1
|
Mahmood M, Kato N, Nakai S, Gotoh T, Nishijima W, Umehara A. Controlling organic carbon increase in oxygenated marine sediment by using decarburization slag. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120820. [PMID: 38603849 DOI: 10.1016/j.jenvman.2024.120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The chemical oxygen demand (COD) in the Seto Inland Sea, Japan has increased in the recent decades due to the increase of bottom dissolved oxygen (DO) concentration which stimulated several autotrophic microorganisms, specially sulfur oxidizing bacteria (SOB). This increased SOB activity due to the oxygenation of the bottom sediment synthesized new organic matter (OM) which contributed dissolved organic carbon to the overlying seawater. This phenomenon further led to hypoxia in some subareas in the Seto Inland Sea. Higher pH or alkaline environment has been found to be an unfavorable condition for SOB. In this research, we used decarburization slag to elevate the pH of sediment to control the SOB activity and consequently reduce OM production in the sediment. Ignition loss of the surface sediment increased from 5.14% 6.38% after 21 days of incubation with aeration; whereas the sediment showed the less ignition loss of 5.71% after 21 days when the slag was incubated in the same experimental setup. Microbial community analysis showed less SOB activity in the slag added aerated sediment which accounts for the controlled increase of OM in the sediment. An additional experiment was conducted with magnesium oxide to confirm whether elevated pH can control the OM increase in sediment due to rising DO. All these results showed that decarburization slag can elevate the pH of the sediment to a certain level which can control the SOB activity followed by controlled increase of OM in the sediment. The findings may be beneficial to control accumulation of sedimentary OM which can act as a source of organic carbon in the overlying seawater.
Collapse
Affiliation(s)
- Mukseet Mahmood
- Department of Oceanography and Coastal Sciences, Louisiana State University, Louisiana, USA
| | - Natsuki Kato
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Satoshi Nakai
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan.
| | - Takehiko Gotoh
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Wataru Nishijima
- Environmental Research and Management Center, Hiroshima University, Hiroshima, Japan
| | - Akira Umehara
- Environmental Research and Management Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Bhatnagar S, Cowley ES, Kopf SH, Pérez Castro S, Kearney S, Dawson SC, Hanselmann K, Ruff SE. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. ENVIRONMENTAL MICROBIOME 2020; 15:3. [PMID: 33902727 PMCID: PMC8066431 DOI: 10.1186/s40793-019-0348-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
Collapse
Affiliation(s)
- Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Elise S. Cowley
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO USA
| | - Sherlynette Pérez Castro
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - Sean Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Scott C. Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA USA
| | | | - S. Emil Ruff
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|
3
|
Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. CHEMENGINEERING 2019. [DOI: 10.3390/chemengineering3030076] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The desulphurisation of biogas for hydrogen sulphide (H2S) removal constitutes a significant challenge in the area of biogas research. This is because the retention of H2S in biogas presents negative consequences on human health and equipment durability. The negative impacts are reflective of the potentially fatal and corrosive consequences reported when biogas containing H2S is inhaled and employed as a boiler biofuel, respectively. Recognising the importance of producing H2S-free biogas, this paper explores the current state of research in the area of desulphurisation of biogas. In the present paper, physical–chemical, biological, in-situ, and post-biogas desulphurisation strategies were extensively reviewed as the basis for providing a qualitative comparison of the strategies. Additionally, a review of the costing data combined with an analysis of the inherent data uncertainties due underlying estimation assumptions have also been undertaken to provide a basis for quantitative comparison of the desulphurisation strategies. It is anticipated that the combination of the qualitative and quantitative comparison approaches employed in assessing the desulphurisation strategies reviewed in the present paper will aid in future decisions involving the selection of the preferred biogas desulphurisation strategy to satisfy specific economic and performance-related targets.
