspectives for in situ bioremediation.
Collapse
Affiliation(s)
- Inge Jambon
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Giselle Torres-Farradá
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, La Habana, Cuba
| | - François Rineau
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Carleer
- Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| | - Pieter Samyn
- Institute for Materials Research, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
15
|
Laurent CFP, Breslmayr E, Tunega D, Ludwig R, Oostenbrink C. Interaction between Cellobiose Dehydrogenase and Lytic Polysaccharide Monooxygenase. Biochemistry 2019; 58:1226-1235. [PMID: 30715860 PMCID: PMC6404106 DOI: 10.1021/acs.biochem.8b01178] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/24/2019] [Indexed: 01/10/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are ubiquitous oxidoreductases, facilitating the degradation of polymeric carbohydrates in biomass. Cellobiose dehydrogenase (CDH) is a biologically relevant electron donor in this process, with the electrons resulting from cellobiose oxidation being shuttled from the CDH dehydrogenase domain to its cytochrome domain and then to the LPMO catalytic site. In this work, we investigate the interaction of four Neurospora crassa LPMOs and five CDH cytochrome domains from different species using computational methods. We used HADDOCK to perform protein-protein docking experiments on all 20 combinations and subsequently to select four complexes for extensive molecular dynamics simulations. The potential of mean force is computed for a rotation of the cytochrome domain relative to LPMO. We find that the LPMO loops are largely responsible for the preferred orientations of the cytochrome domains. This leads us to postulate a hybrid version of NcLPMO9F, with exchanged loops and predicted altered cytochrome binding preferences for this variant. Our work provides insight into the possible mechanisms of electron transfer between the two protein systems, in agreement with and complementary to previously published experimental data.
Collapse
Affiliation(s)
- Christophe
V. F. P. Laurent
- Institute
of Molecular Modeling and Simulation, BOKU-University
of Natural Resources and Life Sciences, 1190 Vienna, Austria
- Vienna
Institute of BioTechnology, BOKU-University
of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Erik Breslmayr
- Institute
of Molecular Modeling and Simulation, BOKU-University
of Natural Resources and Life Sciences, 1190 Vienna, Austria
- Vienna
Institute of BioTechnology, BOKU-University
of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Daniel Tunega
- Institute
of Soil Research, BOKU-University of Natural
Resources and Life Sciences, 1190 Vienna, Austria
| | - Roland Ludwig
- Vienna
Institute of BioTechnology, BOKU-University
of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute
of Molecular Modeling and Simulation, BOKU-University
of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
16
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
17
|
Castaño JD, Zhang J, Anderson CE, Schilling JS. Oxidative Damage Control during Decay of Wood by Brown Rot Fungus Using Oxygen Radicals. Appl Environ Microbiol 2018; 84:e01937-18. [PMID: 30194102 PMCID: PMC6210117 DOI: 10.1128/aem.01937-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Brown rot wood-degrading fungi deploy reactive oxygen species (ROS) to loosen plant cell walls and enable selective polysaccharide extraction. These ROS, including Fenton-generated hydroxyl radicals (HO˙), react with little specificity and risk damaging hyphae and secreted enzymes. Recently, it was shown that brown rot fungi reduce this risk, in part, by differentially expressing genes involved in HO˙ generation ahead of those coding carbohydrate-active enzymes (CAZYs). However, there are notable exceptions to this pattern, and we hypothesized that brown rot fungi would require additional extracellular mechanisms to limit ROS damage. To assess this, we grew Postia placenta directionally on wood wafers to spatially segregate early from later decay stages. Extracellular HO˙ production (avoidance) and quenching (suppression) capacities among the stages were analyzed, along with the ability of secreted CAZYs to maintain activity postoxidation (tolerance). First, we found that H2O2 and Fe2+ concentrations in the extracellular environment were conducive to HO˙ production in early (H2O2:Fe2+ ratio 2:1) but not later (ratio 1:131) stages of decay. Second, we found that ABTS radical cation quenching (antioxidant capacity) was higher in later decay stages, coincident with higher fungal phenolic concentrations. Third, by surveying enzyme activities before/after exposure to Fenton-generated HO˙, we found that CAZYs secreted early, amid HO˙, were more tolerant of oxidative stress than those expressed later and were more tolerant than homologs in the model CAZY producer Trichoderma reesei Collectively, this indicates that P. placenta uses avoidance, suppression, and tolerance mechanisms, extracellularly, to complement intracellular differential expression, enabling this brown rot fungus to use ROS to degrade wood.IMPORTANCE Wood is one of the largest pools of carbon on Earth, and its decomposition is dominated in most systems by fungi. Wood-degrading fungi specialize in extracting sugars bound within lignin, either by removing lignin first (white rot) or by using Fenton-generated reactive oxygen species (ROS) to "loosen" wood cell walls, enabling selective sugar extraction (brown rot). Although white rot lignin-degrading pathways are well characterized, there are many uncertainties in brown rot fungal mechanisms. Our study addressed a key uncertainty in how brown rot fungi deploy ROS without damaging themselves or the enzymes they secrete. In addition to revealing differentially expressed genes to promote ROS generation only in early decay, our study revealed three spatial control mechanisms to avoid/tolerate ROS: (i) constraining Fenton reactant concentrations (H2O2, Fe2+), (ii) quenching ROS via antioxidants, and (iii) secreting ROS-tolerant enzymes. These results not only offer insight into natural decomposition pathways but also generate targets for biotechnological development.
