1
|
Huber ST, Jakobi AJ. Structural biology of microbial gas vesicles: historical milestones and current knowledge. Biochem Soc Trans 2024; 52:205-215. [PMID: 38329160 PMCID: PMC10903477 DOI: 10.1042/bst20230396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Gas vesicles mediate buoyancy-based motility in aquatic bacteria and archaea and are the only protein-based structures known to enclose a gas-filled volume. Their unique physicochemical properties and ingenious architecture rank them among the most intriguing macromolecular assemblies characterised to date. This review covers the 60-year journey in quest for a high-resolution structural model of gas vesicles, first highlighting significant strides made in establishing the detailed ultrastructure of gas vesicles through transmission electron microscopy, X-ray fibre diffraction, atomic force microscopy, and NMR spectroscopy. We then survey the recent progress in cryogenic electron microscopy studies of gas vesicles, which eventually led to a comprehensive atomic model of the mature assembly. Synthesising insight from these structures, we examine possible mechanisms of gas vesicle biogenesis and growth, presenting a testable model to guide future experimental work. We conclude by discussing future directions in the structural biology of gas vesicles, particularly considering advancements in AI-driven structure prediction.
Collapse
Affiliation(s)
- Stefan T. Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Arjen J. Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
2
|
Dutka P, Metskas LA, Hurt RC, Salahshoor H, Wang TY, Malounda D, Lu GJ, Chou TF, Shapiro MG, Jensen GJ. Structure of Anabaena flos-aquae gas vesicles revealed by cryo-ET. Structure 2023; 31:518-528.e6. [PMID: 37040766 PMCID: PMC10185304 DOI: 10.1016/j.str.2023.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023]
Abstract
Gas vesicles (GVs) are gas-filled protein nanostructures employed by several species of bacteria and archaea as flotation devices to enable access to optimal light and nutrients. The unique physical properties of GVs have led to their use as genetically encodable contrast agents for ultrasound and MRI. Currently, however, the structure and assembly mechanism of GVs remain unknown. Here we employ cryoelectron tomography to reveal how the GV shell is formed by a helical filament of highly conserved GvpA subunits. This filament changes polarity at the center of the GV cylinder, a site that may act as an elongation center. Subtomogram averaging reveals a corrugated pattern of the shell arising from polymerization of GvpA into a β sheet. The accessory protein GvpC forms a helical cage around the GvpA shell, providing structural reinforcement. Together, our results help explain the remarkable mechanical properties of GVs and their ability to adopt different diameters and shapes.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lauren Ann Metskas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hossein Salahshoor
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Pasadena, CA 91125, USA.
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; College of Physical and Mathematical Sciences, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
3
|
Karan R, Renn D, Nozue S, Zhao L, Habuchi S, Allers T, Rueping M. Bioengineering of air-filled protein nanoparticles by genetic and chemical functionalization. J Nanobiotechnology 2023; 21:108. [PMID: 36966297 PMCID: PMC10039352 DOI: 10.1186/s12951-023-01866-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Various bacteria and archaea, including halophilic archaeon Halobacterium sp. NRC-1 produce gas vesicle nanoparticles (GVNPs), a unique class of stable, air-filled intracellular proteinaceous nanostructures. GVNPs are an attractive tool for biotechnological applications due to their readily production, purification, and unique physical properties. GVNPs are spindle- or cylinder-shaped, typically with a length of 100 nm to 1.5 μm and a width of 30-250 nm. Multiple monomeric subunits of GvpA and GvpC proteins form the GVNP shell, and several additional proteins are required as minor structural or assembly proteins. The haloarchaeal genetic system has been successfully used to produce and bioengineer GVNPs by fusing several foreign proteins with GvpC and has shown various applications, such as biocatalysis, diagnostics, bioimaging, drug delivery, and vaccine development. RESULTS We demonstrated that native GvpC can be removed in a low salt buffer during the GVNP purification, leaving the GvpA-based GVNP's shell intact and stable under physiological conditions. Here, we report a genetic engineering and chemical modification approach for functionalizing the major GVNP protein, GvpA. This novel approach is based on combinatorial cysteine mutagenesis within GvpA and genetic expansion of the N-terminal and C-terminal regions. Consequently, we generated GvpA single, double, and triple cysteine variant libraries and investigated the impact of mutations on the structure and physical shape of the GVNPs formed. We used a thiol-maleimide chemistry strategy to introduce the biotechnological relevant activity by maleimide-activated streptavidin-biotin and maleimide-activated SpyTag003-SpyCatcher003 mediated functionalization of GVNPs. CONCLUSION The merger of these genetic and chemical functionalization approaches significantly extends these novel protein nanomaterials' bioengineering and functionalization potential to assemble catalytically active proteins, biomaterials, and vaccines onto one nanoparticle in a modular fashion.
Collapse
Affiliation(s)
- Ram Karan
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, 23955-6900, Saudi Arabia.
| | - Dominik Renn
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| | - Shuho Nozue
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lingyun Zhao
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Satoshi Habuchi
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, 23955-6900, Saudi Arabia.
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Forckenbeckstrasse 55, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Huber ST, Terwiel D, Evers WH, Maresca D, Jakobi AJ. Cryo-EM structure of gas vesicles for buoyancy-controlled motility. Cell 2023; 186:975-986.e13. [PMID: 36868215 PMCID: PMC9994262 DOI: 10.1016/j.cell.2023.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
Gas vesicles are gas-filled nanocompartments that allow a diverse group of bacteria and archaea to control their buoyancy. The molecular basis of their properties and assembly remains unclear. Here, we report the 3.2 Å cryo-EM structure of the gas vesicle shell made from the structural protein GvpA that self-assembles into hollow helical cylinders closed off by cone-shaped tips. Two helical half shells connect through a characteristic arrangement of GvpA monomers, suggesting a mechanism of gas vesicle biogenesis. The fold of GvpA features a corrugated wall structure typical for force-bearing thin-walled cylinders. Small pores enable gas molecules to diffuse across the shell, while the exceptionally hydrophobic interior surface effectively repels water. Comparative structural analysis confirms the evolutionary conservation of gas vesicle assemblies and demonstrates molecular features of shell reinforcement by GvpC. Our findings will further research into gas vesicle biology and facilitate molecular engineering of gas vesicles for ultrasound imaging.
Collapse
Affiliation(s)
- Stefan T Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CD, the Netherlands
| | - Dion Terwiel
- Department of Imaging Physics, Delft University of Technology, Delft 2628CD, the Netherlands
| | - Wiel H Evers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CD, the Netherlands
| | - David Maresca
- Department of Imaging Physics, Delft University of Technology, Delft 2628CD, the Netherlands.
