1
|
Kharadi RR, Schachterle JK, Yuan X, Castiblanco LF, Peng J, Slack SM, Zeng Q, Sundin GW. Genetic Dissection of the Erwinia amylovora Disease Cycle. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:191-212. [PMID: 33945696 DOI: 10.1146/annurev-phyto-020620-095540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fire blight, caused by the bacterial phytopathogen Erwinia amylovora, is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an E. amylovora infection in the host. We discuss the key aspects of type III secretion-mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to E. amylovora pathogenesis, including an exploration of the impact of floral microbiomes on E. amylovora colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Xiaochen Yuan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jingyu Peng
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Suzanne M Slack
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
2
|
Joshi JR, Yao L, Charkowski AO, Heuberger AL. Metabolites from Wild Potato Inhibit Virulence Factors of the Soft Rot and Blackleg Pathogen Pectobacterium brasiliense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:100-109. [PMID: 32960719 DOI: 10.1094/mpmi-08-20-0224-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum L.) is the primary vegetable crop consumed worldwide and is largely affected by bacterial pathogens that can cause soft rot and blackleg disease. Recently, resistance to these diseases has been identified in the wild potato S. chacoense, and the mechanism of resistance is unknown. Here, it was hypothesized that S. chacoense stems or tubers have unique chemistry that confers resistance to the pathogen Pectobacterium brasiliense through bactericidal, bacteriostatic, or antivirulence activity. Stem and tuber metabolite extracts were collected from S. chacoense and tested for effects on Pectobacterium bacterial multiplication rates, and activity and expression of known exoenzymes and virulence genes using S. tuberosum extracts as a comparative control. Comparatively, the S. chacoense extracts did not affect bacterial multiplication rate; however, they did reduce pectinase, cellulase, and protease activities. The chemical extracts were profiled using a bioassay-guided fractionation, and a nontargeted metabolomics comparison of S. chacoense and S. tuberosum stems and tubers was performed. The data showed that selected alkaloids, phenolic amines, phenols, amines, and peptides are integrative chemical sources of resistance against the bacteria.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janak R Joshi
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Linxing Yao
- Analytical Resources Core-Bioanalysis and Omics Center, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, U.S.A
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, U.S.A
| |
Collapse
|
3
|
|
4
|
Binding sequences for RdgB, a DNA damage-responsive transcriptional activator, and temperature-dependent expression of bacteriocin and pectin lyase genes in Pectobacterium carotovorum subsp. carotovorum. Appl Environ Microbiol 2008; 74:6017-25. [PMID: 18689515 DOI: 10.1128/aem.01297-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum strain Er simultaneously produces the phage tail-like bacteriocin carotovoricin (Ctv) and pectin lyase (Pnl) in response to DNA-damaging agents. The regulatory protein RdgB of the Mor/C family of proteins activates transcription of pnl through binding to the promoter. However, the optimal temperature for the synthesis of Ctv (23 degrees C) differs from that for synthesis of Pnl (30 degrees C), raising the question of whether RdgB directly activates ctv transcription. Here we report that RdgB directly regulates Ctv synthesis. Gel mobility shift assays demonstrated RdgB binding to the P(0), P(1), and P(2) promoters of the ctv operons, and DNase I footprinting determined RdgB-binding sequences (RdgB boxes) on these and on the pnl promoters. The RdgB box of the pnl promoter included a perfect 7-bp inverted repeat with high binding affinity to the regulator (K(d) [dissociation constant] = 150 nM). In contrast, RdgB boxes of the ctv promoters contained an imperfect inverted repeat with two or three mismatches that consequently reduced binding affinity (K(d) = 250 to 350 nM). Transcription of the rdgB and ctv genes was about doubled at 23 degrees C compared with that at 30 degrees C. In contrast, the amount of pnl transcription tripled at 30 degrees C. Thus, the inverse synthesis of Ctv and Pnl as a function of temperature is apparently controlled at the transcriptional level, and reduced rdgB expression at 30 degrees C obviously affected transcription from the ctv promoters with low-affinity RdgB boxes. Pathogenicity toward potato tubers was reduced in an rdgB knockout mutant, suggesting that the RdgAB system contributes to the pathogenicity of this bacterium, probably by activating pnl expression.