Collapse
Affiliation(s)
- Jesus D Castaño
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jiwei Zhang
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Claire E Anderson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jonathan S Schilling
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
18
|
Rashid GMM, Zhang X, Wilkinson RC, Fülöp V, Cottyn B, Baumberger S, Bugg TDH. Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical. ACS Chem Biol 2018; 13:2920-2929. [PMID: 30247873 DOI: 10.1021/acschembio.8b00557] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl-Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20-40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.
Collapse
Affiliation(s)
| | | | | | | | - Betty Cottyn
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS,
Université Paris-Saclay, 78000 Versailles, France
| | - Stéphanie Baumberger
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS,
Université Paris-Saclay, 78000 Versailles, France
| | | |
Collapse
|
19
|
Shah F, Mali T, Lundell TK. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe 3+-Reducing Metabolite Secretion. Appl Environ Microbiol 2018; 84:e02662-17. [PMID: 29439983 PMCID: PMC5881074 DOI: 10.1128/aem.02662-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/01/2018] [Indexed: 02/05/2023] Open
Abstract
Basidiomycota fungi in the order Polyporales are specified to decomposition of dead wood and woody debris and thereby are crucial players in the degradation of organic matter and cycling of carbon in the forest ecosystems. Polyporales wood-decaying species comprise both white rot and brown rot fungi, based on their mode of wood decay. While the white rot fungi are able to attack and decompose all the lignocellulose biopolymers, the brown rot species mainly cause the destruction of wood polysaccharides, with minor modification of the lignin units. The biochemical mechanism of brown rot decay of wood is still unclear and has been proposed to include a combination of nonenzymatic oxidation reactions and carbohydrate-active enzymes. Therefore, a linking approach is needed to dissect the fungal brown rot processes. We studied the brown rot Polyporales species Fomitopsis pinicola by following mycelial growth and enzyme activity patterns and generating metabolites together with Fenton-promoting Fe3+-reducing activity for 3 months in submerged cultures supplemented with spruce wood. Enzyme activities to degrade hemicellulose, cellulose, proteins, and chitin were produced by three Finnish isolates of F. pinicola Substantial secretion of oxalic acid and a decrease in pH were notable. Aromatic compounds and metabolites were observed to accumulate in the fungal cultures, with some metabolites having Fe3+-reducing activity. Thus, F. pinicola demonstrates a pattern of strong mycelial growth leading to the active production of carbohydrate- and protein-active enzymes, together with the promotion of Fenton biochemistry. Our findings point to fungal species-level "fine-tuning" and variations in the biochemical reactions leading to the brown rot type of wood decay.IMPORTANCEFomitopsis pinicola is a common fungal species in boreal and temperate forests in the Northern Hemisphere encountered as a wood-colonizing saprotroph and tree pathogen, causing a severe brown rot type of wood degradation. However, its lignocellulose-decomposing mechanisms have remained undiscovered. Our approach was to explore both the enzymatic activities and nonenzymatic Fenton reaction-promoting activities (Fe3+ reduction and metabolite production) by cultivating three isolates of F. pinicola in wood-supplemented cultures. Our findings on the simultaneous production of versatile enzyme activities, including those of endoglucanase, xylanase, β-glucosidase, chitinase, and acid peptidase, together with generation of low pH, accumulation of oxalic acid, and Fe3+-reducing metabolites, increase the variations of fungal brown rot decay mechanisms. Furthermore, these findings will aid us in revealing the wood decay proteomic, transcriptomic, and metabolic activities of this ecologically important forest fungal species.
Collapse
Affiliation(s)
- Firoz Shah
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Tuulia Mali
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Taina K Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Merino N, Wang M, Ambrocio R, Mak K, O'Connor E, Gao A, Hawley EL, Deeb RA, Tseng LY, Mahendra S. Fungal biotransformation of 6:2 fluorotelomer alcohol. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/rem.21550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nancy Merino
- Research fellow, Department of Civil and Environmental Engineering, University of California Los Angeles
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of California Los Angeles
| | - Rocio Ambrocio
- Department of Civil and Environmental Engineering, University of California Los Angeles
| | - Kimberly Mak
- Department of Civil and Environmental Engineering, University of California Los Angeles
| | - Ellen O'Connor
- Graduate Student in Molecular Toxicology, University of California Los Angeles
| | - An Gao
- Department of Civil and Environmental Engineering, University of California Los Angeles
| | | | | | - Linda Y. Tseng
- Assistant Professor, Environmental Studies Program & Department of Physics and Astronomy, Colgate University New York
| | - Shaily Mahendra
- Associate Professor and Samueli Fellow, University of California Los Angeles
| |
Collapse
|
21
|
Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D. Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol 2018; 102:2477-2492. [PMID: 29411063 PMCID: PMC5847212 DOI: 10.1007/s00253-018-8784-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 11/29/2022]
Abstract
The CAZy auxiliary activity family 3 (AA3) comprises enzymes from the glucose-methanol-choline (GMC) family of oxidoreductases, which assist the activity of other AA family enzymes via their reaction products or support the action of glycoside hydrolases in lignocellulose degradation. The AA3 family is further divided into four subfamilies, which include cellobiose dehydrogenase, glucose oxidoreductases, aryl-alcohol oxidase, alcohol (methanol) oxidase, and pyranose oxidoreductases. These different enzymes catalyze a wide variety of redox reactions with respect to substrates and co-substrates. The common feature of AA3 family members is the formation of key metabolites such as H2O2 or hydroquinones, which are required by other AA enzymes. The multiplicity of enzymatic functions in the AA3 family is reflected by the multigenicity of AA3 genes in fungi, which also depends on their lifestyle. We provide an overview of the phylogenetic, molecular, and catalytic properties of AA3 enzymes and discuss their interactions with other carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Christophe V F P Laurent
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Annabelle T Abrera
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- University of the Philippines Los Baños, College Laguna, Los Baños, Philippines
| | - Georg Schütz
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria.