Collapse
|
4
|
O’Brien PA, Smith HA, Fallon S, Fabricius K, Willis BL, Morrow KM, Bourne DG. Elevated CO 2 Has Little Influence on the Bacterial Communities Associated With the pH-Tolerant Coral, Massive Porites spp. Front Microbiol 2018; 9:2621. [PMID: 30443242 PMCID: PMC6221987 DOI: 10.3389/fmicb.2018.02621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Ocean acidification (OA) as a result of increased anthropogenic CO2 input into the atmosphere carries consequences for all ocean life. Low pH can cause a shift in coral-associated microbial communities of pCO2-sensitive corals, however, it remains unknown whether the microbial community is also influenced in corals known to be more tolerant to high pCO2/low pH. This study profiles the bacterial communities associated with the tissues of the pCO2-tolerant coral, massive Porites spp., from two natural CO2 seep sites in Papua New Guinea. Amplicon sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene revealed that microbial communities remained stable across CO2 seep sites (pH = 7.44-7.85) and adjacent control sites (ambient pH = 8.0-8.1). Microbial communities were more significantly influenced by reef location than pH, with the relative abundance of dominant microbial taxa differing between reefs. These results directly contrast with previous findings that increased CO2 has a strong effect on structuring microbial communities. The stable structure of microbial communities associated with the tissues of massive Porites spp. under high pCO2/low pH conditions confirms a high degree of tolerance by the whole Porites holobiont to OA, and suggest that pH tolerant corals such as Porites may dominate reef assemblages in an increasingly acidic ocean.
Collapse
Affiliation(s)
- Paul A. O’Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Hillary A. Smith
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Stewart Fallon
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| | | | - Bette L. Willis
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Kathleen M. Morrow
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, United States
| | - David G. Bourne
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, United States
| |
Collapse
|
5
|
Geelhoed JS, Sorokin DY, Epping E, Tourova TP, Banciu HL, Muyzer G, Stams AJM, van Loosdrecht MCM. Microbial sulfide oxidation in the oxic-anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10. FEMS Microbiol Ecol 2009; 70:54-65. [PMID: 19659746 DOI: 10.1111/j.1574-6941.2009.00739.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The oxic-anoxic transition zone (OATZ) of freshwater sediments, where opposing gradients exist of reduced iron and sulfide with oxygen, creates a suitable environment for microorganisms that derive energy from the oxidation of iron or sulfide. Gradient microcosms incubated with freshwater sediment showed rapid microbial turnover of sulfide and oxygen compared with sterile systems. Microcosms with FeS as a substrate also showed growth at the OATZ and subsequent dilution series resulted in the isolation of three novel strains, of which strain J10 grows chemolithoautotrophically with reduced sulfur compounds under microaerobic conditions. All three strains are motile spirilla with bipolar flagella, related to the genera Magnetospirillum and Dechlorospirillum within the Alphaproteobacteria. Strain J10 is closely related to Magnetospirillum gryphiswaldense and is the first strain in this genus found to be capable of autotrophic growth. Thiosulfate was oxidized completely to sulfate, with a yield of 4 g protein mol(-1) thiosulfate, and autotrophic growth was evidenced by incorporation of (13)C derived from bicarbonate into biomass. A putative gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase type II was identified in strain J10, suggesting that the Calvin-Benson-Bassham cycle is used for autotrophic growth. Analogous genes are also present in other magnetospirilla, and in the autotrophically growing alphaproteobacterium magnetic vibrio MV-1.