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CD, the Netherlands.
| |
Collapse
|
5
|
Zhao TY, Dunbar M, Keten S, Patankar NA. The buckling-condensation mechanism driving gas vesicle collapse. SOFT MATTER 2023; 19:1174-1185. [PMID: 36651808 DOI: 10.1039/d2sm00493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gas vesicles (GVs) are proteinaceous cylindrical shells found within bacteria or archea growing in aqueous environments and are composed primarily of two proteins, gas vesicle protein A and C (GvpA and GvpC). GVs exhibit strong performance as next-generation ultrasound contrast agents due to their gas-filled interior, tunable collapse pressure, stability in vivo and functionalizable exterior. However, the exact mechanism leading to GV collapse remains inconclusive, which leads to difficulty in predicting collapse pressures for different species of GVs and in extending favorable nonlinear response regimes. Here, we propose a two stage mechanism leading to GV loss of echogenicity and rupture under hydrostatic pressure: elastic buckling of the cylindrical shell coupled with condensation driven weakening of the GV membrane. Our goal is to therefore test whether the final fracture of the GV membrane occurs by the interplay of both mechanisms or purely through buckling failure as previously believed. To do so, we (1) compare the theoretical condensation and buckling pressures with that for experimental GV collapse and (2) describe how condensation can lead to plastic buckling failure. GV shell properties that are necessary input to this theoretical description, such as the elastic moduli and wettability of GvpA, are determined using molecular dynamics simulations of a novel structural model of GvpA that better represents the hydrophobic core. For GVs that are not reinforced by GvpC, this analytical framework shows that the experimentally observed pressures resulting in loss of echogenicity coincide with both the elastic buckling and condensation pressure regimes. We also found that the stress strain curve for GvpA wetted on both the interior and exterior exhibits a loss of mechanical stability compared to GvpA only wetted on the exterior by the bulk solution. We identify a pressure vs. vesicle size regime where condensation can occur prior to buckling, which may preclude nonlinear shell buckling responses in contrast imaging.
Collapse
Affiliation(s)
- Tom Y Zhao
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Martha Dunbar
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Sinan Keten
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Neelesh A Patankar
- Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| |
Collapse
|
6
|
Jost A, Pfeifer F. Interaction of the gas vesicle proteins GvpA, GvpC, GvpN, and GvpO of Halobacterium salinarum. Front Microbiol 2022; 13:971917. [PMID: 35966690 PMCID: PMC9372576 DOI: 10.3389/fmicb.2022.971917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
|
7
|
Jost A, Knitsch R, Völkner K, Pfeifer F. Effect of Mutations in GvpJ and GvpM on Gas Vesicle Formation of Halobacterium salinarum. Front Microbiol 2022; 12:794240. [PMID: 34975818 PMCID: PMC8716928 DOI: 10.3389/fmicb.2021.794240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
The two haloarchaeal proteins, GvpM and GvpJ, are homologous to GvpA, the major gas vesicle structural protein. All three are hydrophobic and essential for gas vesicle formation. The effect of mutations in GvpJ and GvpM was studied in Haloferax volcanii transformants by complementing the respective mutated gene with the remaining gvp genes and inspecting the cells for the presence of gas vesicles (Vac+). In case of GvpJ, 56 of 66 substitutions analyzed yielded Vac– ΔJ + Jmut transformants, indicating that GvpJ is very sensitive to alterations, whereas ten of the 38 GvpM variants resulted in Vac– ΔM + Mmut transformants. The variants were also tested by split-GFP for their ability to interact with their partner protein GvpL. Some of the alterations leading to a Vac– phenotype affected the J/L or M/L interaction. Also, the interactions J/A and J/M were studied using fragments to exclude an unspecific aggregation of these hydrophobic proteins. Both fragments of GvpJ interacted with the M1–25 and M60–84 fragments of GvpM, and fragment J1–56 of GvpJ interacted with the N-terminal fragment A1–22 of GvpA. A comparison of the results on the three homologous proteins indicates that despite their relatedness, GvpA, GvpJ, and GvpM have unique features and cannot substitute each other.
Collapse
Affiliation(s)
- Alisa Jost
- Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Regine Knitsch
- Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Kerstin Völkner
- Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Wang R, Zhang L, Xie M, Wang L, Jin Q, Chen Y, Xie Y, He M, Zhu Y, Xu L, Han Z, Chen D. Biogenic Gas Vesicles for Ultrasound Imaging and Targeted Therapeutics. Curr Med Chem 2021; 29:1316-1330. [PMID: 34225604 DOI: 10.2174/0929867328666210705145642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/01/2021] [Accepted: 05/15/2021] [Indexed: 11/22/2022]
Abstract
Ultrasound is not only the most widely used medical imaging mode for diagnostics owing to its real-time, non-radiation, portable, and low-cost merits, but also a promising targeted drug/gene delivery technique by exhibiting a series of powerful bioeffects. The development of micron-sized or nanometer-sized ultrasound agents or delivery carriers further makes ultrasound a distinctive modality in accurate diagnosis and effective treatment. In this review, we introduce one kind of unique biogenic gas-filled protein nanostructures called gas vesicles, presenting some unique characteristics than the conventional microbubbles. Gas vesicles can not only serve as ultrasound contrast agents with innovative imaging methods such as cross-amplitude modulation harmonic imaging but also can further be adjusted and optimized via genetic engineering techniques. Moreover, they could not only serve as acoustic gene reporters, acoustic biosensors to monitor the cell metabolism, but also serve as cavitation nuclei and drug carriers for therapeutic purposes. In this study, we focus on the latest development and applications in the area of ultrasound imaging and targeted therapeutics, and also provide a brief introduction of the corresponding mechanisms. In summary, these biogenic gas vesicles show some advantages over conventional MBs that deserve more efforts to promote their development.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lufang Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuji Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengrong He