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria.
| |
Collapse
|
22
|
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 2017; 41:941-962. [PMID: 29088355 PMCID: PMC5812493 DOI: 10.1093/femsre/fux049] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Urszula Swiderska-Burek
- Department of Botany and Mycology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkolazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Andrzej Paszczynski
- School of Food Science, Food Research Center, Room 103, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
23
|
Grąz M, Jarosz-Wilkołazka A, Janusz G, Mazur A, Wielbo J, Koper P, Żebracki K, Kubik-Komar A. Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis – response to oxalic acid. Microbiol Res 2017; 199:79-88. [DOI: 10.1016/j.micres.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/30/2017] [Accepted: 03/10/2017] [Indexed: 01/23/2023]
|
24
|
Presley GN, Schilling JS. Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi. Appl Environ Microbiol 2017; 83:e02987-16. [PMID: 28130302 PMCID: PMC5359483 DOI: 10.1128/aem.02987-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
Brown rot fungi are wood-degrading fungi that employ both oxidative and hydrolytic mechanisms to degrade wood. Hydroxyl radicals that facilitate the oxidative component are powerful nonselective oxidants and are incompatible with hydrolytic enzymes unless they are spatially segregated in wood. Differential gene expression has been implicated in the segregation of these reactions in Postia placenta, but it is unclear if this two-step mechanism varies in other brown rot fungi with different traits and life history strategies that occupy different niches in nature. We employed proteomics to analyze a progression of wood decay on thin wafers, using brown rot fungi with significant taxonomic and niche distances: Serpula lacrymans (Boletales; "dry rot" lumber decay) and Gloeophyllum trabeum (order Gloeophyllales; slash, downed wood). Both fungi produced greater oxidoreductase diversity upon wood colonization and greater glycoside hydrolase activity later, consistent with a two-step mechanism. The two fungi invested very differently, however, in terms of growth (infrastructure) versus protein secretion (resource capture), with the ergosterol/extracted protein ratio being 7-fold higher with S. lacrymans than with G. trabeum In line with the native substrate associations of these fungi, hemicellulase-specific activities were dominated by mannanase in S. lacrymans and by xylanase in G. trabeum Consistent with previous observations, S. lacrymans did not produce glycoside hydrolase 6 (GH6) cellobiohydrolases (CBHs) in this study, despite taxonomically belonging to the order Boletales, which is distinguished among brown rot fungi by having CBH genes. This work suggests that distantly related brown rot fungi employ staggered mechanisms to degrade wood, but the underlying strategies vary among taxa.IMPORTANCE Wood-degrading fungi are important in forest nutrient cycling and offer promise in biotechnological applications. Brown rot fungi are unique among these fungi in that they use a nonenzymatic oxidative pretreatment before enzymatic carbohydrate hydrolysis, enabling selective removal of carbohydrates from lignin. This capacity has independently evolved multiple times, but it is unclear if different mechanisms underpin similar outcomes. Here, we grew fungi directionally on wood wafers and we found similar two-step mechanisms in taxonomically divergent brown rot fungi. The results, however, revealed strikingly different growth strategies, with S. lacrymans investing more in biomass production than secretion of proteins and G. trabeum showing the opposite pattern, with a high diversity of uncharacterized proteins. The "simplified" S. lacrymans secretomic system could help narrow gene targets central to oxidative brown rot pretreatments, and a comparison of its distinctions with G. trabeum and other brown rot fungi (e.g., Postia placenta) might offer similar traction in noncatabolic genes.
Collapse
Affiliation(s)
- Gerald N Presley
- University of Minnesota Department of Bioproducts and Biosystems Engineering, St. Paul, Minnesota, USA
| | - Jonathan S Schilling
- University of Minnesota Department of Bioproducts and Biosystems Engineering, St. Paul, Minnesota, USA
| |
Collapse
|
25
|
Treu R, Falandysz J. Mycoremediation of hydrocarbons with basidiomycetes-a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:148-155. [PMID: 28121269 DOI: 10.1080/03601234.2017.1261536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The literature on hydrocarbon remediation with basidiomycetes was reviewed. Two ecological groups are considered for bioremediation, the saprotrophic basidiomycetes (white-rot and brown-rot fungi) and the ectomycorrhizal basidiomycetes. A remarkable capacity of basidiomycetes for in vitro degradation of simple and recalcitrant hydrocarbons, such as PAH, persistent organic pollutants (POPs), halogenated HC, aromatic HC and phenols, explosives and dyes was reported for many species. However, there is a need for more studies on the practical feasibility of field applications with basidiomycetes.