Collapse
Affiliation(s)
- Jeanine S Geelhoed
- Department of Biotechnology, Environmental Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lloyd D. Noninvasive methods for the investigation of organisms at low oxygen levels. ADVANCES IN APPLIED MICROBIOLOGY 2003; 51:155-83. [PMID: 12236057 DOI: 10.1016/s0065-2164(02)51005-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David Lloyd
- School of Biosciences (Microbiology), Main Building, Cardiff University, P. O. Box 915, Cardiff CF10 3TL, Wales, United Kingdom
| |
Collapse
|
7
|
Massé A, Pringault O, De Wit R. Experimental study of interactions between purple and green sulfur bacteria in sandy sediments exposed to illumination deprived of near-infrared wavelengths. Appl Environ Microbiol 2002; 68:2972-81. [PMID: 12039757 PMCID: PMC123943 DOI: 10.1128/aem.68.6.2972-2981.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2001] [Accepted: 04/02/2002] [Indexed: 11/20/2022] Open
Abstract
Sedimentary biofilms of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404, the purple sulfur bacterium Thiocapsa roseopersicina strain 5811, and a mixed culture of both were cultured in fine sand (100- to 300-microm grain size) within counter gradients of oxygen and sulfide. The artificial sediments were exposed to illumination deprived of near-infrared light (NIR) by filtering out the wavelengths longer than 700 nm to simulate the critical light conditions in submerged aquatic sediments. A 16 h of visible light-8 h of dark regimen was used. We studied the effects of these light conditions on the metabolisms of and interactions between both species by comparing the single species biofilms with the mixed biofilm. The photosynthesis rates of P. aestuarii were shown to be highly limited by the imposed light conditions, because the sulfide photooxidation rates were strongly stimulated when NIR was added. T. roseopersicina performed both aerobic chemosynthesis and photosynthesis, but the photosynthesis rates were low and poorly stimulated by the addition of NIR. This species decreased the penetration depth of oxygen in the sediment by about 1 mm by actively respiring oxygen. This way, the strict anaerobe P. aestuarii was able to grow closer to the surface in the mixed culture. As a result, P. aestuarii benefited from the presence of T. roseopersicina in the mixed culture, which was reflected by an increase in the biomass. In contrast, the density of the latter species was almost completely unaffected by the interaction. Both species coexisted in a layer of the same depth in the mixed culture, and the ecological and evolutionary implications of coexistence are discussed.
Collapse
Affiliation(s)
- Astrid Massé
- Laboratoire d'Océanographie Biologique, CNRS-UMR 5805 Université Bordeaux 1, F-33120 Arcachon, France
| | | | | |
Collapse
|
8
|
Abstract
Earth is over 4,500 million years old. Massive bombardment of the planet took place for the first 500-700 million years, and the largest impacts would have been capable of sterilizing the planet. Probably until 4,000 million years ago or later, occasional impacts might have heated the ocean over 100 degrees C. Life on Earth dates from before about 3,800 million years ago, and is likely to have gone through one or more hot-ocean 'bottlenecks'. Only hyperthermophiles (organisms optimally living in water at 80-110 degrees C) would have survived. It is possible that early life diversified near hydrothermal vents, but hypotheses that life first occupied other pre-bottleneck habitats are tenable (including transfer from Mars on ejecta from impacts there). Early hyperthermophile life, probably near hydrothermal systems, may have been non-photosynthetic, and many housekeeping proteins and biochemical processes may have an original hydrothermal heritage. The development of anoxygenic and then oxygenic photosynthesis would have allowed life to escape the hydrothermal setting. By about 3,500 million years ago, most of the principal biochemical pathways that sustain the modern biosphere had evolved, and were global in scope.
Collapse
Affiliation(s)
- E G Nisbet
- Department of Geology, University of London, Egham, UK
| | | |
Collapse
|
9
|
Grassineau NV, Nisbet EG, Bickle MJ, Fowler CM, Lowry D, Mattey DP, Abell P, Martin A. Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year-old rocks of the Belingwe Belt, Zimbabwe. Proc Biol Sci 2001; 268:113-9. [PMID: 11209879 PMCID: PMC1088579 DOI: 10.1098/rspb.2000.1338] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sulphur and carbon isotopic analyses on small samples of kerogens and sulphide minerals from biogenic and non-biogenic sediments of the 2.7 x 10(9) years(Ga)-old Belingwe Greenstone Belt (Zimbabwe) imply that a complex biological sulphur cycle was in operation. Sulphur isotopic compositions display a wider range of biological fractionation than hitherto reported from the Archaean. Carbon isotopic values in kerogen record fractionations characteristic of rubisco activity methanogenesis and methylotrophy and possibly anoxygenic photosynthesis. Carbon and sulphur isotopic fractionations have been interpreted in terms of metabolic processes in 2.7 Ga prokaryote mat communities, and indicate the operation of a diverse array of metabolic processes. The results are consistent with models of early molecular evolution derived from ribosomal RNA.