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Zhu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Xu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyang Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Dutka P, Malounda D, Metskas LA, Chen S, Hurt RC, Lu GJ, Jensen GJ, Shapiro MG. Measuring gas vesicle dimensions by electron microscopy. Protein Sci 2021; 30:1081-1086. [PMID: 33641210 PMCID: PMC8040859 DOI: 10.1002/pro.4056] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Gas vesicles (GVs) are cylindrical or spindle-shaped protein nanostructures filled with air and used for flotation by various cyanobacteria, heterotrophic bacteria, and Archaea. Recently, GVs have gained interest in biotechnology applications due to their ability to serve as imaging agents and actuators for ultrasound, magnetic resonance and several optical techniques. The diameter of GVs is a crucial parameter contributing to their mechanical stability, buoyancy function and evolution in host cells, as well as their properties in imaging applications. Despite its importance, reported diameters for the same types of GV differ depending on the method used for its assessment. Here, we provide an explanation for these discrepancies and utilize electron microscopy (EM) techniques to accurately estimate the diameter of the most commonly studied types of GVs. We show that during air drying on the EM grid, GVs flatten, leading to a ~1.5-fold increase in their apparent diameter. We demonstrate that GVs' diameter can be accurately determined by direct measurements from cryo-EM samples or alternatively indirectly derived from widths of flat collapsed and negatively stained GVs. Our findings help explain the inconsistency in previously reported data and provide accurate methods to measure GVs dimensions.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Dina Malounda
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Lauren Ann Metskas
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Songye Chen
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Beckman InstituteCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Robert C. Hurt
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - George J. Lu
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Present address:
Department of BioengineeringRice UniversityHoustonTX77030USA
| | - Grant J. Jensen
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Department of Chemistry and BiochemistryBrigham Young UniversityProvoUtahUSA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
10
|
Völkner K, Jost A, Pfeifer F. Accessory Gvp Proteins Form a Complex During Gas Vesicle Formation of Haloarchaea. Front Microbiol 2020; 11:610179. [PMID: 33281806 PMCID: PMC7688916 DOI: 10.3389/fmicb.2020.610179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Halobacterium salinarum forms gas vesicles consisting of a protein wall surrounding a gas-filled space. The hydrophobic 8-kDa protein GvpA is the major constituent of the ribbed wall, stabilized by GvpC at the exterior surface. In addition, eight accessory Gvp proteins are involved, encoded by gvpFGHIJKLM that are co-transcribed in early stages of growth. Most of these proteins are essential, but their functions are not yet clear. Here we investigate whether GvpF through GvpM interact. Pull-down experiments performed in Haloferax volcanii with the cellulose-binding-domain as tag suggested many interactions, and most of these were supported by the split-GFP analyses. The latter study indicated that GvpL attracted all other accessory Gvp, and the related GvpF bound besides GvpL also GvpG, GvpH and GvpI. A strong interaction was found between GvpH and GvpI. GvpG showed affinity to GvpF and GvpL, whereas GvpJ, GvpK and GvpM bound GvpL only. Using GvpA for similar analyses yielded GvpF as the only interaction partner. The contact site of GvpF was confined to the N-terminal half of GvpA and subsequently mapped to certain amino acids. Taken together, our results support the idea that the accessory Gvp form a complex early in gas-vesicle assembly attracting GvpA via GvpF.
Collapse
Affiliation(s)
- Kerstin Völkner
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Alisa Jost
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
11
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
12
|
Hill AM, Salmond GPC. Microbial gas vesicles as nanotechnology tools: exploiting intracellular organelles for translational utility in biotechnology, medicine and the environment. MICROBIOLOGY (READING, ENGLAND) 2020; 166:501-509. [PMID: 32324529 PMCID: PMC7376271 DOI: 10.1099/mic.0.000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
A range of bacteria and archaea produce gas vesicles as a means to facilitate flotation. These gas vesicles have been purified from a number of species and their applications in biotechnology and medicine are reviewed here. Halobacterium sp. NRC-1 gas vesicles have been engineered to display antigens from eukaryotic, bacterial and viral pathogens. The ability of these recombinant nanoparticles to generate an immune response has been quantified both in vitro and in vivo. These gas vesicles, along with those purified from Anabaena flos-aquae and Bacillus megaterium, have been developed as an acoustic reporter system. This system utilizes the ability of gas vesicles to retain gas within a stable, rigid structure to produce contrast upon exposure to ultrasound. The susceptibility of gas vesicles to collapse when exposed to excess pressure has also been proposed as a biocontrol mechanism to disperse cyanobacterial blooms, providing an environmental function for these structures.
Collapse
Affiliation(s)
- Amy M. Hill
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - George P. C. Salmond
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
13
|
Winter K, Born J, Pfeifer F. Interaction of Haloarchaeal Gas Vesicle Proteins Determined by Split-GFP. Front Microbiol 2018; 9:1897. [PMID: 30174663 PMCID: PMC6107691 DOI: 10.3389/fmicb.2018.01897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/27/2018] [Indexed: 11/24/2022] Open
Abstract
Several extremely halophilic archaea produce proteinaceous gas vesicles consisting of a gas-permeable protein wall constituted mainly by the gas vesicle proteins GvpA and GvpC. Eight additional accessory Gvp are involved in gas vesicle formation and might assist the assembly of this structure. Investigating interactions of halophilic proteins in vivo requires a method functioning at 2.5–5 M salt, and the split-GFP method was tested for this application. The two fragments NGFP and CGFP do not assemble a fluorescent GFP protein when produced in trans, but they assemble a fluorescent GFP when fused to interacting proteins. To adapt the method to high salt, we used the genes encoding two fragments of the salt-stable mGFP2 to construct four vector plasmids that allow an N- or C-terminal fusion to the two proteins of interest. To avoid a hindrance in the assembly of mGFP2, the fusion included a linker of 15 or 19 amino acids. The small gas vesicle accessory protein GvpM and its interaction partners GvpH, GvpJ, and GvpL were investigated by split-GFP. Eight different combinations were studied in each case, and fluorescent transformants indicative of an interaction were observed. We also determined that GvpF interacts with GvpM and uncovered the location of the interaction site of each of these proteins in GvpM. GvpL mainly interacted with the N-terminal 25-amino acid fragment of GvpM, whereas the other three proteins bound predominately to the C-terminal portion. Overall, the split-GFP method is suitable to investigate the interaction of two proteins in haloarchaeal cells. In future experiments, we will study the interactions of the remaining Gvps and determine whether some or all of these accessory Gvp proteins form (a) protein complex(es) during early stages of the assembly of the gas vesicle wall.