Collapse
Affiliation(s)
- Roland Treu
- a Faculty of Science and Technology , Athabasca University , Athabasca , Canada
| | - Jerzy Falandysz
- b Laboratory of Environmental Chemistry and Ecotoxicology , Gdańsk University , Gdańsk , Poland
| |
Collapse
|
26
|
Salgado P, Contreras D, Mansilla HD, Márquez K, Vidal G, Cobos CJ, Mártire DO. Experimental and computational investigation of the substituent effects on the reduction of Fe3+by 1,2-dihydroxybenzenes. NEW J CHEM 2017. [DOI: 10.1039/c7nj01322a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports on the kinetics of the early steps of the reactions between substituted 1,2-dihydroxybenzenes (1,2-DHB) and Fe3+.
Collapse
Affiliation(s)
- Pablo Salgado
- Grupo de Ingeniería y Biotecnología Ambiental
- Facultad de Ciencias Ambientales y Centro EULA-Chile
- Universidad de Concepción
- Casilla 160-C
- Chile
| | - David Contreras
- Facultad de Ciencias Químicas
- Universidad de Concepción
- Casilla 160-C
- Chile
- Centro de Biotecnología
| | - Héctor D. Mansilla
- Facultad de Ciencias Químicas
- Universidad de Concepción
- Casilla 160-C
- Chile
| | | | - Gladys Vidal
- Grupo de Ingeniería y Biotecnología Ambiental
- Facultad de Ciencias Ambientales y Centro EULA-Chile
- Universidad de Concepción
- Casilla 160-C
- Chile
| | - Carlos J. Cobos
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Químicas
- Universidad Nacional de la Plata
- CONICET
- 1900 La Plata
| | - Daniel O. Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Químicas
- Universidad Nacional de la Plata
- CONICET
- 1900 La Plata
| |
Collapse
|
27
|
Zhu Y, Mahaney J, Jellison J, Cao J, Gressler J, Hoffmeister D, Goodell B. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species. J Ind Microbiol Biotechnol 2016; 44:329-338. [PMID: 28032229 DOI: 10.1007/s10295-016-1889-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
This study aims to clarify the role of variegatic acid (VA) in fungal attack by Serpula lacrymans, and also the generation and scavenging of reactive oxygen species (ROS) by the fungus. VA promotes a mediated Fenton reaction to generated ROS after oxalate solubilizes oxidized forms of iron. The fungal extracellular matrix (ECM) β-glucan scavenged ROS, and we propose this as a mechanism to protect the fungal hyphae while ROS generation is promoted to deconstruct the lignocellulose cell wall. A relatively high pH (4.4) also favored Fe(III) transfer from oxalate to VA as opposed to a lower pH (2.2) conditions, suggesting a pH-dependent Fe(III) transfer to VA employed by S. lacrymans. This permits ROS generation within the higher pH of the cell wall, while limiting ROS production near the fungal hyphae, while β-glucan from the fungal ECM scavenges ROS in the more acidic environments surrounding the fungal hyphae.
Collapse
Affiliation(s)
- Yuan Zhu
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China.,Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA, USA
| | - James Mahaney
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Jody Jellison
- Center for Agriculture, Food and the Environment, 319 Stockbridge Hall, University of Massachusetts, Amherst, MA, USA
| | - Jinzhen Cao
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China.
| | - Julia Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Barry Goodell
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
28
|
Loose JSM, Forsberg Z, Kracher D, Scheiblbrandner S, Ludwig R, Eijsink VGH, Vaaje‐Kolstad G. Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Sci 2016; 25:2175-2186. [PMID: 27643617 PMCID: PMC5119556 DOI: 10.1002/pro.3043] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) represent a recent addition to the carbohydrate-active enzymes and are classified as auxiliary activity (AA) families 9, 10, 11, and 13. LPMOs are crucial for effective degradation of recalcitrant polysaccharides like cellulose or chitin. These enzymes are copper-dependent and utilize a redox mechanism to cleave glycosidic bonds that is dependent on molecular oxygen and an external electron donor. The electrons can be provided by various sources, such as chemical compounds (e.g., ascorbate) or by enzymes (e.g., cellobiose dehydrogenases, CDHs, from fungi). Here, we demonstrate that a fungal CDH from Myriococcum thermophilum (MtCDH), can act as an electron donor for bacterial family AA10 LPMOs. We show that employing an enzyme as electron donor is advantageous since this enables a kinetically controlled supply of electrons to the LPMO. The rate of chitin oxidation by CBP21 was equal to that of cosubstrate (lactose) oxidation by MtCDH, verifying the usage of two electrons in the LPMO catalytic mechanism. Furthermore, since lactose oxidation correlates directly with the rate of LPMO catalysis, a method for indirect determination of LPMO activity is implicated. Finally, the one electron reduction of the CBP21 active site copper by MtCDH was determined to be substantially faster than chitin oxidation by the LPMO. Overall, MtCDH seems to be a universal electron donor for both bacterial and fungal LPMOs, indicating that their electron transfer mechanisms are similar.
