1
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Watier-Grillot S, Larréché S, Mazuet C, Baudouin F, Feraudet-Tarisse C, Holterbach L, Dia A, Tong C, Bourget L, Hery S, Pottier E, Bouilland O, Tanti M, Merens A, Simon S, Diancourt L, Chesnay A, Pommier de Santi V. From Foodborne Disease Outbreak (FBDO) to Investigation: The Plant Toxin Trap, Brittany, France, 2018. Toxins (Basel) 2023; 15:457. [PMID: 37505726 PMCID: PMC10467087 DOI: 10.3390/toxins15070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
On 6 July 2018, the Center for Epidemiology and Public Health of the French Armed Forces was informed of an outbreak of acute gastroenteritis among customers of a dining facility at a military base in Brittany, France. A total of 200 patients were reported out of a population of 1700 (attack rate: 12%). The symptoms were mainly lower digestive tract disorders and occurred rapidly after lunch on 5 July (median incubation period: 3.3 h), suggesting a toxin-like pathogenic process. A case-control survey was carried out (92 cases and 113 controls). Statistical analysis pointed to the chili con carne served at lunch on 5 July as the very likely source of poisoning. Phytohaemagglutinin, a plant lectin, was found in the chili con carne at a concentration above the potentially toxic dose (400 HAU/gram). The raw kidney beans incorporated in the chili con carne presented a high haemagglutination activity (66,667 HAU/gram). They were undercooked, and the phytohaemagglutinin was not completely destroyed. FBDOs due to PHA are poorly documented. This study highlights the need to develop methods for routine testing of plant toxins in food matrices. Improved diagnostic capabilities would likely lead to better documentation, epidemiology, and prevention of food-borne illnesses caused by plant toxins.
Collapse
Affiliation(s)
- Stéphanie Watier-Grillot
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Sébastien Larréché
- Bégin Military Teaching Hospital, 94160 Saint-Mandé, France; (S.L.); (A.M.)
- Inserm, UMR-S1144, France & Paris Cité University, 75006 Paris, France
| | - Christelle Mazuet
- National Reference Centre for Anaerobic Bacteria and Botulism, Institut Pasteur, Paris Cité University, CEDEX 15, 75724 Paris, France; (C.M.); (L.D.)
| | | | - Cécile Feraudet-Tarisse
- Department of Medications and Healthcare Technologies (DMTS), Paris-Saclay University, CEA, INRAE, SPI, 91190 Gif-sur-Yvette, France; (C.F.-T.); (S.S.)
| | - Lise Holterbach
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Aïssata Dia
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Christelle Tong
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Laure Bourget
- Laboratory of the French Armed Forces Commissariat, 49130 Les Ponts-de-Cé, France; (L.B.); (A.C.)
| | - Sophie Hery
- Naval Group, Department of Occupational Health, 29200 Brest, France;
| | - Emmanuel Pottier
- Brest Arsenal Medical Center, 29200 Brest, France; (E.P.); (O.B.)
| | | | - Marc Tanti
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Audrey Merens
- Bégin Military Teaching Hospital, 94160 Saint-Mandé, France; (S.L.); (A.M.)
- Inserm, UMR-S1144, France & Paris Cité University, 75006 Paris, France
| | - Stéphanie Simon
- Department of Medications and Healthcare Technologies (DMTS), Paris-Saclay University, CEA, INRAE, SPI, 91190 Gif-sur-Yvette, France; (C.F.-T.); (S.S.)
| | - Laure Diancourt
- National Reference Centre for Anaerobic Bacteria and Botulism, Institut Pasteur, Paris Cité University, CEDEX 15, 75724 Paris, France; (C.M.); (L.D.)
| | - Aurélie Chesnay
- Laboratory of the French Armed Forces Commissariat, 49130 Les Ponts-de-Cé, France; (L.B.); (A.C.)
| | - Vincent Pommier de Santi
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
- Vectors–Tropical and Mediterranean Infections Joint Research Unit (VITROME), Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
3
|
Panwar S, Kumari S, Verma J, Bakshi S, Narendrakumar L, Paul D, Das B. Toxin-linked mobile genetic elements in major enteric bacterial pathogens. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e5. [PMID: 39295911 PMCID: PMC11406385 DOI: 10.1017/gmb.2023.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 12/31/2022] [Accepted: 02/24/2023] [Indexed: 09/21/2024]
Abstract
One of the fascinating outcomes of human microbiome studies adopting multi-omics technology is its ability to decipher millions of microbial encoded functions in the most complex and crowded microbial ecosystem, including the human gastrointestinal (GI) tract without cultivating the microbes. It is well established that several functions that modulate the human metabolism, nutrient assimilation, immunity, infections, disease severity and therapeutic efficacy of drugs are mostly of microbial origins. In addition, these microbial functions are dynamic and can disseminate between microbial taxa residing in the same ecosystem or other microbial ecosystems through horizontal gene transfer. For clinicians and researchers alike, understanding the toxins, virulence factors and drug resistance traits encoded by the microbes associated with the human body is of utmost importance. Nevertheless, when such traits are genetically linked with mobile genetic elements (MGEs) that make them transmissible, it creates an additional burden to public health. This review mainly focuses on the functions of gut commensals and the dynamics and crosstalk between commensal and pathogenic bacteria in the gut. Also, the review summarises the plethora of MGEs linked with virulence genes present in the genomes of various enteric bacterial pathogens, which are transmissible among other pathogens and commensals.
Collapse
Affiliation(s)
- Shruti Panwar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Shashi Kumari
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Susmita Bakshi
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Lekshmi Narendrakumar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Deepjyoti Paul
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
4
|
Camargo A, Guerrero-Araya E, Castañeda S, Vega L, Cardenas-Alvarez MX, Rodríguez C, Paredes-Sabja D, Ramírez JD, Muñoz M. Intra-species diversity of Clostridium perfringens: A diverse genetic repertoire reveals its pathogenic potential. Front Microbiol 2022; 13:952081. [PMID: 35935202 PMCID: PMC9354469 DOI: 10.3389/fmicb.2022.952081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens is the causative agent of many enterotoxic diseases in humans and animals, and it is present in diverse environments (soil, food, sewage, and water). Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS) have provided a general approach about genetic diversity of C. perfringens; however, those studies are limited to specific locations and often include a reduced number of genomes. In this study, 372 C. perfringens genomes from multiple locations and sources were used to assess the genetic diversity and phylogenetic relatedness of this pathogen. In silico MLST was used for typing the isolates, and the resulting sequence types (ST) were assigned to clonal complexes (CC) based on allelic profiles that differ from its founder by up to double-locus variants. A pangenome analysis was conducted, and a core genome-based phylogenetic tree was created to define phylogenetic groups. Additionally, key virulence factors, toxinotypes, and antibiotic resistance genes were identified using ABRicate against Virulence Factor Database (VFDB), TOXiper, and Resfinder, respectively. The majority of the C. perfringens genomes found in publicly available databases were derived from food (n = 85) and bird (n = 85) isolates. A total of 195 STs, some of them shared between sources such as food and human, horses and dogs, and environment and birds, were grouped in 25 CC and distributed along five phylogenetic groups. Fifty-three percent of the genomes were allocated to toxinotype A, followed by F (32%) and G (7%). The most frequently found virulence factors based on > 70% coverage and 99.95% identity were plc (100%), nanH (99%), ccp (99%), and colA (98%), which encode an alpha-toxin, a sialidase, an alpha-clostripain, and a collagenase, respectively, while tetA (39.5%) and tetB (36.2%), which mediate tetracycline resistance determinants, were the most common antibiotic resistance genes detected. The analyses conducted here showed a better view of the presence of this pathogen across several host species. They also confirm that the genetic diversity of C. perfringens is based on a large number of virulence factors that vary among phylogroups, and antibiotic resistance markers, especially to tetracyclines, aminoglycosides, and macrolides. Those characteristics highlight the importance of C. perfringens as a one of the most common causes of foodborne illness.