Collapse
|
5
|
Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski AO. Host range and molecular phylogenies of the soft rot enterobacterial genera pectobacterium and dickeya. PHYTOPATHOLOGY 2007; 97:1150-63. [PMID: 18944180 DOI: 10.1094/phyto-97-9-1150] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT Pectobacterium and Dickeya spp. are related broad-host-range entero-bacterial pathogens of angiosperms. A review of the literature shows that these genera each cause disease in species from at least 35% of angiosperm plant orders. The known host ranges of these pathogens partially overlap and, together, these two genera are pathogens of species from 50% of angiosperm plant orders. Notably, there are no reported hosts for either genus in the eudicots clade and no reported Dickeya hosts in the magnoliids or eurosids II clades, although Pectobacterium spp. are pathogens of at least one plant species in the magnoliids and at least one in each of the three eurosids II plant orders. In addition, Dickeya but not Pectobacterium spp. have been reported on a host in the rosids clade and, unlike Pectobacterium spp., have been reported on many Poales species. Natural disease among nonangiosperms has not been reported for either genus. Phylogenetic analyses of sequences concatenated from regions of seven housekeeping genes (acnA, gapA, icdA, mdh, mtlD, pgi, and proA) from representatives of these genera demonstrated that Dickeya spp. and the related tree pathogens, the genus Brenneria, are more diverse than Pectobacterium spp. and that the Pectobacterium strains can be divided into at least five distinct clades, three of which contain strains from multiple host plants.
Collapse
|
6
|
Cui Y, Chatterjee A, Hasegawa H, Chatterjee AK. Erwinia carotovora subspecies produce duplicate variants of ExpR, LuxR homologs that activate rsmA transcription but differ in their interactions with N-acylhomoserine lactone signals. J Bacteriol 2006; 188:4715-26. [PMID: 16788181 PMCID: PMC1483022 DOI: 10.1128/jb.00351-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-acylhomoserine lactone (AHL) signaling system comprises a producing system that includes acylhomoserine synthase (AhlI, a LuxI homolog) and a receptor, generally a LuxR homolog. AHL controls exoprotein production in Erwinia carotovora and consequently the virulence for plants. In previous studies we showed that ExpR, a LuxR homolog, is an AHL receptor and that it activates transcription of rsmA, the gene encoding an RNA binding protein which is a global negative regulator of exoproteins and secondary metabolites. An unusual finding was that the transcriptional activity of ExpR was neutralized by AHL. We subsequently determined that the genomes of most strains of E. carotovora subspecies tested possess two copies of the expR gene: expR1, which was previously studied, and expR2, which was the focus of this study. Comparative analysis of the two ExpR variants of E. carotovora subsp. carotovora showed that while both variants activated rsmA transcription, there were significant differences in the patterns of their AHL interactions, the rsmA sequences to which they bound, and their relative efficiencies of activation of rsmA transcription. An ExpR2- mutant produced high levels of exoproteins and reduced levels of RsmA in the absence of AHL. This contrasts with the almost complete inhibition of exoprotein production and the high levels of RsmA production in an AhlI- mutant that was ExpR1-. Our results suggest that ExpR2 activity is responsible for regulating exoprotein production primarily by modulating the levels of an RNA binding protein.