Collapse
Affiliation(s)
- Jennifer S. M. Loose
- Department of ChemistryBiotechnology and Food Science, Norwegian University of Life SciencesNO‐1430 ÅsNorway
| | - Zarah Forsberg
- Department of ChemistryBiotechnology and Food Science, Norwegian University of Life SciencesNO‐1430 ÅsNorway
| | - Daniel Kracher
- Department of Food Science and Technology, Food Biotechnology LaboratoryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Stefan Scheiblbrandner
- Department of Food Science and Technology, Food Biotechnology LaboratoryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Roland Ludwig
- Department of Food Science and Technology, Food Biotechnology LaboratoryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Vincent G. H. Eijsink
- Department of ChemistryBiotechnology and Food Science, Norwegian University of Life SciencesNO‐1430 ÅsNorway
| | - Gustav Vaaje‐Kolstad
- Department of ChemistryBiotechnology and Food Science, Norwegian University of Life SciencesNO‐1430 ÅsNorway
| |
Collapse
|
29
|
Hannula SE, van Veen JA. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils. Front Microbiol 2016; 7:1897. [PMID: 27965632 PMCID: PMC5126076 DOI: 10.3389/fmicb.2016.01897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022] Open
Abstract
Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose.
Collapse
Affiliation(s)
- S. Emilia Hannula
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
| | - Johannes A. van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
- Insititute of Biology, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
30
|
Johansen KS. Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation. TRENDS IN PLANT SCIENCE 2016; 21:926-936. [PMID: 27527668 DOI: 10.1016/j.tplants.2016.07.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 05/05/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-enzymes that catalyze oxidative cleavage of glycosidic bonds. These enzymes are secreted by many microorganisms to initiate infection and degradation processes. In particular, the concept of fungal degradation of lignocellulose has been revised in the light of this recent finding. LPMOs require a source of electrons for activity, and both enzymatic and plant-derived sources have been identified. Importantly, light-induced electron delivery from light-harvesting pigments can efficiently drive LPMO activity. The possible implications of LPMOs in plant-symbiont and -pathogen interactions are discussed in the context of the very powerful oxidative capacity of these enzymes.
Collapse
Affiliation(s)
- Katja Salomon Johansen
- Division of Industrial Biotechnology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Department of Geoscience and Natural Resources Management, Copenhagen University, DK-1958 Frederiksberg, Denmark.
| |
Collapse
|
31
|
Abstract
The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine.
Collapse
|
32
|
Zhang J, Presley GN, Hammel KE, Ryu JS, Menke JR, Figueroa M, Hu D, Orr G, Schilling JS. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci U S A 2016; 113:10968-73. [PMID: 27621450 PMCID: PMC5047196 DOI: 10.1073/pnas.1608454113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Gerald N Presley
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Kenneth E Hammel
- Institute for Microbial and Biochemical Technology, US Forest Products Laboratory, Madison, WI 53726; Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Jae-San Ryu
- Eco-Friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360, Republic of Korea
| | - Jon R Menke
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108
| | - Melania Figueroa
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108
| | - Dehong Hu
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Galya Orr
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jonathan S Schilling
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108;
| |
Collapse
|
33
|
Presley GN, Zhang J, Schilling JS. A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi. Fungal Genet Biol 2016; 112:64-70. [PMID: 27543342 DOI: 10.1016/j.fgb.2016.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/02/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Wood-degrading fungi that selectively remove carbohydrates (brown rot) combine Fenton-based oxidation and enzymatic hydrolysis to degrade wood. These two steps are incompatible in close proximity. To explain this, brown rot fungi may stagger oxidative reactions ahead of hydrolysis, but the scale and environmental controls for such a mechanism have not been resolved in solid wood. Here, we focused on one reaction control parameter, oxalate. In coordination with Fe3+-reducing compounds (e.g., 2,5-dimethoxyhydroquinone), oxalate can either promote Fenton chemistry by mobilizing Fe3+ as mono-oxalates (facilitative) or inhibit Fenton chemistry (protective) by restricting reducibility and the formation of Fenton's reagent as Fe3+/Fe2-(oxalate)2,3. Here, we sectioned wood wafers colonized directionally by Postia placenta and Gloeophyllum trabeum to map end-to-end the expression of oxalate synthesis genes and to overlay enzyme activities, metabolites, and wood modifications. Near advancing hyphal fronts, oxaloacetase expression was up upregulated for both fungi, while regulation patterns of paralogous of isocitrate lyases and glyoxylate dehydrogenases varied, suggesting different physiological roles. Oxalate decarboxylase (ODC) expression in G. trabeum was induced in more decayed wood behind the hyphal front, but was constitutively expressed in all P. placenta sections. Relative ODC activities increased and oxalate levels stabilized in more decayed wood behind the hyphal front. Endoglucanase (EG) activity, on the other hand, peaked for both fungi in later decay stages. These oxalate optimization patterns are in line with previous whole-block 'spiking' experiments tracking oxalate, but we provide here information on its genetic controls across a spatial gradient. As a complement, we also demonstrate in vitro the plausibility of a protective role for oxalate, to emphasize that these fungi might be optimizing oxalate at a given level to maximize Fenton reactions but to minimize oxidative damage.