Collapse
Affiliation(s)
- Anny Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Faculty of Health Sciences, Universidad de Boyacá, Tunja, Colombia
| | - Enzo Guerrero-Araya
- ANID, Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - María X. Cardenas-Alvarez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States
| | - César Rodríguez
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Paredes-Sabja
- ANID, Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- ANID, Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- *Correspondence: Marina Muñoz,
| |
Collapse
|
5
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Jaakkola K, Virtanen K, Lahti P, Keto-Timonen R, Lindström M, Korkeala H. Comparative Genome Analysis and Spore Heat Resistance Assay Reveal a New Component to Population Structure and Genome Epidemiology Within Clostridium perfringens Enterotoxin-Carrying Isolates. Front Microbiol 2021; 12:717176. [PMID: 34566921 PMCID: PMC8456093 DOI: 10.3389/fmicb.2021.717176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens causes a variety of human and animal enteric diseases including food poisoning, antibiotic-associated diarrhea, and necrotic enteritis. Yet, the reservoirs of enteropathogenic enterotoxin-producing strains remain unknown. We conducted a genomic comparison of 290 strains and a heat resistance phenotyping of 30 C. perfringens strains to elucidate the population structure and ecology of this pathogen. C. perfringens genomes shared a conserved genetic backbone with more than half of the genes of an average genome conserved in >95% of strains. The cpe-carrying isolates were found to share genetic context: the cpe-carrying plasmids had different distribution patterns within the genetic lineages and the estimated pan genome of cpe-carrying isolates had a larger core genome and a smaller accessory genome compared to that of 290 strains. We characterize cpe-negative strains related to chromosomal cpe-carrying strains elucidating the origin of these strains and disclose two distinct groups of chromosomal cpe-carrying strains with different virulence characteristics, spore heat resistance properties, and, presumably, ecological niche. Finally, an antibiotic-associated diarrhea isolate carrying two copies of the enterotoxin cpe gene and the associated genetic lineage with the potential for the emergence of similar strains are outlined. With C. perfringens as an example, implications of input genome quality for pan genome analysis are discussed. Our study furthers the understanding of genome epidemiology and population structure of enteropathogenic C. perfringens and brings new insight into this important pathogen and its reservoirs.
Collapse
Affiliation(s)
- Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Kira Virtanen
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Päivi Lahti
- City of Helsinki, Unit of Environmental Services, Helsinki, Finland
| | - Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Rajkovic A, Jovanovic J, Monteiro S, Decleer M, Andjelkovic M, Foubert A, Beloglazova N, Tsilla V, Sas B, Madder A, De Saeger S, Uyttendaele M. Detection of toxins involved in foodborne diseases caused by Gram‐positive bacteria. Compr Rev Food Sci Food Saf 2020; 19:1605-1657. [DOI: 10.1111/1541-4337.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Jelena Jovanovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Silvia Monteiro
- Laboratorio Analises, Instituto Superior TecnicoUniversidade de Lisboa Lisbon Portugal
| | - Marlies Decleer
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mirjana Andjelkovic
- Operational Directorate Food, Medicines and Consumer SafetyService for Chemical Residues and Contaminants Brussels Belgium
| | - Astrid Foubert
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Natalia Beloglazova
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
- Nanotechnology Education and Research CenterSouth Ural State University Chelyabinsk Russia
| | - Varvara Tsilla
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Benedikt Sas
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Annemieke Madder
- Laboratorium for Organic and Biomimetic Chemistry, Department of Organic and Macromolecular ChemistryGhent University Ghent Belgium
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| |
Collapse
|
8
|
|
9
|
Mahamat Abdelrahim A, Radomski N, Delannoy S, Djellal S, Le Négrate M, Hadjab K, Fach P, Hennekinne JA, Mistou MY, Firmesse O. Large-Scale Genomic Analyses and Toxinotyping of Clostridium perfringens Implicated in Foodborne Outbreaks in France. Front Microbiol 2019; 10:777. [PMID: 31057505 PMCID: PMC6481350 DOI: 10.3389/fmicb.2019.00777] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens is both an ubiquitous environmental bacterium and the fourth most common causative agent of foodborne outbreaks (FBOs) in France and Europe. These outbreaks are known to be caused by C. perfringens enterotoxin (CPE) encoded by the cpe gene. However, additional information on the toxin/virulence gene content of C. perfringens has become available in the last few years. Therefore, to understand the enteropathogenicity of this bacterium, we need to describe the toxin and virulence genes content of strains involved in FBOs. In this study, we used a new real-time PCR typing technique based on a comprehensive set of 17 genes encoding virulence factors. The analysis was performed on a collection of 141 strains involved in 42 FBOs in the Paris region. It was combined with whole genome sequence (WGS) phylogenomic reconstruction, based on the coregenome single nucleotide polymorphisms (SNPs) of 58 isolates, representatives of the identified virulence gene profiles. Two or three different virulence gene profiles were detected in 10 FBOs, demonstrating that C. perfringens FBOs may be associated with heterogeneous strains. cpe-positive strains were isolated in 23 outbreaks, confirming the prominent role of CPE in pathogenicity. However, while C. perfringens was the sole pathogen isolated from the incriminated food, the cpe gene was not detected in strains related to 13 outbreaks. This result indicates either that the standard method was not able to isolate cpe+ strains or that the cpe gene may not be the only determinant of the enterotoxigenic potential of C. perfringens strains. Using phylogenomic reconstruction, we identified two clades distinguishing chromosomal cpe-positive from cpe-negative and plasmid-borne cpe. Important epidemiological information was also garnered from this phylogenomic reconstruction that revealed unexpected links between different outbreaks associated with closely related strains (seven SNP differences) and having common virulence gene profiles. This study provides new insight into the characterization of foodborne C. perfringens and highlights the potential of WGS for the investigation of FBOs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Olivier Firmesse
- Université PARIS-EST, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Laboratory for Food Safety, Maisons-Alfort, France
| |
Collapse
|
10
|
Abstract
In humans and livestock, Clostridium perfringens is an important cause of intestinal infections that manifest as enteritis, enterocolitis, or enterotoxemia. This virulence is largely related to the toxin-producing ability of C. perfringens. This article primarily focuses on the C. perfringens type F strains that cause a very common type of human food poisoning and many cases of nonfoodborne human gastrointestinal diseases. The enteric virulence of type F strains is dependent on their ability to produce C. perfringens enterotoxin (CPE). CPE has a unique amino acid sequence but belongs structurally to the aerolysin pore-forming toxin family. The action of CPE begins with binding of the toxin to claudin receptors, followed by oligomerization of the bound toxin into a prepore on the host membrane surface. Each CPE molecule in the prepore then extends a beta-hairpin to form, collectively, a beta-barrel membrane pore that kills cells by increasing calcium influx. The cpe gene is typically encoded on the chromosome of type F food poisoning strains but is encoded by conjugative plasmids in nonfoodborne human gastrointestinal disease type F strains. During disease, CPE is produced when C. perfringens sporulates in the intestines. Beyond type F strains, C. perfringens type C strains producing beta-toxin and type A strains producing a toxin named CPILE or BEC have been associated with human intestinal infections. C. perfringens is also an important cause of enteritis, enterocolitis, and enterotoxemia in livestock and poultry due to intestinal growth and toxin production.
Collapse
|
11
|
Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment. Int J Food Microbiol 2016; 230:45-57. [DOI: 10.1016/j.ijfoodmicro.2016.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/23/2015] [Accepted: 03/20/2016] [Indexed: 11/18/2022]
|
12
|
Larcombe S, Hutton ML, Lyras D. Involvement of Bacteria Other Than Clostridium difficile in Antibiotic-Associated Diarrhoea. Trends Microbiol 2016; 24:463-476. [DOI: 10.1016/j.tim.2016.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
13
|
Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications. Toxins (Basel) 2016; 8:toxins8030073. [PMID: 26999202 PMCID: PMC4810218 DOI: 10.3390/toxins8030073] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C. perfringens type A food poisoning strains) or large conjugative plasmids (for the remaining type A food poisoning and most, if not all, other CPE-producing strains). In all CPE-positive strains, the cpe gene is strongly associated with insertion sequences that may help to assist its mobilization and spread. During disease, CPE is produced when C. perfringens sporulates in the intestines, a process involving several sporulation-specific alternative sigma factors. The action of CPE starts with its binding to claudin receptors to form a small complex; those small complexes then oligomerize to create a hexameric prepore on the membrane surface. Beta hairpin loops from the CPE molecules in the prepore assemble into a beta barrel that inserts into the membrane to form an active pore that enhances calcium influx, causing cell death. This cell death results in intestinal damage that causes fluid and electrolyte loss. CPE is now being explored for translational applications including cancer therapy/diagnosis, drug delivery, and vaccination.