Collapse
Affiliation(s)
- Yaya Cui
- Division of Plant Sciences, University of Missouri, 108 Waters Hall, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
7
|
Chatterjee A, Cui Y, Hasegawa H, Leigh N, Dixit V, Chatterjee AK. Comparative analysis of two classes of quorum-sensing signaling systems that control production of extracellular proteins and secondary metabolites in Erwinia carotovora subspecies. J Bacteriol 2005; 187:8026-38. [PMID: 16291676 PMCID: PMC1291269 DOI: 10.1128/jb.187.23.8026-8038.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Erwinia carotovora subspecies, N-acyl homoserine lactone (AHL) controls the expression of various traits, including extracellular enzyme/protein production and pathogenicity. We report here that E. carotovora subspecies possess two classes of quorum-sensing signaling systems defined by the nature of the major AHL analog produced as well as structural and functional characteristics of AHL synthase (AhlI) and AHL receptor (ExpR). Class I strains represented by E. carotovora subsp. atroseptica strain Eca12 and E. carotovora subsp. carotovora strains EC153 and SCC3193 produce 3-oxo-C8-HL (N-3-oxooctanoyl-l-homoserine lactone) as the major AHL analog as well as low but detectable levels of 3-oxo-C6-HL (N-3-oxohexanoyl-l-homoserine lactone). In contrast, the members of class II (i.e., E. carotovora subsp. betavasculorum strain Ecb168 and E. carotovora subsp. carotovora strains Ecc71 and SCRI193) produce 3-oxo-C6-HL as the major analog. ExpR species of both classes activate rsmA (Rsm, repressor of secondary metabolites) transcription and bind rsmA DNA. Gel mobility shift assays with maltose-binding protein (MBP)-ExpR(71) and MBP-ExpR(153) fusion proteins show that both bind a 20-mer sequence present in rsmA. The two ExpR functions (i.e., expR-mediated activation of rsmA expression and ExpR binding with rsmA DNA) are inhibited by AHL. The AHL effects are remarkably specific in that expR effect of EC153, a strain belonging to class I, is counteracted by 3-oxo-C8-HL but not by 3-oxo-C6-HL. Conversely, the expR effect of Ecc71, a strain belonging to class II, is neutralized by 3-oxo-C6-HL but not by 3-oxo-C8-HL. The AHL responses correlated with expR-mediated inhibition of exoprotein and secondary metabolite production.
Collapse
Affiliation(s)
- Asita Chatterjee
- Department of Plant Microbiology & Pathology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Brencic A, Winans SC. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 2005; 69:155-94. [PMID: 15755957 PMCID: PMC1082791 DOI: 10.1128/mmbr.69.1.155-194.2005] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
9
|
Kumaraswami M, Howe MM, Park HW. Crystal Structure of the Mor Protein of Bacteriophage Mu, a Member of the Mor/C Family of Transcription Activators. J Biol Chem 2004; 279:16581-90. [PMID: 14729670 DOI: 10.1074/jbc.m313555200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription from the middle promoter, Pm, of bacteriophage Mu requires the phage-encoded activator protein Mor and bacterial RNA polymerase. Mor is a sequence-specific DNA-binding protein that mediates transcription activation through its interactions with the C-terminal domains of the alpha and sigma subunits of bacterial RNA polymerase. Here we present the first structure for a member of the Mor/C family of transcription activators, the crystal structure of Mor to 2.2-A resolution. Each monomer of the Mor dimer is composed of two domains, the N-terminal dimerization domain and C-terminal DNA-binding domain, which are connected by a linker containing a beta strand. The N-terminal dimerization domain has an unusual mode of dimerization; helices alpha1 and alpha2 of both monomers are intertwined to form a four-helix bundle, generating a hydrophobic core that is further stabilized by antiparallel interactions between the two beta strands. Mutational analysis of key leucine residues in helix alpha1 demonstrated a role for this hydrophobic core in protein solubility and function. The C-terminal domain has a classical helix-turn-helix DNA-binding motif that is located at opposite ends of the elongated dimer. Since the distance between the two helix-turn-helix motifs is too great to allow binding to two adjacent major grooves of the 16-bp Mor-binding site, we propose that conformational changes in the protein and DNA will be required for Mor to interact with the DNA. The highly conserved glycines flanking the beta strand may act as pivot points, facilitating the conformational changes of Mor, and the DNA may be bent.