Collapse
Affiliation(s)
- Gerald N Presley
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, St. Paul, MN 55108, United States.
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, St. Paul, MN 55108, United States.
| | - Jonathan S Schilling
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, St. Paul, MN 55108, United States.
| |
Collapse
|
34
|
Zhang MF, Qin YH, Ma JY, Yang L, Wu ZK, Wang TL, Wang WG, Wang CW. Depolymerization of microcrystalline cellulose by the combination of ultrasound and Fenton reagent. ULTRASONICS SONOCHEMISTRY 2016; 31:404-8. [PMID: 26964965 DOI: 10.1016/j.ultsonch.2016.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 05/20/2023]
Abstract
In this study, the combined use of Fenton reagent and ultrasound to the pretreatment of microcrystalline cellulose (MCC) for subsequent enzyme hydrolysis was investigated. The morphological analysis showed that the aspect ratio of MCC was greatly reduced after pretreatment. The X-ray diffraction (XRD) and degree of polymerization (DP) analyses showed that Fenton reagent was more efficient in decreasing the crystallinity of MCC while ultrasound was more efficient in decreasing the DP of MCC. The combination of Fenton reaction and ultrasound, which produced the lowest crystallinity (84.8 ± 0.2%) and DP (124.7 ± 0.6) of MCC and the highest yield of reducing sugar (22.9 ± 0.3 g/100 g), provides a promising pretreatment process for MCC depolymerization.
Collapse
Affiliation(s)
- Mei-Fang Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yuan-Hang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Jia-Yu Ma
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Li Yang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zai-Kun Wu
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Tie-Lin Wang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Wei-Guo Wang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Cun-Wen Wang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
35
|
Bacterial Enzymes for Lignin Oxidation and Conversion to Renewable Chemicals. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Arimoto M, Yamagishi K, Wang J, Tanaka K, Miyoshi T, Kamei I, Kondo R, Mori T, Kawagishi H, Hirai H. Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene. AMB Express 2015; 5:81. [PMID: 26695948 PMCID: PMC4688280 DOI: 10.1186/s13568-015-0173-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/11/2015] [Indexed: 11/10/2022] Open
Abstract
The basidiomycete Gloeophyllum trabeum KU-41 can degrade Japanese cedar wood efficiently. To construct a strain better suited for biofuel production from Japanese cedar wood, we developed a gene transformation system for G. trabeum KU-41 using the hygromycin phosphotransferase-encoding gene (hpt) as a marker. The endogenous laccase candidate gene (Gtlcc3) was fused with the promoter of the G. trabeum glyceraldehyde-3-phosphate dehydrogenase-encoding gene and co-transformed with the hpt-bearing pAH marker plasmid. We obtained 44 co-transformants, and identified co-transformant L#61, which showed the highest laccase activity among all the transformants. Moreover, strain L#61 was able to degrade lignin in Japanese cedar wood-containing medium, in contrast to wild-type G. trabeum KU-41 and to a typical white-rot fungus Phanerochaete chrysosporium. By using strain L#61, direct ethanol production from Japanese cedar wood was improved compared to wild type. To our knowledge, this study is the first report of the molecular breeding of lignin-degrading brown-rot fungus and direct ethanol production from softwoods by co-transformation with laccase overproduction constructs.
Collapse
Affiliation(s)
- Misa Arimoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Kenji Yamagishi
- NARO National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| | - Jianqiao Wang
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Kanade Tanaka
- Integrative Technology Research Institute, Teijin Limited, Iwakuni, 740-8511, Japan.
| | - Takanori Miyoshi
- New Business Development Business Unit, Teijin Limited, Tokyo, 100-8585, Japan.
| | - Ichiro Kamei
- Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| | - Ryuichiro Kondo
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Toshio Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Hirokazu Kawagishi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Hirofumi Hirai
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
37
|
Rashid GMM, Taylor CR, Liu Y, Zhang X, Rea D, Fülöp V, Bugg TDH. Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation. ACS Chem Biol 2015. [PMID: 26198187 DOI: 10.1021/acschembio.5b00298] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.
Collapse
Affiliation(s)
- Goran M. M. Rashid
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Charles R. Taylor
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yangqingxue Liu
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Xiaoyang Zhang
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dean Rea
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vilmos Fülöp
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Timothy D. H. Bugg
- Department of Chemistry and ‡School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
38
|
She Z, Wang JG, Ni JP, Liu XQ, Zhang RY, Na HN, Zhu J. Direct conversion of cellulose into glycolic acid by a zinc-stabilized UV-Fenton reaction. RSC Adv 2015. [DOI: 10.1039/c4ra11070f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Direct conversion of cellulose into glycolic acid at mild conditions was realized by a zinc-stabilized UV-Fenton reaction.