Collapse
|
14
|
Hassan KA, Elbourne LD, Tetu SG, Melville SB, Rood JI, Paulsen IT. Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Res Microbiol 2015; 166:255-63. [DOI: 10.1016/j.resmic.2014.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
15
|
Abstract
Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.
Collapse
|
16
|
|
17
|
BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect Immun 2014; 82:2390-9. [PMID: 24664508 DOI: 10.1128/iai.01759-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Clostridium perfringens is a causative agent of food-borne gastroenteritis for which C. perfringens enterotoxin (CPE) has been considered an essential factor. Recently, we experienced two outbreaks of food-borne gastroenteritis in which non-CPE producers of C. perfringens were strongly suspected to be the cause. Here, we report a novel enterotoxin produced by C. perfringens isolates, BEC (binary enterotoxin of C. perfringens). Culture supernatants of the C. perfringens strains showed fluid-accumulating activity in rabbit ileal loop and suckling mouse assays. Purification of the enterotoxic substance in the supernatants and high-throughput sequencing of genomic DNA of the strains revealed BEC, composed of BECa and BECb. BECa and BECb displayed limited amino acid sequence similarity to other binary toxin family members, such as the C. perfringens iota toxin. The becAB genes were located on 54.5-kb pCP13-like plasmids. Recombinant BECb (rBECb) alone had fluid-accumulating activity in the suckling mouse assay. Although rBECa alone did not show enterotoxic activity, rBECa enhanced the enterotoxicity of rBECb when simultaneously administered in suckling mice. The entertoxicity of the mutant in which the becB gene was disrupted was dramatically decreased compared to that of the parental strain. rBECa showed an ADP-ribosylating activity on purified actin. Although we have not directly evaluated whether BECb delivers BECa into cells, rounding of Vero cells occurred only when cells were treated with both rBECa and rBECb. These results suggest that BEC is a novel enterotoxin of C. perfringens distinct from CPE, and that BEC-producing C. perfringens strains can be causative agents of acute gastroenteritis in humans. Additionally, the presence of becAB on nearly identical plasmids in distinct lineages of C. perfringens isolates suggests the involvement of horizontal gene transfer in the acquisition of the toxin genes.
Collapse
|
18
|
Cha M, Wang H, Chung D, Bennetzen JL, Westpheling J. Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol 2013; 40:1443-8. [PMID: 24081709 DOI: 10.1007/s10295-013-1345-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 01/22/2023]
Abstract
Caldicellulosiruptor bescii is an anaerobic thermophilic bacterium of special interest for use in the consolidated bioprocessing of plant biomass to biofuels. In the course of experiments to engineer pyruvate metabolism in C. bescii, we isolated a mutant of C. bescii that contained an insertion in the L-lactate dehydrogenase gene (ldh). PCR amplification and sequencing of the ldh gene from this mutant revealed a 1,609-bp insertion that contained a single open reading frame of 479 amino acids (1,440 bp) annotated as a hypothetical protein with unknown function. The ORF is flanked by an 8-base direct repeat sequence. Bioinformatic analysis indicated that this ORF is part of a novel transposable element, ISCbe4, which is only intact in the genus Caldicellulosiruptor, but has ancient relatives that are present in degraded (and previously unrecognized) forms across many bacterial and archaeal clades.
Collapse
Affiliation(s)
- Minseok Cha
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | | | | | | | |
Collapse
|
19
|
Inactivation strategy for Clostridium perfringens spores adhered to food contact surfaces. Food Microbiol 2013; 34:328-36. [DOI: 10.1016/j.fm.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 11/22/2022]
|
20
|
Lahti P, Lindström M, Somervuo P, Heikinheimo A, Korkeala H. Comparative genomic hybridization analysis shows different epidemiology of chromosomal and plasmid-borne cpe-carrying Clostridium perfringens type A. PLoS One 2012; 7:e46162. [PMID: 23094024 PMCID: PMC3477167 DOI: 10.1371/journal.pone.0046162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 08/30/2012] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens, one of the most common causes of food poisonings, can carry the enterotoxin gene, cpe, in its chromosome or on a plasmid. C. perfringens food poisonings are more frequently caused by the chromosomal cpe-carrying strains, while the plasmid-borne cpe-positive genotypes are more commonly found in the human feces and environmental samples. Different tolerance to food processing conditions by the plasmid-borne and chromosomal cpe-carrying strains has been reported, but the reservoirs and contamination routes of enterotoxin-producing C. perfringens remain unknown. A comparative genomic hybridization (CGH) analysis with a DNA microarray based on three C. perfringens type A genomes was conducted to shed light on the epidemiology of C. perfringens food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains by comparing chromosomal and plasmid-borne cpe-positive and cpe-negative C. perfringens isolates from human, animal, environmental, and food samples. The chromosomal and plasmid-borne cpe-positive C. perfringens genotypes formed two distinct clusters. Variable genes were involved with myo-inositol, ethanolamine and cellobiose metabolism, suggesting a new epidemiological model for C. perfringens food poisonings. The CGH results were complemented with growth studies, which demonstrated different myo-inositol, ethanolamine, and cellobiose metabolism between the chromosomal and plasmid-borne cpe-carrying strains. These findings support a ubiquitous occurrence of the plasmid-borne cpe-positive strains and their adaptation to the mammalian intestine, whereas the chromosomal cpe-positive strains appear to have a narrow niche in environments containing degrading plant material. Thus the epidemiology of the food poisonings caused by two populations appears different, the plasmid-borne cpe-positive strains probably contaminating foods via humans and the chromosomal strains being connected to plant material.
Collapse
Affiliation(s)
- Päivi Lahti
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
21
|
Uzal FA, McClane BA. Animal models to study the pathogenesis of enterotoxigenic Clostridium perfringens infections. Microbes Infect 2012; 14:1009-16. [PMID: 22713745 DOI: 10.1016/j.micinf.2012.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Rabbits, mice, rats, non-human primates, sheep and cattle have been used to study the effect of Clostridium perfringens enterotoxin (CPE). CPE produces mostly necrosis of the small intestinal epithelium along with fluid accumulation in rabbits and mice. In the latter, CPE can bind to internal organs such as the liver, which induces lethal potassium levels in blood.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA.
| | | |
Collapse
|
22
|
Miyamoto K, Li J, McClane BA. Enterotoxigenic Clostridium perfringens: detection and identification. Microbes Environ 2012; 27:343-9. [PMID: 22504431 PMCID: PMC4103540 DOI: 10.1264/jsme2.me12002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent advances in understanding the genetics of enterotoxigenic Clostridium perfringens, including whole genome sequencing of a chromosomal cpe strain and sequencing of several cpe-carrying large plasmids, have led to the development of molecular approaches to more precisely investigate isolates involved in human gastrointestinal diseases and isolates present in the environment. Sequence-based PCR genotyping of the cpe locus (cpe genotyping PCR assays) has provided new information about cpe-positive type A C. perfringens including: 1) Foodborne C. perfringens outbreaks can be caused not only by chromosomal cpe type A strains with extremely heat-resistant spores, but also less commonly by less heat-resistant spore-forming plasmid cpe type A strains; 2) Both chromosomal cpe and plasmid cpe C. perfringens type A strains can be found in retail foods, healthy human feces and the environment, such as in sewage; 3) Most environmental cpe-positive C. perfringens type A strains carry their cpe gene on plasmids. Moreover, recent studies indicated that the cpe loci of type C, D, and E strains differ from the cpe loci of type A strains and from the cpe loci of each other, indicating that the cpe loci of C. perfringens have remarkable diversity. Multi-locus sequence typing (MLST) indicated that the chromosomal cpe strains responsible for most food poisoning cases have distinct genetic characteristics that provide unique biological properties, such as the formation of highly heat-resistant spores. These and future advances should help elucidate the epidemiology of enterotoxigenic C. perfringens and also contribute to the prevention of C. perfringens food poisoning outbreaks and other CPE-associated human diseases.
Collapse
Affiliation(s)
- Kazuaki Miyamoto
- Department of Microbiology, Wakayama Medical University School of Medicine, 811–1 Kimiidera, Wakayama 641–0012, Japan.
| | | | | |
Collapse
|
23
|
Fenton M, Ross P, McAuliffe O, O'Mahony J, Coffey A. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 2011; 1:9-16. [PMID: 21327123 DOI: 10.4161/bbug.1.1.9818] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/14/2009] [Indexed: 01/01/2023] Open
Abstract
With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential.