Collapse
Affiliation(s)
- Kerstin Winter
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Johannes Born
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
14
|
Maresca D, Lakshmanan A, Abedi M, Bar-Zion A, Farhadi A, Lu GJ, Szablowski JO, Wu D, Yoo S, Shapiro MG. Biomolecular Ultrasound and Sonogenetics. Annu Rev Chem Biomol Eng 2018; 9:229-252. [PMID: 29579400 PMCID: PMC6086606 DOI: 10.1146/annurev-chembioeng-060817-084034] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Visualizing and modulating molecular and cellular processes occurring deep within living organisms is fundamental to our study of basic biology and disease. Currently, the most sophisticated tools available to dynamically monitor and control cellular events rely on light-responsive proteins, which are difficult to use outside of optically transparent model systems, cultured cells, or surgically accessed regions owing to strong scattering of light by biological tissue. In contrast, ultrasound is a widely used medical imaging and therapeutic modality that enables the observation and perturbation of internal anatomy and physiology but has historically had limited ability to monitor and control specific cellular processes. Recent advances are beginning to address this limitation through the development of biomolecular tools that allow ultrasound to connect directly to cellular functions such as gene expression. Driven by the discovery and engineering of new contrast agents, reporter genes, and bioswitches, the nascent field of biomolecular ultrasound carries a wave of exciting opportunities.
Collapse
Affiliation(s)
- David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Anupama Lakshmanan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mohamad Abedi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jerzy O Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Di Wu
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
15
|
Botas A, Pérez-Redondo R, Rodríguez-García A, Álvarez-Álvarez R, Yagüe P, Manteca A, Liras P. ArgR of Streptomyces coelicolor Is a Pleiotropic Transcriptional Regulator: Effect on the Transcriptome, Antibiotic Production, and Differentiation in Liquid Cultures. Front Microbiol 2018; 9:361. [PMID: 29545785 PMCID: PMC5839063 DOI: 10.3389/fmicb.2018.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
ArgR is a well-characterized transcriptional repressor controlling the expression of arginine and pyrimidine biosynthetic genes in bacteria. In this work, the biological role of Streptomyces coelicolor ArgR was analyzed by comparing the transcriptomes of S. coelicolor ΔargR and its parental strain, S. coelicolor M145, at five different times over a 66-h period. The effect of S. coelicolor ArgR was more widespread than that of the orthologous protein of Escherichia coli, affecting the expression of 1544 genes along the microarray time series. This S. coelicolor regulator repressed the expression of arginine and pyrimidine biosynthetic genes, but it also modulated the expression of genes not previously described to be regulated by ArgR: genes involved in nitrogen metabolism and nitrate utilization; the act, red, and cpk genes for antibiotic production; genes for the synthesis of the osmotic stress protector ectoine; genes related to hydrophobic cover formation and sporulation (chaplins, rodlins, ramR, and whi genes); all the cwg genes encoding proteins for glycan cell wall biosynthesis; and genes involved in gas vesicle formation. Many of these genes contain ARG boxes for ArgR binding. ArgR binding to seven new ARG boxes, located upstream or near the ectA-ectB, afsS, afsR, glnR, and redH genes, was tested by DNA band-shift assays. These data and those of previously assayed fragments permitted the construction of an improved model of the ArgR binding site. Interestingly, the overexpression of sporulation genes observed in the ΔargR mutant in our culture conditions correlated with a sporulation-like process, an uncommon phenotype.
Collapse
Affiliation(s)
- Alma Botas
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain.,Instituto de Biotecnología de León, León, Spain
| | | | - Antonio Rodríguez-García
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain.,Instituto de Biotecnología de León, León, Spain
| | - Rubén Álvarez-Álvarez
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
16
|
Engelhardt H, Bollschweiler D. Cryo-Electron Microscopy of Extremely Halophilic Microbes. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Knitsch R, Schneefeld M, Weitzel K, Pfeifer F. Mutations in the major gas vesicle protein GvpA and impacts on gas vesicle formation in Haloferax volcanii. Mol Microbiol 2017; 106:530-542. [PMID: 28898511 DOI: 10.1111/mmi.13833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 11/28/2022]
Abstract
Gas vesicles are proteinaceous, gas-filled nanostructures produced by some bacteria and archaea. The hydrophobic major structural protein GvpA forms the ribbed gas vesicle wall. An in-silico 3D-model of GvpA of the predicted coil-α1-β1-β2-α2-coil structure is available and implies that the two β-chains constitute the hydrophobic interior surface of the gas vesicle wall. To test the importance of individual amino acids in GvpA we performed 85 single substitutions and analyzed these variants in Haloferax volcanii ΔA + Amut transformants for their ability to form gas vesicles (Vac+ phenotype). In most cases, an alanine substitution of a non-polar residue did not abolish gas vesicle formation, but the replacement of single non-polar by charged residues in β1 or β2 resulted in Vac- transformants. A replacement of residues near the β-turn altered the spindle-shape to a cylindrical morphology of the gas vesicles. Vac- transformants were also obtained with alanine substitutions of charged residues of helix α1 suggesting that these amino acids form salt-bridges with another GvpA monomer. In helix α2, only the alanine substitution of His53 or Tyr54, led to Vac- transformants, whereas most other substitutions had no effect. We discuss our results in respect to the GvpA structure and data available from solid-state NMR.
Collapse
Affiliation(s)
- Regine Knitsch
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Marie Schneefeld
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Kerstin Weitzel
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| |
Collapse
|
18
|
Tashiro Y, Monson RE, Ramsay JP, Salmond GPC. Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria. Environ Microbiol 2016; 18:1264-76. [PMID: 26743231 PMCID: PMC4982088 DOI: 10.1111/1462-2920.13203] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.,Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8561, Japan
| | - Rita E Monson
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Joshua P Ramsay
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.,Curtin Health Innovation Research Institute Biosciences Precinct, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
19
|
DasSarma S, DasSarma P. Gas Vesicle Nanoparticles for Antigen Display. Vaccines (Basel) 2015; 3:686-702. [PMID: 26350601 PMCID: PMC4586473 DOI: 10.3390/vaccines3030686] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| |
Collapse
|
20
|
Haloarchaea and the formation of gas vesicles. Life (Basel) 2015; 5:385-402. [PMID: 25648404 PMCID: PMC4390858 DOI: 10.3390/life5010385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes.