Collapse
Affiliation(s)
- N V Grassineau
- Department of Geology, Royal Holloway, University of London, Surrey, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pringault O, Garcia-Pichel F. Monitoring of oxygenic and anoxygenic photosynthesis in a unicyanobacterial biofilm, grown in benthic gradient chamber. FEMS Microbiol Ecol 2000; 33:251-258. [PMID: 11098076 DOI: 10.1111/j.1574-6941.2000.tb00747.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In order to assess the role of cyanobacteria in the formation and dynamics of microenvironments in microbial mats, we studied an experimental biofilm of a benthic, halotolerant strain, belonging to the Halothece cluster of cyanobacteria. The 12-week-old biofilm developed in a sand core incubated in a benthic gradient chamber under opposing oxygen and sulfide vertical concentration gradients. At the biofilm surface, and as a response to high light irradiances, specific accumulation of myxoxanthophyll was detected in the cells, consistent with the typical vertical distribution of sun versus shade species in nature. The oxygen turn-over in terms of gross photosynthesis and net productivity rates was comparable to oxygen dynamics in natural microbial mats. Sulfide blocked O(2) production at low irradiances in deep biofilm layers but the dynamics of H(2)S and pH demonstrated that sulfide removal by anoxygenic photosynthesis was taking place. At higher irradiances, as soon as H(2)S was depleted, the cells switched to oxygenic photosynthesis as has been postulated for natural communities. The similarities between this experimental biofilm and natural benthic microbial mats demonstrate the central role of cyanobacteria in shaping microenvironmental gradients and processes in other complex microbial communities.
Collapse
Affiliation(s)
- O Pringault
- Max-Planck-Institute for Marine Microbiology, Microsensor Research Group, Celsiusstraße 1, D-28359, Bremen, Germany
| | | |
Collapse
|
11
|
Affiliation(s)
- E.G. Nisbet
- Department of Geology, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
| | - C.M.R. Fowler
- Department of Geology, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
| |
Collapse
|
12
|
Pringault O, Epping E, Guyoneaud R, Khalili A, Kühl M. Dynamics of anoxygenic photosynthesis in an experimental green sulphur bacteria biofilm. Environ Microbiol 1999; 1:295-305. [PMID: 11207748 DOI: 10.1046/j.1462-2920.1999.00035.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamics of sulphide oxidation in an experimental biofilm of the green sulphur bacterium, Prosthecochloris aestuarii, were studied using a newly developed light-dark cycling procedure. The biofilm was grown for 6 weeks in a benthic gradient chamber, in which gradients of light, sulphide and oxygen were imposed experimentally. The H2S concentrations and pH were measured with microsensors as a function of depth in the biofilm and of time after a change in illumination status. The sulphide oxidation rates were calculated as a function of time and depth in the biofilm using a numerical procedure to solve the non-stationary general diffusion equation. A close agreement was found between the areal rates of anoxygenic photosynthesis during the cycling procedure and the steady state before the cycling experiment. For the different layers of the biofilm, the maximum activity was observed after 10-12min of light exposure. After this maximum, sulphide oxidation decreased concomitantly with sulphide concentration, indicating sulphide limitation of anoxygenic photosynthesis. This lag time limits the application of the standard dark-light shift method with a brief light exposure of a few seconds and, therefore, the numerical procedure described in this study enables the depth distribution of anoxygenic photosynthesis rates in microbial mats to be determined more accurately.
Collapse
Affiliation(s)
- O Pringault
- Max Planck Institute for Marine Microbiology, Microsensor Research Group, Bremen, Germany. opringau@mpi-bremen
| | | | | | | | | |
Collapse
|
13
|
Abstract
Recent technical developments in the field of molecular biology and microsensors are beginning to enable microbiologists to study the abundance, localization and activity of microorganisms in situ. The various new methods on their own bear high potential but it is the combination of studies on structure and function of microbial communities that will yield the most detailed insights in the way microorganisms operate in nature.
Collapse
Affiliation(s)
- R Amann
- Junior Group for Molecular Ecology, Max-Planck-Institut für marine Mikrobiologie, Celsiusstrasse 1, D-28359 Bremen, Germany.
| | | |
Collapse
|