Collapse
Affiliation(s)
- Mark Fenton
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | | | |
Collapse
|
24
|
Li J, Miyamoto K, Sayeed S, McClane BA. Organization of the cpe locus in CPE-positive clostridium perfringens type C and D isolates. PLoS One 2010; 5:e10932. [PMID: 20532170 PMCID: PMC2880595 DOI: 10.1371/journal.pone.0010932] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/07/2010] [Indexed: 01/06/2023] Open
Abstract
Clostridium perfringens enterotoxin (encoded by the cpe gene) contributes to several important human, and possibly veterinary, enteric diseases. The current study investigated whether cpe locus organization in type C or D isolates resembles one of the three (one chromosomal and two plasmid-borne) cpe loci commonly found amongst type A isolates. Multiplex PCR assays capable of detecting sequences in those type A cpe loci failed to amplify products from cpe-positive type C and D isolates, indicating these isolates possess different cpe locus arrangements. Therefore, restriction fragments containing the cpe gene were cloned and sequenced from two type C isolates and one type D isolate. The obtained cpe locus sequences were then used to construct an overlapping PCR assay to assess cpe locus diversity amongst other cpe-positive type C and D isolates. All seven surveyed cpe-positive type C isolates had a plasmid-borne cpe locus partially resembling the cpe locus of type A isolates carrying a chromosomal cpe gene. In contrast, all eight type D isolates shared the same plasmid-borne cpe locus, which differed substantially from the cpe locus present in other C. perfringens by containing two copies of an ORF with 67% identity to a transposase gene (COG4644) found in Tn1546, but not previously associated with the cpe gene. These results identify greater diversity amongst cpe locus organization than previously appreciated, providing new insights into cpe locus evolution. Finally, evidence for cpe gene mobilization was found for both type C and D isolates, which could explain their cpe plasmid diversity.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kazuaki Miyamoto
- Department of Microbiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Sameera Sayeed
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol 2010; 28:192-8. [PMID: 21315973 DOI: 10.1016/j.fm.2010.03.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/28/2010] [Accepted: 03/29/2010] [Indexed: 11/24/2022]
Abstract
Clostridium perfringens food poisoning ranks among the most common gastrointestinal diseases in developed countries. The disease is caused by C. perfringens enterotoxin (CPE) encoded by cpe and produced by less than 5% of C. perfringens type A strains. Molecular epidemiological research in the past 15 years has focused on the reservoirs and routes of cpe-positive C. perfringens aiming to clarify the role and epidemiology of chromosomal and plasmid-borne cpe-carrying strains. This literature review highlights novel aspects in the epidemiology of CPE-mediated diseases. We suggest that (1) chromosomal and plasmid-borne cpe-carrying C. perfringens strains are genetically and epidemiologically distinct and have adapted to different environments; (2) not only chromosomal but also plasmid-borne cpe-carrying C. perfringens strains cause food poisonings; (3) other CPE-mediated diseases, such as antibiotic-associated and sporadic diarrhea, associated with plasmid-borne cpe-positive strains, may be food-related; (4) the role of animals as the main reservoir of cpe-positive C. perfringens needs to be reconsidered; (5) humans serve as an important reservoir of cpe-positive C. perfringens, introducing a contamination risk into foods through handling; and (6) the current standard procedures to diagnose C. perfringens food poisoning fail to detect and isolate many C. perfringens strains, distorting the epidemiological understanding of C. perfringens food poisoning.
Collapse
|
26
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
27
|
Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infect Immun 2009; 78:495-504. [PMID: 19858300 DOI: 10.1128/iai.00838-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The important veterinary pathogen Clostridium perfringens type B is unique for producing the two most lethal C. perfringens toxins, i.e., epsilon-toxin and beta-toxin. Our recent study (K. Miyamoto, J. Li, S. Sayeed, S. Akimoto, and B. A. McClane, J. Bacteriol. 190:7178-7188, 2008) showed that most, if not all, type B isolates carry a 65-kb epsilon-toxin-encoding plasmid. However, this epsilon-toxin plasmid did not possess the cpb gene encoding beta-toxin, suggesting that type B isolates carry at least one additional virulence plasmid. Therefore, the current study used Southern blotting of pulsed-field gels to localize the cpb gene to approximately 90-kb plasmids in most type B isolates, although a few isolates carried a approximately 65-kb cpb plasmid distinct from their etx plasmid. Overlapping PCR analysis then showed that the gene encoding the recently discovered TpeL toxin is located approximately 3 kb downstream of the plasmid-borne cpb gene. As shown earlier for their epsilon-toxin-encoding plasmids, the beta-toxin-encoding plasmids of type B isolates were found to carry a tcp locus, suggesting that they are conjugative. Additionally, IS1151-like sequences were identified upstream of the cpb gene in type B isolates. These IS1151-like sequences may mobilize the cpb gene based upon detection of possible cpb-containing circular transposition intermediates. Most type B isolates also possessed a third virulence plasmid that carries genes encoding urease and lambda-toxin. Collectively, these findings suggest that type B isolates are among the most plasmid dependent of all C. perfringens isolates for virulence, as they usually carry three potential virulence plasmids.
Collapse
|
28
|
|
29
|
Sequencing and diversity analyses reveal extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603 Clostridium perfringens enterotoxin plasmid. J Bacteriol 2008; 190:7178-88. [PMID: 18776010 DOI: 10.1128/jb.00939-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type B and D isolates produce epsilon-toxin, the third most potent clostridial toxin. The epsilon-toxin gene (etx) is plasmid borne in type D isolates, but etx genetics have been poorly studied in type B isolates. This study reports the first sequencing of any etx plasmid, i.e., pCP8533etx, from type B strain NCTC8533. This etx plasmid is 64.7 kb, carries tcp conjugative transfer genes, and encodes additional potential virulence factors including beta2-toxin, sortase, and collagen adhesin but not beta-toxin. Interestingly, nearly 80% of pCP8533etx open reading frames (ORFs) are also present on pCPF5603, an enterotoxin-encoding plasmid from type A isolate F5603. Pulsed-field gel electrophoresis and overlapping PCR indicated that a pCP8533etx-like etx plasmid is also present in most, if not all, other type B isolates and some beta2-toxin-positive, cpe-negative type D isolates, while other type D isolates carry different etx plasmids. Sequences upstream of the etx gene vary between type B isolates and some type D isolates that do not carry a pCP8533etx-like etx plasmid. However, nearly all type B and D isolates have an etx locus with an upstream IS1151, and those etx loci typically reside near a dcm ORF. These results suggest that pCPF5603 and pCP8533etx evolved from insertion of mobile genetic elements carrying enterotoxin or etx genes, respectively, onto a common progenitor plasmid.
Collapse
|
30
|
Miki Y, Miyamoto K, Kaneko-Hirano I, Fujiuchi K, Akimoto S. Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Appl Environ Microbiol 2008; 74:5366-72. [PMID: 18606797 PMCID: PMC2546627 DOI: 10.1128/aem.00783-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 06/25/2008] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens is an important anaerobic pathogen causing food-borne gastrointestinal (GI) diseases in humans and animals. It is thought that C. perfringens food poisoning isolates typically carry the enterotoxin gene (cpe) on their chromosome, while isolates from other GI diseases, such as antibiotic-associated diarrhea, carry cpe on a transferable plasmid. However, food-borne GI disease outbreaks associated with C. perfringens isolates carrying plasmid-borne cpe (plasmid cpe isolates) were recently reported in Japan and Europe. To investigate whether retail food can be a reservoir for food poisoning generally, we evaluated Japanese retail meat products for the presence of two genotypes of enterotoxigenic C. perfringens. Our results demonstrated that approximately 70% of the Japanese retail raw meat samples tested were contaminated with low numbers of C. perfringens bacteria and 4% were contaminated with cpe-positive C. perfringens. Most of the cpe-positive C. perfringens isolates obtained from Japanese retail meat carried cpe on a plasmid. The plasmid cpe isolates exhibited lower spore heat resistance than did chromosomal cpe isolates. Collectively, these plasmid cpe isolates might be causative agents of food poisoning when foods are contaminated with these isolates from equipment and/or the environment after cooking, or they may survive in food that has not been cooked at a high enough temperature.