Collapse
|
21
|
Xu BY, Dai YN, Zhou K, Liu YT, Sun Q, Ren YM, Chen Y, Zhou CZ. Structure of the gas vesicle protein GvpF from the cyanobacteriumMicrocystis aeruginosa. ACTA ACUST UNITED AC 2014; 70:3013-22. [DOI: 10.1107/s1399004714021312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/25/2014] [Indexed: 11/11/2022]
Abstract
Gas vesicles are gas-filled proteinaceous organelles that provide buoyancy for bacteria and archaea. A gene cluster that is highly conserved in various species encodes about 8–14 proteins (Gvp proteins) that are involved in the formation of gas vesicles. Here, the first crystal structure of the gas vesicle protein GvpF fromMicrocystis aeruginosaPCC 7806 is reported at 2.7 Å resolution. GvpF is composed of two structurally distinct domains (the N-domain and C-domain), both of which display an α+β class overall structure. The N-domain adopts a novel fold, whereas the C-domain has a modified ferredoxin fold with an apparent variation owing to an extension region consisting of three sequential helices. The two domains pack against each otherviainteractions with a C-terminal tail that is conserved among cyanobacteria. Taken together, it is concluded that the overall architecture of GvpF presents a novel fold. Moreover, it is shown that GvpF is most likely to be a structural protein that is localized at the gas-facing surface of the gas vesicle by immunoblotting and immunogold labelling-based tomography.
Collapse
|
22
|
Tavlaridou S, Winter K, Pfeifer F. The accessory gas vesicle protein GvpM of haloarchaea and its interaction partners during gas vesicle formation. Extremophiles 2014; 18:693-706. [PMID: 24846741 DOI: 10.1007/s00792-014-0650-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/27/2014] [Indexed: 11/29/2022]
Abstract
Gas vesicles consist predominantly of the hydrophobic GvpA and GvpC, and the accessory proteins GvpF through GvpM are required in minor amounts during formation. GvpM and its putative interaction partners were investigated. GvpM interacted with GvpH, GvpJ and GvpL, but not with GvpG. Interactions were also observed in vivo in Haloferax volcanii transformants using Gvp fusions to the green fluorescent protein smGFP. Cells producing the hydrophobic M(GF)P contained a single fluorescent aggregate per cell, whereas cells containing L(GFP) or H(GFP) were fully fluorescent. The soluble L(GFP) formed stable co-aggregates with GvpM in L(GFP)M transformants, but the presence of GvpH resulted in the absence of M(GF)P foci in HM(GFP) transformants. Substitution- and deletion mutants of GvpM determined functionally important amino acids (aa). Substitution of a polar by a non-polar aa in the N-terminal region of GvpM had no effect, whereas a substitution of a non-polar by a polar aa in this region inhibited gas vesicle formation in transformants. Substitutions in region 44-48 of GvpM strongly reduced the number of gas vesicles, and deletions at the N-terminus resulted in Vac(-) transformants. Gas vesicle morphology was not affected by any mutation, implying that GvpM is required during initial stages of gas vesicle assembly.
Collapse
Affiliation(s)
- Stella Tavlaridou
- Mikrobiologie und Archaea, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | | | | |
Collapse
|
23
|
Daviso E, Belenky M, Griffin RG, Herzfeld J. Gas vesicles across kingdoms: a comparative solid-state nuclear magnetic resonance study. J Mol Microbiol Biotechnol 2013; 23:281-9. [PMID: 23920491 DOI: 10.1159/000351340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The buoyancy organelles of aquatic microorganisms have to meet stringent specifications: allowing gases to equilibrate freely across the proteinaceous shell, preventing the condensation of water vapor inside the hollow cavity and resisting collapse under hydrostatic pressures that vary with column depth. These properties are provided by the 7- to 8-kDa gas vesicle protein A (GvpA), repeats of which form all but small, specialized portions of the shell. Magic angle spinning nuclear magnetic resonance is uniquely capable of providing high-resolution information on the fold and assembly of GvpA. Here we compare results for the gas vesicles of the haloarchaea Halobacterium salinarum with those obtained previously for the cyanobacterium Anabaena flos-aquae. The data suggest that the two organisms follow similar strategies for avoiding water condensation. On the other hand, in its relatively shallow habitat, H. salinarum is able to avoid collapse with a less costly GvpA fold than is adopted by A. flos-aquae.
Collapse
Affiliation(s)
- Eugenio Daviso
- Department of Chemistry, Brandeis University, Waltham, Mass. 02454-9110, USA
| | | | | | | |
Collapse
|
24
|
Tavlaridou S, Faist K, Weitzel K, Pfeifer F. Effect of an overproduction of accessory Gvp proteins on gas vesicle formation in Haloferax volcanii. Extremophiles 2013; 17:277-87. [PMID: 23338749 DOI: 10.1007/s00792-013-0515-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/04/2013] [Indexed: 11/29/2022]
Abstract
Gas vesicle formation in haloarchaea requires the expression of the p-vac region consisting of 14 genes, gvpACNO and gvpDEFGHIJKLM. Expression of gvpFGHIJKLM leads to essential accessory proteins formed in minor amounts. An overexpression of gvpG, gvpH or gvpM in addition to p-vac inhibited gas vesicle formation, whereas large amounts of all other Gvp proteins did not disturb the synthesis. The unbalanced expression and in particular an aggregation of the overproduced Gvp with other accessory Gvp derived from p-vac could be a reason for the inhibition. Western analyses demonstrated that the hydrophobic GvpM (and GvpJ) indeed form multimers. Fluorescent dots of GvpM-GFP were seen in cells in vivo underlining an aggregation of GvpM. In search for proteins neutralizing the inhibitory effect in case of GvpM, p-vac +pGM(ex), +pHM(ex), +pJM(ex), and +pLM(ex) transformants were constructed. The inhibitory effect of GvpM on gas vesicle formation was suppressed by GvpH, GvpJ or GvpL, but not by GvpG. Western analyses demonstrated that pHM(ex) and pJM(ex) transformants contained additional larger protein bands when probed with an antiserum raised against GvpH or GvpJ, implying interactions. The balanced amount of GvpM-GvpH and GvpM-GvpJ appears to be important during gas vesicle genesis.