Collapse
Affiliation(s)
- Z. She
- Ningbo Key Laboratory of Polymer Materials
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences Institution
- Ningbo
- China
| | - J. G. Wang
- Ningbo Key Laboratory of Polymer Materials
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences Institution
- Ningbo
- China
| | - J. P. Ni
- Ningbo Key Laboratory of Polymer Materials
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences Institution
- Ningbo
- China
| | - X. Q. Liu
- Ningbo Key Laboratory of Polymer Materials
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences Institution
- Ningbo
- China
| | - R. Y. Zhang
- Ningbo Key Laboratory of Polymer Materials
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences Institution
- Ningbo
- China
| | - H. N. Na
- Ningbo Key Laboratory of Polymer Materials
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences Institution
- Ningbo
- China
| | - J. Zhu
- Ningbo Key Laboratory of Polymer Materials
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences Institution
- Ningbo
- China
| |
Collapse
|
39
|
Kaffenberger JT, Schilling JS. Comparing lignocellulose physiochemistry after decomposition by brown rot fungi with distinct evolutionary origins. Environ Microbiol 2014; 17:4885-97. [PMID: 25181619 DOI: 10.1111/1462-2920.12615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 11/29/2022]
Abstract
Among wood-degrading fungi, lineages holding taxa that selectively metabolize carbohydrates without significant lignin removal (brown rot) are polyphyletic, having evolved multiple times from lignin-removing white rot fungi. Given the qualitative nature of the 'brown rot' classifier, we aimed to quantify and compare the temporal sequence of carbohydrate removal among brown rot clades. Lignocellulose deconstruction was compared among fungi using distinct plant substrates (angiosperm, conifer, grass). Specifically, aspen, pine and corn stalk were harvested over a 16-week time series from microcosms containing Gloeophyllum trabeum, Fomitopsis pinicola, Ossicaulis lignatilis, Fistulina hepatica, Serpula lacrymans, Wolfiporia cocos or Dacryopinax sp. After quantifying plant mass loss, a thorough compositional analysis was complemented by a saccharification test to determine wood cell wall accessibility. Mass loss and accessibility varied depending on fungal decomposer and substrate, and trajectories of loss for hemicellulosic components and cellulose differed among plant tissue types. At any given stage of decomposition, however, lignocellulose accessibility and the fraction remaining of carbohydrates and lignin within a plant tissue type were generally the same, regardless of fungal isolate. This suggests that the sequence of plant component removal at this typical scale of characterization is shared among these brown rot lineages, despite their diverse genomes and secretomes.
Collapse
Affiliation(s)
- Justin T Kaffenberger
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Jonathan S Schilling
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, MN, 55108, USA.,Institute on the Environment, University of Minnesota, 1954 Buford Avenue, Saint Paul, MN, 55108, USA
| |
Collapse
|
40
|
Lee J, Kim J, Choi W. Oxidation of aquatic pollutants by ferrous-oxalate complexes under dark aerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:79-86. [PMID: 24769845 DOI: 10.1016/j.jhazmat.2014.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/03/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
This study evaluates the ability of Fe(II)-oxalate complexes for the generation of OH through oxygen reduction and the oxidative degradation of aquatic pollutants under dark aerobic conditions (i.e., with oxygen but without light). The degradation of 4-chlorophenol (4-CP) was rapid in the mixture of Fe(2+) and oxalate prepared using ultrapure water, but was absent without either Fe(2+) or oxalate. The formation of Fe(II)-oxalate complexes enables two-electron reduction of oxygen to generate H2O2 and subsequent production of OH. The significant inhibition of 4-CP degradation in the presence of H2O2 and OH scavenger confirms such mechanisms. The degradation experiments with varying [Fe(2+)], [oxalate], and initial pH demonstrated that the degradation rate depends on [Fe(II)(Ox)2(2-)], but the degree of degradation is primarily determined by [Fe(II)(Ox)2(2-)]+[Fe(II)(Ox)(0)]. Efficient degradation of diverse aquatic pollutants, especially phenolic pollutants, was observed in the Fe(II)-oxalate complexes system, wherein the oxidation efficacy was primarily correlated with the reaction rate constant between pollutant and OH. The effect of various organic ligands (oxalate, citrate, EDTA, malonate, and acetate) on the degradation kinetics of 4-CP was investigated. The highest efficiency of oxalate for the oxidative degradation is attributed to its high capability to enhance the reducing power and low reactivity with OH.
Collapse
Affiliation(s)
- Jaesang Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701, Korea
| | - Jungwon Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 200-702, Korea.
| | - Wonyong Choi
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| |
Collapse
|
41
|
Fungal accumulation of metals from building materials during brown rot wood decay. Arch Microbiol 2014; 196:565-74. [PMID: 24859913 DOI: 10.1007/s00203-014-0993-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood decay.