Collapse
Affiliation(s)
- Yasuhiro Miki
- Department of Microbiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | | | | | | | | |
Collapse
|
31
|
Clostridium perfringens type A strains carrying a plasmid-borne enterotoxin gene (genotype IS1151-cpe or IS1470-like-cpe) as a common cause of food poisoning. J Clin Microbiol 2007; 46:371-3. [PMID: 18003798 DOI: 10.1128/jcm.01650-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalences of various genotypes of enterotoxin gene-carrying (cpe-positive) Clostridium perfringens type A in 24 different food poisoning outbreaks were 75% (chromosomal IS1470-cpe), 21% (plasmid-borne IS1470-like-cpe), and 4% (plasmid-borne IS1151-cpe). These results show that C. perfringens type A carrying the plasmid-borne cpe is a common cause of food poisoning.
Collapse
|
32
|
Sayeed S, Li J, McClane BA. Virulence plasmid diversity in Clostridium perfringens type D isolates. Infect Immun 2007; 75:2391-8. [PMID: 17339362 PMCID: PMC1865775 DOI: 10.1128/iai.02014-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type D isolates are important in biodefense and also cause natural enterotoxemias in sheep, goats, and occasionally cattle. In these isolates, the gene (etx) encoding epsilon-toxin is thought to reside on poorly characterized large plasmids. Type D isolates sometimes also produce other potentially plasmid-encoded toxins, including C. perfringens enterotoxin and beta2 toxin, encoded by the cpe and cbp2 genes, respectively. In the current study we demonstrated that the etx, cpe, and cpb2 genes are carried on plasmids in type D isolates and characterized the toxin-encoding plasmids to obtain insight into their genetic organization, potential transferability, and diversity. Southern blotting of pulsed-field gels showed that the etx gene of type D isolates can be present on at least five different plasmids, whose sizes range from 48 to 110 kb. The etx plasmids also typically carried IS1151 and tcp open reading frames (ORFs) known to mediate conjugative transfer of C. perfringens plasmid pCW3. PCR studies revealed that other than their tcp ORFs, etx plasmids of type D isolates do not carry substantial portions of the conserved or variable regions in the cpe plasmids of type A isolates. Southern blotting also demonstrated that in type D isolates the cpe and cpb2 genes are sometimes present on the etx plasmid. Collectively, these findings confirmed that the virulence of type D isolates is heavily plasmid dependent and indicated that (i) a single type D isolate can carry multiple virulence plasmids, (ii) a single type D virulence plasmid can carry up to three different toxin genes, and (iii) many etx plasmids should be capable of conjugative transfer.
Collapse
Affiliation(s)
- Sameera Sayeed
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
33
|
Heikinheimo A, Lindström M, Granum PE, Korkeala H. Humans as reservoir for enterotoxin gene--carrying Clostridium perfringens type A. Emerg Infect Dis 2007; 12:1724-9. [PMID: 17283623 PMCID: PMC3372343 DOI: 10.3201/eid1211.060478] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Humans may play a role in the transmission of gastrointestinal diseases caused by C. perfringens. We found a prevalence of 18% for enterotoxin gene–carrying (cpe+) Clostridium perfringens in the feces of healthy food handlers by PCR and isolated the organism from 11 of 23 PCR-positive persons by using hydrophobic grid membrane filter-colony hybridization. Several different cpe genotypes were recovered. The prevalence was 3.7% for plasmidial IS1151-cpe, 2.9% for plasmidial IS1470-like-cpe, 0.7% for chromosomal IS1470-cpe, and 1.5% for unknown cpe genotype. Lateral spread of cpe between C. perfringens strains was evident because strains from the same person carried IS1470-like cpe but shared no genetic relatedness according to pulsed-field gel electrophoresis analysis. Our findings suggest that healthy humans serve as a rich reservoir for cpe+ C. perfringens type A and may play a role in the etiology of gastrointestinal diseases caused by this organism. The results also indicate that humans should be considered a risk factor for spread of C. perfringens type A food poisoning and that they are a possible source of contamination for C. perfringens type A food poisoning.
Collapse
|
34
|
Li J, Miyamoto K, McClane BA. Comparison of virulence plasmids among Clostridium perfringens type E isolates. Infect Immun 2007; 75:1811-9. [PMID: 17261608 PMCID: PMC1865703 DOI: 10.1128/iai.01981-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type E isolates produce iota-toxin, which is encoded by iap and ibp genes. Using Southern blot analyses, the current study identified iap/ibp plasmids of approximately 97 or approximately 135 kb among eight type E isolates. For most of these isolates, their iap/ibp plasmid also encoded urease and lambda-toxin. However, the beta2-toxin gene, if present, was on a different plasmid from the iap/ibp plasmid. For all isolates, the iap/ibp plasmid carried a tcp locus, strongly suggesting that these plasmids are conjugative. Overlapping PCR analyses demonstrated some similarity between the iap/ibp plasmids and enterotoxin-encoding plasmids of type A isolates. Additional PCR analyses demonstrated that the iap/ibp locus is located near dcm sequences, an apparent plasmid hot spot for toxin gene insertion, and that two IS1151-related sequences are present in the iap/ibp locus. To begin testing whether those IS1151-like sequences can mobilize iap/ibp genes, a PCR assay was performed that amplifies a product only from circular DNA forms that could represent transposition intermediates. This PCR assay detected circular forms containing iap/ibp genes and silent enterotoxin gene sequences, with or without an IS1151-like sequence. Collectively, these results suggest that a mobile genetic element carrying iap/ibp has inserted onto a tcp-carrying enterotoxin plasmid in a type A isolate, creating a progenitor iap/ibp plasmid. That plasmid then spread via conjugation to other isolates, converting them to type E. Further iap/ibp plasmid diversity occurred when either the iap/ibp genes later remobilized and inserted onto other conjugative plasmids or some iap/ibp plasmids acquired additional DNA sequences.
Collapse
Affiliation(s)
- Jihong Li
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
35
|
Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz M, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB, Paulsen IT. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 2006; 16:1031-40. [PMID: 16825665 PMCID: PMC1524862 DOI: 10.1101/gr.5238106] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen.
Collapse
Affiliation(s)
- Garry S.A. Myers
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - David A. Rasko
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jackie K. Cheung
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Jacques Ravel
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Rekha Seshadri
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Robert T. DeBoy
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Qinghu Ren
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - John Varga
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24601, USA
| | - Milena M. Awad
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | | | | | - Daniel H. Haft
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Robert J. Dodson
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Ramana Madupu
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | - M.J. Rosovitz
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | - Hoda Khouri
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | - Kisha L. Watkins
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | - Jonathan Benton
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Diana Radune
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Derek J. Fisher
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Helen S. Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Tom Hiscox
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - B. Helen Jost
- Department of Veterinary Science, University of Arizona, Tucson, Arizona 85721, USA
| | | | - J. Glenn Songer
- Department of Veterinary Science, University of Arizona, Tucson, Arizona 85721, USA
| | - Bruce A. McClane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Richard W. Titball
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Julian I. Rood
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Stephen B. Melville
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24601, USA
| | - Ian T. Paulsen
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
- Corresponding author.E-mail ; fax (301) 838-0208
| |
Collapse
|
36
|
Miyamoto K, Fisher DJ, Li J, Sayeed S, Akimoto S, McClane BA. Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J Bacteriol 2006; 188:1585-98. [PMID: 16452442 PMCID: PMC1367241 DOI: 10.1128/jb.188.4.1585-1598.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxin-producing Clostridium perfringens type A isolates are an important cause of food poisoning and non-food-borne human gastrointestinal diseases, e.g., sporadic diarrhea (SPOR) and antibiotic-associated diarrhea (AAD). The enterotoxin gene (cpe) is usually chromosomal in food poisoning isolates but plasmid-borne in AAD/SPOR isolates. Previous studies determined that type A SPOR isolate F5603 has a plasmid (pCPF5603) carrying cpe, IS1151, and the beta2 toxin gene (cpb2), while type A SPOR isolate F4969 has a plasmid (pCPF4969) lacking cpb2 and IS1151 but carrying cpe and IS1470-like sequences. By completely sequencing these two cpe plasmids, the current study identified pCPF5603 as a 75.3-kb plasmid carrying 73 open reading frames (ORFs) and pCPF4969 as a 70.5-kb plasmid carrying 62 ORFs. These plasmids share an approximately 35-kb conserved region that potentially encodes virulence factors and carries ORFs found on the conjugative transposon Tn916. The 34.5-kb pCPF4969 variable region contains ORFs that putatively encode two bacteriocins and a two-component regulator similar to VirR/VirS, while the approximately 43.6-kb pCPF5603 variable region contains a functional cpb2 gene and several metabolic genes. Diversity studies indicated that other type A plasmid cpe+/IS1151 SPOR/AAD isolates carry a pCPF5603-like plasmid, while other type A plasmid cpe+/IS1470-like SPOR/AAD isolates carry a pCPF4969-like plasmid. Tn916-related ORFs similar to those in pCPF4969 (known to transfer conjugatively) were detected in the cpe plasmids of other type A SPOR/AAD isolates, as well as in representative C. perfringens type B to D isolates carrying other virulence plasmids, possibly suggesting that most or all C. perfringens virulence plasmids transfer conjugatively.