Collapse
Affiliation(s)
- Stella Tavlaridou
- Mikrobiologie und Archaea, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstrasse 10, Darmstadt, Germany
| | | | | | | |
Collapse
|
25
|
Life at High Salt and Low Oxygen: How Do the Halobacteriaceae Cope with Low Oxygen Concentrations in Their Environment? CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Oren A. The function of gas vesicles in halophilic archaea and bacteria: theories and experimental evidence. Life (Basel) 2012; 3:1-20. [PMID: 25371329 PMCID: PMC4187190 DOI: 10.3390/life3010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 01/15/2023] Open
Abstract
A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
27
|
|
28
|
Childs TS, Webley WC. In vitro assessment of halobacterial gas vesicles as a Chlamydia vaccine display and delivery system. Vaccine 2012; 30:5942-8. [DOI: 10.1016/j.vaccine.2012.07.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 07/18/2012] [Indexed: 12/30/2022]
|
29
|
Modeling of the major gas vesicle protein, GvpA: from protein sequence to vesicle wall structure. J Struct Biol 2012; 179:18-28. [PMID: 22580065 DOI: 10.1016/j.jsb.2012.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/15/2012] [Accepted: 04/24/2012] [Indexed: 11/23/2022]
Abstract
The structure and assembly process of gas vesicles have received significant attention in recent decades, although relatively little is still known. This work combines state-of-the-art computational methods to develop a model for the major gas vesicle protein, GvpA, and explore its structure within the assembled vesicle. Elucidating this protein's structure has been challenging due to its adherent and aggregative nature, which has so far precluded in-depth biochemical analyses. Moreover, GvpA has extremely low similarity with any known protein structure, which renders homology modeling methods ineffective. Thus, alternate approaches were used to model its tertiary structure. Starting with the sequence from haloarchaeon Halobacterium sp. NRC-1, we performed ab initio modeling and threading to acquire a multitude of structure decoys, which were equilibrated and ranked using molecular dynamics and mechanics, respectively. The highest ranked predictions exhibited an α-β-β-α secondary structure in agreement with earlier experimental findings, as well as with our own secondary structure predictions. Afterwards, GvpA subunits were docked in a quasi-periodic arrangement to investigate the assembly of the vesicle wall and to conduct simulations of contact-mode atomic force microscopy imaging, which allowed us to reconcile the structure predictions with the available experimental data. Finally, the GvpA structure for two representative organisms, Anabaena flos-aquae and Calothrix sp. PCC 7601, was also predicted, which reproduced the major features of our GvpA model, supporting the expectation that homologous GvpA sequences synthesized by different organisms should exhibit similar structures.
Collapse
|
30
|
Bayro MJ, Daviso E, Belenky M, Griffin RG, Herzfeld J. An amyloid organelle, solid-state NMR evidence for cross-β assembly of gas vesicles. J Biol Chem 2011; 287:3479-84. [PMID: 22147705 DOI: 10.1074/jbc.m111.313049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Functional amyloids have been identified in a wide range of organisms, taking on a variety of biological roles and being controlled by remarkable mechanisms of directed assembly. Here, we report that amyloid fibrils constitute the ribs of the buoyancy organelles of Anabaena flos-aquae. The walls of these gas-filled vesicles are known to comprise a single protein, GvpA, arranged in a low pitch helix. However, the tertiary and quaternary structures have been elusive. Using solid-state NMR correlation spectroscopy we find detailed evidence for an extended cross-β structure. This amyloid assembly helps to account for the strength and amphiphilic properties of the vesicle wall. Buoyancy organelles thus dramatically extend the scope of known functional amyloids.
Collapse
Affiliation(s)
- Marvin J Bayro
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
31
|
Yao AI, Facciotti MT. Regulatory multidimensionality of gas vesicle biogenesis in Halobacterium salinarum NRC-1. ARCHAEA (VANCOUVER, B.C.) 2011; 2011:716456. [PMID: 22110395 PMCID: PMC3202098 DOI: 10.1155/2011/716456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/07/2011] [Indexed: 11/30/2022]
Abstract
It is becoming clear that the regulation of gas vesicle biogenesis in Halobacterium salinarum NRC-1 is multifaceted and appears to integrate environmental and metabolic cues at both the transcriptional and posttranscriptional levels. The mechanistic details underlying this process, however, remain unclear. In this manuscript, we quantify the contribution of light scattering made by both intracellular and released gas vesicles isolated from Halobacterium salinarum NRC-1, demonstrating that each form can lead to distinct features in growth curves determined by optical density measured at 600 nm (OD(600)). In the course of the study, we also demonstrate the sensitivity of gas vesicle accumulation in Halobacterium salinarum NRC-1 on small differences in growth conditions and reevaluate published works in the context of our results to present a hypothesis regarding the roles of the general transcription factor tbpD and the TCA cycle enzyme aconitase on the regulation of gas vesicle biogenesis.
Collapse
Affiliation(s)
| | - Marc T. Facciotti
- Genome Center UC Davis, Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
32
|
Sivertsen AC, Bayro MJ, Belenky M, Griffin RG, Herzfeld J. Solid-state NMR characterization of gas vesicle structure. Biophys J 2011; 99:1932-9. [PMID: 20858439 DOI: 10.1016/j.bpj.2010.06.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/30/2010] [Accepted: 06/07/2010] [Indexed: 11/20/2022] Open
Abstract
Gas vesicles are gas-filled buoyancy organelles with walls that consist almost exclusively of gas vesicle protein A (GvpA). Intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae were studied by solid-state NMR spectroscopy, and most of the GvpA sequence was assigned. Chemical shift analysis indicates a coil-α-β-β-α-coil peptide backbone, consistent with secondary-structure-prediction algorithms, and complementary information about mobility and solvent exposure yields a picture of the overall topology of the vesicle subunit that is consistent with its role in stabilizing an air-water interface.
Collapse
Affiliation(s)
- Astrid C Sivertsen
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | | | | | | | | |
Collapse
|
33
|
Sivertsen AC, Bayro MJ, Belenky M, Griffin RG, Herzfeld J. Solid-state NMR evidence for inequivalent GvpA subunits in gas vesicles. J Mol Biol 2009; 387:1032-9. [PMID: 19232353 DOI: 10.1016/j.jmb.2009.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 02/04/2009] [Accepted: 02/10/2009] [Indexed: 11/18/2022]
Abstract
Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue gas vesicle protein A, arranged in an ordered array. Solid-state NMR spectra of intact collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain gas vesicle protein A resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary, and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the beta-sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle.