Collapse
Affiliation(s)
- Muthiah Kumaraswami
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
10
|
Nguyen HA, Kaneko J, Kamio Y. Temperature-dependent production of carotovoricin Er and pectin lyase in phytopathogenic Erwinia carotovora subsp. carotovora Er. Biosci Biotechnol Biochem 2002; 66:444-7. [PMID: 11999425 DOI: 10.1271/bbb.66.444] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The production of pectin lyase (Pnl) and carotovoricin (Ctv), as well as cell lysis in the plant-pathogenic bacterium Erwinia carotovora subsp. carotovora Er are induced by mitomycin C. Here, Pnl and Ctv production and cell lysis were found to be temperature-dependent. The optimal temperature for Pnl production was 30 degrees C. However, the optimal temperature for both Ctv production and cell lysis was 23 degrees C, at which Pnl production was reduced to 47% of the maximum. These data suggest the possible existence of novel regulation system(s) for the production of Pnl and Ctv, and cell lysis, in addition to the well-documented regulation system of recA, rdgA, and rdgB genes.
Collapse
Affiliation(s)
- Hoa Anh Nguyen
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
11
|
Liu Y, Jiang G, Cui Y, Mukherjee A, Ma WL, Chatterjee AK. kdgREcc negatively regulates genes for pectinases, cellulase, protease, HarpinEcc, and a global RNA regulator in Erwinia carotovora subsp. carotovora. J Bacteriol 1999; 181:2411-21. [PMID: 10198003 PMCID: PMC93665 DOI: 10.1128/jb.181.8.2411-2421.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia carotovora subsp. carotovora produces extracellular pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel), and protease (Prt). The concerted actions of these enzymes largely determine the virulence of this plant-pathogenic bacterium. E. carotovora subsp. carotovora also produces HarpinEcc, the elicitor of the hypersensitive reaction. We document here that KdgREcc (Kdg, 2-keto-3-deoxygluconate; KdgR, general repressor of genes involved in pectin and galacturonate catabolism), a homolog of the E. chrysanthemi repressor, KdgREch and the Escherichia coli repressor, KdgREco, negatively controls not only the pectinases, Pel and Peh, but also Cel, Prt, and HarpinEcc production in E. carotovora subsp. carotovora. The levels of pel-1, peh-1, celV, and hrpNEcc transcripts are markedly affected by KdgREcc. The KdgREcc- mutant is more virulent than the KdgREcc+ parent. Thus, our data for the first time establish a global regulatory role for KdgREcc in E. carotovora subsp. carotovora. Another novel observation is the negative effect of KdgREcc on the transcription of rsmB (previously aepH), which specifies an RNA regulator controlling exoenzyme and HarpinEcc production. The levels of rsmB RNA are higher in the KdgREcc- mutant than in the KdgREcc+ parent. Moreover, by DNase I protection assays we determined that purified KdgREcc protected three 25-bp regions within the transcriptional unit of rsmB. Alignment of the protected sequences revealed the 21-mer consensus sequence of the KdgREcc-binding site as 5'-G/AA/TA/TGAAA[N6]TTTCAG/TG/TA-3'. Two such KdgREcc-binding sites occur in rsmB DNA in a close proximity to each other within nucleotides +79 and +139 and the third KdgREcc-binding site within nucleotides +207 and +231. Analysis of lacZ transcriptional fusions shows that the KdgR-binding sites negatively affect the expression of rsmB. KdgREcc also binds the operator DNAs of pel-1 and peh-1 genes and represses expression of a pel1-lacZ and a peh1-lacZ transcriptional fusions. We conclude that KdgREcc affects extracellular enzyme production by two ways: (i) directly, by inhibiting the transcription of exoenzyme genes; and (ii) indirectly, by preventing the production of a global RNA regulator. Our findings support the idea that KdgREcc affects transcription by promoter occlusion, i.e., preventing the initiation of transcription, and by a roadblock mechanism, i.e., by affecting the elongation of transcription.
Collapse
Affiliation(s)
- Y Liu
- Plant Sciences Unit, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
12
|
5.5 Extracellular Enzymes and Their Role in Erwinia Virulence. J Microbiol Methods 1998. [DOI: 10.1016/s0580-9517(08)70279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|