Collapse
Affiliation(s)
- Kazuaki Miyamoto
- Department of Microbiology, Wakayama Medical University School of Medicine, Kimiidera, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Sawires YS, Songer JG. Clostridium perfringens: insight into virulence evolution and population structure. Anaerobe 2005; 12:23-43. [PMID: 16701609 DOI: 10.1016/j.anaerobe.2005.10.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens is an important pathogen in veterinary and medical fields. Diseases caused by this organism are in many cases life threatening or fatal. At the same time, it is part of the ecological community of the intestinal tract of man and animals. Virulence in this species is not fully understood and it does seem that there is erratic distribution of the toxin/enzyme genes within C. perfringens population. We used the recently developed multiple-locus variable-number tandem repeat analysis (MLVA) scheme to investigate the evolution of virulence and population structure of this species. Analysis of the phylogenetic signal indicates that acquisition of the major toxin genes as well as other plasmid-borne toxin genes is a recent evolutionary event and their maintenance is essentially a function of the selective advantage they confer in certain niches under different conditions. In addition, it indicates the ability of virulent strains to cause disease in different host species. More interestingly, there is evidence that certain normal flora strains are virulent when they gain access to a different host species. Analysis of the population structure indicates that recombination events are the major tool that shapes the population and this panmixia is interrupted by frequent clonal expansion that mostly corresponds to disease processes. The signature of positive selection was detected in alpha toxin gene, suggesting the possibility of adaptive alleles on the other chromosomally encoded determinants. Finally, C. perfringens proved to have a dynamic population and availability of more genome sequences and use of comparative proteomics and animal modeling would provide more insight into the virulence of this organism.
Collapse
Affiliation(s)
- Youhanna S Sawires
- Department of Veterinary Science and Microbiology, University of Arizona, Room 207, 1117 East Lowell Street, Tucson AZ 85721, USA.
| | | |
Collapse
|
38
|
de Las Rivas B, Marcobal AE, Gómez A, Muñoz R. Characterization of ISLpl4, a functional insertion sequence in Lactobacillus plantarum. Gene 2005; 363:202-10. [PMID: 16278055 DOI: 10.1016/j.gene.2005.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/30/2005] [Accepted: 09/03/2005] [Indexed: 10/25/2022]
Abstract
A Lactobacillus plantarum strain, CECT 4645, was found to have insertions of a sequence (985 bp in length) at least in eight loci in its genome. The prototype copy (Lp1) of this insertion sequence (named ISLpl4) has one open reading frame encoding a putative protein that is 292 amino acids in length with significant levels of similarity with IS982 family transposases. Perfect 16-bp inverted repeats were found at its termini. Upon transposition, generates 8-bp direct repeats of the target sequence, but no consensus sequences could be identified at either insertion site. The ISLpl4 pattern changed over many generations on the CECT 4645 strain. This finding strongly supports our hypothesis that ISLpl4 is a functional element in L. plantarum. Some of these elements may be cryptic, since point mutation or 1-nucleotide deletions were found in their transposase encoding genes. ISLpl4 copies have been detected in Leuconostoc mesenteroides, Oenococcus oeni, and Lactobacillus sakei. An ISLpl4 copy of O. oeni contained a +1 nucleotide insertion on its transposase encoding gene and, by using an experimental system, we were able to demonstrate that this specific sequence originates a +1 programmed translational frameshifting. Although the frameshifting process reported here operates at a low rate, this description might represent the first case of a functional +1 frameshifting among IS.
Collapse
Affiliation(s)
- Blanca de Las Rivas
- Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Fisher DJ, Miyamoto K, Harrison B, Akimoto S, Sarker MR, McClane BA. Association of beta2 toxin production withClostridium perfringenstype A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol Microbiol 2005; 56:747-62. [PMID: 15819629 DOI: 10.1111/j.1365-2958.2005.04573.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clostridium perfringens type A isolates carrying an enterotoxin (cpe) gene are an important cause of human gastrointestinal diseases, including food poisoning, antibiotic-associated diarrhoea (AAD) and sporadic diarrhoea (SD). Using polymerase chain reaction (PCR), the current study determined that the cpb2 gene encoding the recently discovered beta2 toxin is present in <15% of food poisoning isolates, which typically carry a chromosomal cpe gene. However, >75% of AAD/SD isolates, which usually carry a plasmid cpe gene, tested cpb2(+) by PCR. Western blot analysis demonstrated that >97% of those cpb2(+)/cpe(+) AAD/SD isolates can produce CPB2. Additional PCR analyses, sequencing studies and pulsed field gel electrophoresis experiments determined that AAD/SD isolates carry cpb2 and cpe on the same plasmid when IS1151 sequences are present downstream of cpe, but cpb2 and cpe are located on different plasmids in AAD/SD isolates where IS1470-like sequences are present downstream of cpe. Those analyses also demonstrated that two different CPB2 variants (named CPB2h1 or CPB2h2) can be produced by AAD/SD isolates, dependent on whether IS1470-like or IS1151 sequences are present downstream of their cpe gene. CPB2h1 is approximately 10-fold more cytotoxic for CaCo-2 cells than is CPB2h2. Collectively, these results suggest that CPB2 could be an accessory toxin in C. perfringens enterotoxin (CPE)-associated AAD/SD.
Collapse
Affiliation(s)
- Derek J Fisher
- Department of Molecular Genetics and Biochemistry, Molecular Virology and Microbiology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
40
|
Domingo MC, Huletsky A, Bernal A, Giroux R, Boudreau DK, Picard FJ, Bergeron MG. Characterization of a Tn5382-like transposon containing the vanB2 gene cluster in a Clostridium strain isolated from human faeces. J Antimicrob Chemother 2005; 55:466-74. [PMID: 15731199 DOI: 10.1093/jac/dki029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES During a hospital surveillance programme to detect VRE carriers, an anaerobic vancomycin-resistant bacterial strain CCRI-9842 containing a vanB gene was isolated from a human faecal specimen. In this study, we have characterized this strain and its vanB-containing element. METHODS Strain CCRI-9842 was characterized by 16S rDNA sequencing and susceptibility testing. PCR mapping and sequencing of the vanB-containing element, as well as plasmid extraction and mating experiments, were carried out to investigate the genetic basis of vancomycin resistance in this strain. RESULTS Strain CCRI-9842 was identified as a Clostridium species closely related to Clostridium bolteae (96.8% 16S rDNA identity). This strain was resistant to a high level of vancomycin (MIC of 256 mg/L), but was susceptible to teicoplanin and ampicillin. The complete sequence of the CCRI-9842 vanB gene exhibited 99.1% identity with that of vanB2. PCR mapping and sequencing showed that the genetic element carrying vanB2 was similar to transposon Tn5382/Tn1549. This Tn5382-like transposon forms circular intermediates and is flanked on the left and right ends by repeat sequences of at least 700 bp in the opposite direction. No plasmid was detected in this strain, suggesting that the Tn5382-like transposon was integrated into the chromosome. The vancomycin resistance was not transferable to enterococci. CONCLUSIONS Our report shows for the first time the presence of a Tn5382-like transposon carrying vanB2 in a Clostridium species of the human intestinal flora. This suggests that the vanB2 Tn5382-like transposon is an important vector for the spread of vancomycin resistance in several bacterial species.