Collapse
Affiliation(s)
- Astrid C Sivertsen
- Department of Chemistry, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | | | |
Collapse
|
34
|
Beeby M, Bobik TA, Yeates TO. Exploiting genomic patterns to discover new supramolecular protein assemblies. Protein Sci 2009; 18:69-79. [PMID: 19177352 PMCID: PMC2708037 DOI: 10.1002/pro.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 01/29/2023]
Abstract
Bacterial microcompartments are supramolecular protein assemblies that function as bacterial organelles by compartmentalizing particular enzymes and metabolic intermediates. The outer shells of these microcompartments are assembled from multiple paralogous structural proteins. Because the paralogs are required to assemble together, their genes are often transcribed together from the same operon, giving rise to a distinctive genomic pattern: multiple, typically small, paralogous proteins encoded in close proximity on the bacterial chromosome. To investigate the generality of this pattern in supramolecular assemblies, we employed a comparative genomics approach to search for protein families that show the same kind of genomic pattern as that exhibited by bacterial microcompartments. The results indicate that a variety of large supramolecular assemblies fit the pattern, including bacterial gas vesicles, bacterial pili, and small heat-shock protein complexes. The search also retrieved several widely distributed protein families of presently unknown function. The proteins from one of these families were characterized experimentally and found to show a behavior indicative of supramolecular assembly. We conclude that cotranscribed paralogs are a common feature of diverse supramolecular assemblies, and a useful genomic signature for discovering new kinds of large protein assemblies from genomic data.
Collapse
Affiliation(s)
- Morgan Beeby
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los AngelesLos Angeles, California 90095
| | - Thomas A Bobik
- Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmes, Iowa 50011
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los AngelesLos Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California Los AngelesCalifornia 90095-1569
- Molecular Biology Institute, Paul D. Boyer HallLos Angeles, California 90095-1570
| |
Collapse
|
35
|
|
36
|
Abstract
Prokaryotic cells move through liquids or over moist surfaces by swimming, swarming, gliding, twitching or floating. An impressive diversity of motility mechanisms has evolved in prokaryotes. Movement can involve surface appendages, such as flagella that spin, pili that pull and Mycoplasma 'legs' that walk. Internal structures, such as the cytoskeleton and gas vesicles, are involved in some types of motility, whereas the mechanisms of some other types of movement remain mysterious. Regardless of the type of motility machinery that is employed, most motile microorganisms use complex sensory systems to control their movements in response to stimuli, which allows them to migrate to optimal environments.
Collapse
|
37
|
Dunton PG, Mawby WJ, Shaw VA, Walsby AE. Analysis of tryptic digests indicates regions of GvpC that bind to gas vesicles of Anabaena flos-aquae. Microbiology (Reading) 2006; 152:1661-1669. [PMID: 16735729 DOI: 10.1099/mic.0.28755-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gas vesicles of the cyanobacterium Anabaena flos-aquae contain two main proteins: GvpA, which forms the ribs of the hollow cylindrical shell, and GvpC, which occurs on the outer surface. Analysis by MALDI-TOF MS shows that after incubating Anabaena gas vesicles in trypsin, GvpA was cleaved only at sites near the N-terminus, whereas GvpC was cleaved at most of its potential tryptic sites. Many of the resulting tryptic peptides from GvpC remained attached to the underlying GvpA shell: the pattern of attachment indicated that there are binding sites to GvpA at both ends of the 33-residue repeats (33RRs) in GvpC, although one of the tryptic peptides within the 33RR did not remain attached. Tryptic peptides near the two ends of the GvpC molecule were also lost. The mean critical collapse pressure of Anabaena gas vesicles decreased from 0.63 MPa to 0.20 MPa when GvpC was removed with urea or fully digested with trypsin; partial digestion resulted in partial decrease in critical pressure.
Collapse
Affiliation(s)
- Peter G Dunton
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - William J Mawby
- Department of Biochemistry, University of Bristol, Bristol BS8 1UG, UK
| | - Virginia A Shaw
- Department of Biochemistry, University of Bristol, Bristol BS8 1UG, UK
| | - Anthony E Walsby
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| |
Collapse
|
38
|
|
39
|
Abstract
Gas vesicles encoded by gvp genes provide buoyancy in many prokaryotes. In a recent Trends in Microbiology article entitled 'Gas vesicles in actinomycetes: old buoys in novel habitats?' van Keulen et al. documented the occurrence of gvp genes in soil-inhabiting actinomycetes but questioned whether any of them produce gas vesicles. We suggest that the protein encoded by gvpA in actinomycetes might be incompatible with the structure of the standard gas vesicle. Perhaps it has another role associated with the air-water interface.
Collapse
|
40
|
Shukla HD, DasSarma S. Complexity of gas vesicle biogenesis in Halobacterium sp. strain NRC-1: identification of five new proteins. J Bacteriol 2004; 186:3182-6. [PMID: 15126480 PMCID: PMC400621 DOI: 10.1128/jb.186.10.3182-3186.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Halobacterium sp. strain NRC-1 contains a large gene cluster, gvpMLKJIHGFEDACNO, that is both necessary and sufficient for the production of buoyant gas-filled vesicles. Due to the resistance of gas vesicles to solubilization, only the major gas vesicle protein GvpA and a single minor protein, GvpC, were previously detected. Here, we used immunoblotting analysis to probe for the presence of gas vesicle proteins corresponding to five additional gvp gene products. Polyclonal antisera were raised in rabbits against LacZ-GvpF, -GvpJ, and -GvpM fusion proteins and against synthetic 15-amino-acid peptides from GvpG and -L. Immunoblotting analysis was performed on cell lysates of wild-type Halobacterium sp. strain NRC-1, gas vesicle-deficient mutants, and purified gas vesicles, after purification of LacZ fusion antibodies on protein A and beta-galactosidase affinity columns. Our results show the presence of five new gas vesicle proteins (GvpF, GvpG, GvpJ, GvpL, and GvpM), bringing the total number of proteins identified in the organelles to seven. Two of the new gas vesicle proteins are similar to GvpA (GvpJ and GvpM), and two proteins contain predicted coiled-coil domains (GvpF and GvpL). GvpL exhibited a multiplet ladder on sodium dodecyl sulfate-polyacrylamide gels indicative of oligomerization and self-assembly. We discuss the possible functions of the newly discovered gas vesicle proteins in biogenesis of these unique prokaryotic flotation organelles.
Collapse
Affiliation(s)
- Hem Dutt Shukla
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | |
Collapse
|
41
|
Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2004; 70:1040-50. [PMID: 14766587 PMCID: PMC348919 DOI: 10.1128/aem.70.2.1040-1050.2004] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the biochemical composition of the magnetosome membrane (MM) in Magnetospirillum gryphiswaldense. Isolated magnetosomes were associated with phospholipids and fatty acids which were similar to phospholipids and fatty acids from other subcellular compartments (i.e., outer and cytoplasmic membranes) but were present in different proportions. The binding characteristics of MM-associated proteins were studied by selective solubilization and limited proteolysis. The MM-associated proteins were further analyzed by various proteomic approaches, including one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Edman and mass spectrometric (electrospray ionization-mass spectrometry-mass spectrometry) sequencing, as well as capillary liquid chromatography-mass spectrometry-mass spectrometry of total tryptic digests of the MM. At least 18 proteins were found to constitute the magnetosome subproteome, and most of these proteins are novel for M. gryphiswaldense. Except for MM22 and Mms16, all bona fide MM proteins (MMPs) were encoded by open reading frames in the mamAB, mamDC, and mms6 clusters in the previously identified putative magnetosome island. Eight of the MMPs display homology to known families, and some of them occur in the MM in multiple homologues. Ten of the MMPs have no known homologues in nonmagnetic organisms and thus represent novel, magnetotactic bacterium-specific protein families. Several MMPs display repetitive or highly acidic sequence patterns, which are known from other biomineralizing systems and thus may have relevance for magnetite formation.