Collapse
|
42
|
Arantes V, Goodell B. Current Understanding of Brown-Rot Fungal Biodegradation Mechanisms: A Review. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1158.ch001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Valdeir Arantes
- University of British Columbia, 4035-2424 Main Mall, V6T 1Z4, Vancouver BC, Canada
- Virginia Polytechnic Institute and State University (Virginia Tech), 216 ICTAS II Building (0917), 1075 Life Sciences Circle, Blacksburg VA 24061, United States
| | - Barry Goodell
- University of British Columbia, 4035-2424 Main Mall, V6T 1Z4, Vancouver BC, Canada
- Virginia Polytechnic Institute and State University (Virginia Tech), 216 ICTAS II Building (0917), 1075 Life Sciences Circle, Blacksburg VA 24061, United States
| |
Collapse
|
43
|
Korripally P, Timokhin VI, Houtman CJ, Mozuch MD, Hammel KE. Evidence from Serpula lacrymans that 2,5-dimethoxyhydroquinone Is a lignocellulolytic agent of divergent brown rot basidiomycetes. Appl Environ Microbiol 2013; 79:2377-83. [PMID: 23377930 PMCID: PMC3623220 DOI: 10.1128/aem.03880-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/24/2013] [Indexed: 11/20/2022] Open
Abstract
Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant lignin removal, apparently beginning instead with oxidative attack on wood polymers by Fenton reagent produced when fungal hydroquinones or catechols reduce Fe(3+) in colonized wood. Since there is little evidence that white rot fungi produce these metabolites, one question is the extent to which independent lineages of brown rot fungi may have evolved different Fe(3+) reductants. Recently, the catechol variegatic acid was proposed to drive Fenton chemistry in Serpula lacrymans, a brown rot member of the Boletales (D. C. Eastwood et al., Science 333:762-765, 2011). We found no variegatic acid in wood undergoing decay by S. lacrymans. We found also that variegatic acid failed to reduce in vitro the Fe(3+) oxalate chelates that predominate in brown-rotting wood and that it did not drive Fenton chemistry in vitro under physiological conditions. Instead, the decaying wood contained physiologically significant levels of 2,5-dimethoxyhydroquinone, a reductant with a demonstrated biodegradative role when wood is attacked by certain brown rot fungi in two other divergent lineages, the Gloeophyllales and Polyporales. Our results suggest that the pathway for 2,5-dimethoxyhydroquinone biosynthesis may have been present in ancestral white rot basidiomycetes but do not rule out the possibility that it appeared multiple times via convergent evolution.
Collapse
Affiliation(s)
| | - Vitaliy I. Timokhin
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | - Kenneth E. Hammel
- U.S. Forest Products Laboratory, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
44
|
Mathieu Y, Gelhaye E, Dumarçay S, Gérardin P, Harvengt L, Buée M. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology. J Microbiol Methods 2013. [DOI: 10.1016/j.mimet.2012.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
|
46
|
Hastrup ACS, Howell C, Larsen FH, Sathitsuksanoh N, Goodell B, Jellison J. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biol 2012; 116:1052-63. [DOI: 10.1016/j.funbio.2012.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/11/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
|
47
|
Xie Y, Klarhöfer L, Mai C. Degradation of wood veneers by Fenton reagents: Effects of 2,3-dihydroxybenzoic acid on mineralization of wood. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2012.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Gao Z, Mori T, Kondo R. The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:28. [PMID: 22559172 PMCID: PMC3436736 DOI: 10.1186/1754-6834-5-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/19/2012] [Indexed: 05/06/2023]
Abstract
BACKGROUND Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of additional chemicals. In this work, Gloeophyllum trabeum KU-41 was chosen for corn stover pretreatment through screening with 40 strains of wood-rot fungi. The objective of the current work is to find out which characteristics of corn stover pretreated with G. trabeum KU-41 determine the pretreatment method to be successful and worthwhile to apply. This will be done by determining the lignin content, structural carbohydrate, cellulose crystallinity, initial adsorption capacity of cellulase and specific surface area of pretreated corn stover. RESULTS The content of xylan in pretreated corn stover was decreased by 43% in comparison to the untreated corn stover. The initial cellulase adsorption capacity and the specific surface area of corn stover pretreated with G. trabeum were increased by 7.0- and 2.5-fold, respectively. Also there was little increase in the cellulose crystallinity of pretreated corn stover. CONCLUSION G. trabeum has an efficient degradation system, and the results indicated that the conversion of cellulose to glucose increases as the accessibility of cellulose increases due to the partial removal of xylan and the structure breakage of the cell wall. This pretreatment method can be further explored as an alternative to the thermochemical pretreatment method.
Collapse
Affiliation(s)
- Ziqing Gao
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu, University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Toshio Mori
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu, University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Ryuichiro Kondo
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu, University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| |
Collapse
|
49
|
Arantes V, Jellison J, Goodell B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 2012; 94:323-38. [DOI: 10.1007/s00253-012-3954-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
|
50
|
Watkinson S, Eastwood D. Serpula lacrymans, Wood and Buildings. ADVANCES IN APPLIED MICROBIOLOGY 2012; 78:121-49. [PMID: 22305095 DOI: 10.1016/b978-0-12-394805-2.00005-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Serpula lacrymans, the causative agent of dry rot timber decay in buildings, is a Basidiomycete fungus in the Boletales clade. It owes its destructiveness to a uniquely well-developed capacity to colonize by rapid mycelial spread from sites of initial spore infection, coupled with aggressive degradation of wood cellulose. Genomic methods have recently elucidated the evolution and enzymic repertoire of the fungus, suggesting that it has a distinctive mode of brown rot wood decay. Using novel methods to image nutrient translocation, its mycelium has been modeled as a highly responsive resource-supply network. Dry rot is preventable by keeping timber dry. However, in established outbreaks, further mycelial spread can be arrested by inhibitors of translocation.
Collapse
|