Collapse
Affiliation(s)
- M-C Domingo
- Centre de Recherche en Infectiologie de l'Université Laval, CHUQ, Pavillon CHUL, 2705 boul. Laurier, Sainte-Foy, Québec G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Miyamoto K, Wen Q, McClane BA. Multiplex PCR genotyping assay that distinguishes between isolates of Clostridium perfringens type A carrying a chromosomal enterotoxin gene (cpe) locus, a plasmid cpe locus with an IS1470-like sequence, or a plasmid cpe locus with an IS1151 sequence. J Clin Microbiol 2004; 42:1552-8. [PMID: 15071003 PMCID: PMC387591 DOI: 10.1128/jcm.42.4.1552-1558.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type A isolates carrying the enterotoxin (cpe) gene are important causes of both food poisoning and non-food-borne diarrheas in humans. In North America and Europe, food poisoning isolates were previously shown to carry a chromosomal cpe gene, while non-food-borne gastrointestinal (GI) disease isolates from those two geographic locations were found to have a plasmid cpe gene. In this report, we describe the development of an economical multiplex PCR cpe genotyping assay that works with culture lysates to distinguish among type A isolates carrying a chromosomal cpe gene, a plasmid cpe gene with a downstream IS1470-like sequence, or a plasmid cpe gene with a downstream IS1151 sequence. When this multiplex PCR assay was applied in molecular epidemiologic studies, it was found that (i) all 57 examined type A isolates with a plasmid cpe gene have either IS1470-like or IS1151 sequences downstream of the plasmid cpe gene; (ii) an IS1470-like sequence, rather than an IS1151 sequence, is more commonly present downstream of the plasmid cpe gene (particularly in North American non-food-borne human GI disease isolates); and (iii) as previously shown in the United States and Europe, isolates carrying the chromosomal cpe gene also appear to be the major cause of C. perfringens food poisoning in Japan. The superiority of this new multiplex PCR assay over existing cpe genotyping approaches should facilitate further molecular epidemiologic investigations of C. perfringens enterotoxin-associated GI illnesses and their associated cpe-positive type A isolates.
Collapse
Affiliation(s)
- Kazuaki Miyamoto
- Department of Microbiology, Wakayama Medical College, Wakayama, Japan
| | | | | |
Collapse
|
42
|
Andersen KG, Hansen TB, Knøchel S. Growth of heat-treated enterotoxin-positive Clostridium perfringens and the implications for safe cooling rates. J Food Prot 2004; 67:83-9. [PMID: 14717356 DOI: 10.4315/0362-028x-67.1.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clostridium perfringens 790-94 and 44071.C05 carrying a chromosomal and a plasmid cpe gene, respectively, were used to determine differences in heat resistance and growth characteristics between the genotypes. Heat inactivation experiments were conducted using an immersed coil apparatus. Spore germination, outgrowth, and lag phase, together named GOL time, as well as generation times were determined during constant temperatures in fluid thioglycollate (FTG) medium as well as in vacuum-packed, heat-treated minced turkey. GOL time and growth were also monitored during cooling scenarios from 65 to 10 degrees C for 3, 4, 5, 6, and 7 h in vacuum-packed, heat-treated minced turkey. Spores of strain 790-94 were approximately 10-fold more heat resistant at 85 degrees C than those of strain 44071.C05, and strain 790-94 also had a higher temperature growth range in FTG. The higher growth range for a chromosomal enterotoxin-producing CPE+ strain was confirmed using two other strains carrying a chromosomal (NCTC8239) and plasmid (945P) cpe gene. Moreover, strain 790-94 had shorter GOL times at 50 degrees C in turkey and approximately half the generation time compared with strain 44071.C05 at temperatures > or = 45 degrees C in both FTG and turkey. Strain 790-94 increased with 0.3, 1.0, 1.7, and 2.0 logs, respectively, during cooling from 65 to 10 degrees C in 4, 5, 6, and 7 h, which was significantly higher than for strain 44071.C05. A maximum acceptable cooling time of 5 h between 65 and 10 degrees C is suggested.
Collapse
Affiliation(s)
- Karin G Andersen
- Department of Dairy and Food Science, Centre for Advanced Food Studies, LMC, The Royal Veterinary and Agricultural University, Rolighedsve, 30, DK-1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
43
|
Wen Q, Miyamoto K, McClane BA. Development of a duplex PCR genotyping assay for distinguishing Clostridium perfringens type A isolates carrying chromosomal enterotoxin (cpe) genes from those carrying plasmid-borne enterotoxin (cpe) genes. J Clin Microbiol 2003; 41:1494-8. [PMID: 12682135 PMCID: PMC153926 DOI: 10.1128/jcm.41.4.1494-1498.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 5% of Clostridium perfringens type A isolates carry the cpe gene encoding the C. perfringens enterotoxin. Those cpe-positive type A isolates are important causes of food-poisoning and non-food-borne cases of diarrheas in humans, as well as certain veterinary cases of diarrhea. Previous studies have determined that the enterotoxigenic type A isolates causing both non-food-borne human gastrointestinal disease and veterinary disease carry their cpe genes on plasmids, while the type A isolates causing human food poisoning carry a chromosomal cpe gene. The present study reports on the successful development of a duplex PCR assay that can rapidly genotype enterotoxigenic type A isolates (i.e., determine whether those cpe-positive isolates carry a chromosomal or a plasmid-borne cpe gene). The availability of this rapid cpe genotyping assay capable of handling large numbers of samples provides a powerful new investigative tool for diagnostic, epidemiologic, and basic research purposes.
Collapse
Affiliation(s)
- Qiyi Wen
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
44
|
Maamar H, de Philip P, Bélaich JP, Tardif C. ISCce1 and ISCce2, two novel insertion sequences in Clostridium cellulolyticum. J Bacteriol 2003; 185:714-25. [PMID: 12533447 PMCID: PMC142815 DOI: 10.1128/jb.185.3.714-725.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two new insertion sequences, ISCce1 and ISCce2, were found to be inserted into the cipC gene of spontaneous mutants of Clostridium cellulolyticum. In these insertional mutants, the cipC gene was disrupted either by ISCce1 alone or by both ISCce1 and ISCce2. ISCce1 is 1,292 bp long and has one open reading frame. The open reading frame encodes a putative 348-amino-acid protein with significant levels of identity with putative proteins having unknown functions and with some transposases belonging to the IS481 and IS3 families. Imperfect 23-bp inverted repeats were found near the extremities of ISCce1. ISCce2 is 1,359 bp long, carries one open reading frame, and has imperfect 35-bp inverted repeats at its termini. The open reading frame encodes a putative 398-amino-acid protein. This protein shows significant levels of identity with transposases belonging to the IS256 family. Upon transposition, both ISCce1 and ISCce2 generate 8-bp direct repeats of the target sequence, but no consensus sequences could be identified at either insertion site. ISCce1 is copied at least 20 times in the genome, as assessed by Southern blot analysis. ISCce2 was found to be mostly inserted into ISCce1. In addition, as neither of the elements was detected in seven other Clostridium species, we concluded that they may be specific to the C. cellulolyticum strain used.
Collapse
Affiliation(s)
- Hédia Maamar
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036-CNRS, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
45
|
Lukinmaa S, Takkunen E, Siitonen A. Molecular epidemiology of Clostridium perfringens related to food-borne outbreaks of disease in Finland from 1984 to 1999. Appl Environ Microbiol 2002; 68:3744-9. [PMID: 12147468 PMCID: PMC124042 DOI: 10.1128/aem.68.8.3744-3749.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 05/03/2002] [Indexed: 11/20/2022] Open
Abstract
From 1975 to 1999, Clostridium perfringens caused 238 food-borne disease outbreaks in Finland, which is 20% of all such reported outbreaks during these years. The fact that C. perfringens is commonly found in human and animal stools and that it is also widespread in the environment is a disadvantage when one is searching for the specific cause of a food-borne infection by traditional methods. In order to strengthen the evidence-based diagnostics of food poisonings suspected to be caused by C. perfringens, we retrospectively investigated 47 C. perfringens isolates by PCR for the cpe gene, which encodes enterotoxin; by reversed passive latex agglutination to detect the enterotoxin production; and by pulsed-field gel electrophoresis (PFGE) to compare their genotypes after restriction of DNA by the enzymes SmaI and ApaI. The strains were isolated during 1984 to 1999 from nine food-borne outbreaks of disease originally reported as having been caused by C. perfringens. In seven of the nine outbreaks our results supported the fact that the cause was C. perfringens. Our findings emphasize the importance of a more detailed characterization of C. perfringens isolates than mere identification to the species level in order to verify the cause of an outbreak. Also, to increase the probability of finding the significant cpe-positive C. perfringens strains, it is very important to isolate and investigate more than one colony from the fecal culture of a patient and screen all these isolates for the presence of the cpe gene before further laboratory work is done.