Collapse
Affiliation(s)
- Karen Grünberg
- Max-Planck-Institut für Marine Mikrobiologie, 28359 Bremen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Beard SJ, Hayes PK, Pfeifer F, Walsby AE. The sequence of the major gas vesicle protein, GvpA, influences the width and strength of halobacterial gas vesicles. FEMS Microbiol Lett 2002; 213:149-57. [PMID: 12167531 DOI: 10.1111/j.1574-6968.2002.tb11299.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Transformation experiments with Haloferax volcanii show that the amino acid sequence of the gas vesicle protein GvpA influences the morphology and strength of gas vesicles produced by halophilic archaea. A modified expression vector containing p-gvpA was used to complement a Vac(-) strain of Hfx. volcanii that harboured the entire p-vac region (from Halobacterium salinarum PHH1) except for p-gvpA. Replacement of p-gvpA with mc-gvpA (from Haloferax mediterranei) led to the synthesis of gas vesicles that were narrower and stronger. Other gene replacements (using c-gvpA from Hbt. salinarum or mutated p-gvpA sequences) led to a significant but smaller increase in gas vesicle strength, and less marked effects on gas vesicle morphology.
Collapse
Affiliation(s)
- Steven J Beard
- School of Biological Sciences, University of Bristol, Woodland Road, UK
| | | | | | | |
Collapse
|
43
|
Gregor D, Pfeifer F. Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1745-1754. [PMID: 11429452 DOI: 10.1099/00221287-147-7-1745] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The bgaH reading frame encoding a beta-galactosidase of 'Haloferax alicantei' was used as a reporter gene to investigate three different promoter regions derived from gvpA genes of Haloferax mediterranei (mc-gvpA) and Halobacterium salinarum (c-gvpA and p-gvpA) in Haloferax volcanii transformants. The fusion of bgaH at the start codon of each gvpA reading frame (A1-bgaH fusion genes) caused translational problems in some cases. Transformants containing constructs with fusions further downstream in the gvpA reading frame (A-bgaH) produced beta-galactosidase, and colonies on agar plates turned blue when sprayed with X-Gal. The beta-galactosidase activities quantified by standard ONPG assays correlated well with the mRNA data determined with transformants containing the respective gvpA genes: the cA-bgaH fusion gene was completely inactive, the mcA-bgaH transformants showed low amounts of products, whereas the pA-bgaH fusion gene was constitutively expressed in the respective transformants. The transcription of each A-bgaH gene was activated by the homologous transcriptional activator protein GvpE. The cGvpE, pGvpE and mcGvpE proteins were able to activate the promoter of pA-bgaH and mcA-bgaH, whereas the promoter of cA-bgaH was only activated by cGvpE. Among the three GvpE proteins tested, cGvpE appeared to be the strongest transcriptional activator.
Collapse
Affiliation(s)
- Dagmar Gregor
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany1
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany1
| |
Collapse
|
44
|
Abstract
Members of the Archaea domain are extremely diverse in their adaptation to extreme environments, yet also widespread in "normal" habitats. Altogether, among the best characterized archaeal representatives all mechanisms of gene transfer such as transduction, conjugation, and transformation have been discovered, as briefly reviewed here. For some halophiles and mesophilic methanogens, usable genetic tools were developed for in vivo studies. However, on an individual basis no single organism has evolved into the "E. coli of Archaea" as far as genetics is concerned. Currently, and unfortunately, most of the genome sequences available are those of microorganisms which are either not amenable to gene transfer or not among the most promising candidates for genetic studies.
Collapse
Affiliation(s)
- Y Luo
- Institute of Microbiology, Swiss Federal Institute of Technology Zürich
| | | |
Collapse
|
45
|
Offner S, Hofacker A, Wanner G, Pfeifer F. Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J Bacteriol 2000; 182:4328-36. [PMID: 10894744 PMCID: PMC101952 DOI: 10.1128/jb.182.15.4328-4336.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The minimal number of genes required for the formation of gas vesicles in halophilic archaea has been determined. Single genes of the 14 gvp genes present in the p-vac region on plasmid pHH1 of Halobacterium salinarum (p-gvpACNO and p-gvpDEFGHIJKLM) were deleted, and the remaining genes were tested for the formation of gas vesicles in Haloferax volcanii transformants. The deletion of six gvp genes (p-gvpCN, p-gvpDE, and p-gvpHI) still enabled the production of gas vesicles in H. volcanii. The gas vesicles formed in some of these gvp gene deletion transformants were altered in shape (Delta I, Delta C) or strength (Delta H) but still functioned as flotation devices. A minimal p-vac region (minvac) containing the eight remaining genes (gvpFGJKLM-gvpAO) was constructed and tested for gas vesicle formation in H. volcanii. The minvac transformants did not form gas vesicles; however, minvac/gvpJKLM double transformants contained gas vesicles seen as light refractile bodies by phase-contrast microscopy. Transcript analyses demonstrated that minvac transformants synthesized regular amounts of gvpA mRNA, but the transcripts derived from gvpFGJKLM were mainly short and encompassed only gvpFG(J), suggesting that the gvpJKLM genes were not sufficiently expressed. Since gvpAO and gvpFGJKLM are the only gvp genes present in minvac/JKLM transformants containing gas vesicles, these gvp genes represent the minimal set required for gas vesicle formation in halophilic archaea. Homologs of six of these gvp genes are found in Anabaena flos-aquae, and homologs of all eight minimal halobacterial gvp genes are present in Bacillus megaterium and in the genome of Streptomyces coelicolor.
Collapse
Affiliation(s)
- S Offner
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- W B Whitman
- Department of Microbiology, University of Georgia, Athens Georgia 30602-2605, USA.
| | | | | | | |
Collapse
|