Collapse
Affiliation(s)
- Susanna Lukinmaa
- Laboratory of Enteric Pathogens, National Public Health Institute, FIN-00300 Helsinki, Finland
| | | | | |
Collapse
|
46
|
Miyamoto K, Chakrabarti G, Morino Y, McClane BA. Organization of the plasmid cpe Locus in Clostridium perfringens type A isolates. Infect Immun 2002; 70:4261-72. [PMID: 12117935 PMCID: PMC128129 DOI: 10.1128/iai.70.8.4261-4272.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type A isolates causing food poisoning have a chromosomal enterotoxin gene (cpe), while C. perfringens type A isolates responsible for non-food-borne human gastrointestinal diseases carry a plasmid cpe gene. In the present study, the plasmid cpe locus of the type A non-food-borne-disease isolate F4969 was sequenced to design primers and probes for comparative PCR and Southern blot studies of the cpe locus in other type A isolates. Those analyses determined that the region upstream of the plasmid cpe gene is highly conserved among type A isolates carrying a cpe plasmid. The organization of the type A plasmid cpe locus was also found to be unique, as it contains IS1469 sequences located similarly to those in the chromosomal cpe locus but lacks the IS1470 sequences found upstream of IS1469 in the chromosomal cpe locus. Instead of those upstream IS1470 sequences, a partial open reading frame potentially encoding cytosine methylase (dcm) was identified upstream of IS1469 in the plasmid cpe locus of all type A isolates tested. Similar dcm sequences were also detected in several cpe-negative C. perfringens isolates carrying plasmids but not in type A isolates carrying a chromosomal cpe gene. Contrary to previous reports, sequences homologous to IS1470, rather than IS1151, were found downstream of the plasmid cpe gene in most type A isolates tested. Those IS1470-like sequences reside in about the same position but are oppositely oriented and defective relative to the IS1470 sequences found downstream of the chromosomal cpe gene. Collectively, these and previous results suggest that the cpe plasmid of many type A isolates originated from integration of a cpe-containing genetic element near the dcm sequences of a C. perfringens plasmid. The similarity of the plasmid cpe locus in many type A isolates is consistent with horizontal transfer of a common cpe plasmid among C. perfringens type A strains.
Collapse
Affiliation(s)
- Kazuaki Miyamoto
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Clostridium perfringens type A food poisoning is one of the more common in the industrialised world. This bacterium is also responsible for the rare but severe food borne necrotic enteritis. C. perfringens enterotoxin (CPE) has been shown to be the virulence factor responsible for causing the symptoms of C. perfringens type A food poisoning. CPE is a single polypeptide chain with a molecular weight of 3.5 kDa that binds to receptors on the target epithelial cells. Through a unique four-step membrane action it finally causes a breakdown in normal plasma membrane permeability properties. Genetic studies of cpe have shown that cpe can be either chromosomal or plasmid-borne and that only a small minority of the global C. perfringens population is cpe positive. CPE expression appears to be transcriptionally regulated during sporulation, at least in part, by regulatory factors that are common to all C. perfringens isolates.
Collapse
Affiliation(s)
- Sigrid Brynestad
- Department of Pharmacology, Microbiology and Food Hygiene, The Norwegian School of Veterinary Science, Oslo
| | | |
Collapse
|
48
|
Salvatore P, Pagliarulo C, Colicchio R, Zecca P, Cantalupo G, Tredici M, Lavitola A, Bucci C, Bruni CB, Alifano P. Identification, characterization, and variable expression of a naturally occurring inhibitor protein of IS1106 transposase in clinical isolates of Neisseria meningitidis. Infect Immun 2001; 69:7425-36. [PMID: 11705917 PMCID: PMC98831 DOI: 10.1128/iai.69.12.7425-7436.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transposition plays a role in the epidemiology and pathogenesis of Neisseria meningitidis. Insertion sequences are involved in reversible capsulation and insertional inactivation of virulence genes encoding outer membrane proteins. In this study, we have investigated and identified one way in which transposon IS1106 controls its own activity. We have characterized a naturally occurring protein (Tip) that inhibits the transposase. The inhibitor protein is a truncated version of the IS1106 transposase lacking the NH(2)-terminal DNA binding sequence, and it regulates transposition by competing with the transposase for binding to the outside ends of IS1106, as shown by gel shift and in vitro transposition assays. IS1106Tip mRNA is variably expressed among serogroup B meningococcal clinical isolates, and it is absent in most collection strains belonging to hypervirulent lineages.
Collapse
Affiliation(s)
- P Salvatore
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano," Università di Napoli "Federico II," Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Clostridium difficile is a well documented cause of antibiotic associated diarrhoea in hospitalised patients, but may account for only approximately 20% of all cases. This leader reviews the current knowledge and understanding of the pathogenesis, epidemiology, and diagnosis of non-food borne Clostridium perfringens diarrhoea. Although enterotoxigenic C perfringens has been implicated in some C difficile negative cases of antibiotic associated diarrhoea, C perfringens enterotoxin detection methods are not part of the routine laboratory investigation of such cases. Testing for C perfringens enterotoxin in faecal samples from patients with antibiotic associated diarrhoea and sporadic diarrhoea on a routine basis would have considerable resource implications. Therefore, criteria for initiating investigations and optimum laboratory tests need to be established. In addition, establishing the true burden of C perfringens antibiotic associated diarrhoea is important before optimum control and treatment measures can be defined.
Collapse
Affiliation(s)
- N Modi
- Department of Microbiology, The General Infirmary and University of Leeds, Old Medical School, Leeds, LS1 3EX, UK
| | | |
Collapse
|
50
|
Franken C, Haase G, Brandt C, Weber-Heynemann J, Martin S, Lämmler C, Podbielski A, Lütticken R, Spellerberg B. Horizontal gene transfer and host specificity of beta-haemolytic streptococci: the role of a putative composite transposon containing scpB and lmb. Mol Microbiol 2001; 41:925-35. [PMID: 11532154 DOI: 10.1046/j.1365-2958.2001.02563.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Beta-haemolytic streptococci are important human and animal pathogens: their genetic traits that are associated with the ability to infect human hosts remain, however, unclear. The surface protein, Lmb, mediates the adherence of Streptococcus agalactiae to human laminin. For further analysis of the corresponding gene, the adjacent genomic regions were sequenced. Lmb is localized on a putative composite transposon of 16 kb and is flanked by two copies of a novel insertion sequence element (ISSag2). It harbours the genes scpB and lmb, which are 98% identical with the respective genes of Streptococcus pyogenes. Analysis of the distribution of these genes and ISSag2 among 131 streptococcal strains revealed that all of the human isolates, but only 20% (12 of 61) of the animal isolates, contained scpB and lmb or their homologues. To investigate if the putative transposon can be mobilized, an erythromycin resistance marker was incorporated into the lmb gene of S. agalactiae. Screening for mutant strains with a regained susceptibility for erythromycin identified strains with a deletion of scpB, lmb, and one copy of ISSag2. We hypothesize that a horizontal gene transfer caused the exchange of scpB and lmb and that the ability of S. pyogenes, S. agalactiae and group C and G streptococcal strains to colonize or infect human hosts is dependent on their presence.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/physiology
- Animals
- Bacterial Adhesion
- Base Sequence
- Blotting, Southern
- DNA Transposable Elements/genetics
- DNA, Ribosomal/genetics
- Endopeptidases/genetics
- Endopeptidases/physiology
- Evolution, Molecular
- Gene Dosage
- Gene Transfer, Horizontal/genetics
- Genes, Bacterial/genetics
- Humans
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Streptococcal Infections/microbiology
- Streptococcus agalactiae/genetics
- Streptococcus agalactiae/physiology
Collapse
Affiliation(s)
- C Franken
- Institute of Medical Microbiology and National Reference Center for Streptococci, University Hospital Aachen, Pauwelsstr. 30, 52057 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|