1
|
Matamouros S, Gensch T, Cerff M, Sachs CC, Abdollahzadeh I, Hendriks J, Horst L, Tenhaef N, Tenhaef J, Noack S, Graf M, Takors R, Nöh K, Bott M. Growth-rate dependency of ribosome abundance and translation elongation rate in Corynebacterium glutamicum differs from that in Escherichia coli. Nat Commun 2023; 14:5611. [PMID: 37699882 PMCID: PMC10497606 DOI: 10.1038/s41467-023-41176-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Bacterial growth rate (µ) depends on the protein synthesis capacity of the cell and thus on the number of active ribosomes and their translation elongation rate. The relationship between these fundamental growth parameters have only been described for few bacterial species, in particular Escherichia coli. Here, we analyse the growth-rate dependency of ribosome abundance and translation elongation rate for Corynebacterium glutamicum, a gram-positive model species differing from E. coli by a lower growth temperature optimum and a lower maximal growth rate. We show that, unlike in E. coli, there is little change in ribosome abundance for µ <0.4 h-1 in C. glutamicum and the fraction of active ribosomes is kept above 70% while the translation elongation rate declines 5-fold. Mathematical modelling indicates that the decrease in the translation elongation rate can be explained by a depletion of translation precursors.
Collapse
Affiliation(s)
- Susana Matamouros
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| | - Thomas Gensch
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Martin Cerff
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Christian C Sachs
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Iman Abdollahzadeh
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Johnny Hendriks
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Lucas Horst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
2
|
Ruwe M, Persicke M, Busche T, Müller B, Kalinowski J. Physiology and Transcriptional Analysis of (p)ppGpp-Related Regulatory Effects in Corynebacterium glutamicum. Front Microbiol 2019; 10:2769. [PMID: 31849906 PMCID: PMC6892785 DOI: 10.3389/fmicb.2019.02769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The alarmone species ppGpp and pppGpp are elementary components of bacterial physiology as they both coordinate the bacterial stress response and serve as fine-tuners of general metabolism during conditions of balanced growth. Since the regulation of (p)ppGpp metabolism and the effects of (p)ppGpp on cellular processes are highly complex and show massive differences between bacterial species, the underlying molecular mechanisms have so far only been insufficiently investigated for numerous microorganisms. In this study, (p)ppGpp physiology in the actinobacterial model organism Corynebacterium glutamicum was analyzed by phenotypic characterization and RNAseq-based transcriptome analysis. Total nutrient starvation was identified as the most effective method to induce alarmone production, whereas traditional induction methods such as the addition of serine hydroxamate (SHX) or mupirocin did not show a strong accumulation of (p)ppGpp. The predominant alarmone in C. glutamicum represents guanosine tetraphosphate, whose stress-associated production depends on the presence of the bifunctional RSH enzyme Rel. Interestingly, in addition to ppGpp, another substance yet not identified accumulated strongly under inducing conditions. A C. glutamicum triple mutant (Δrel,ΔrelS,ΔrelH) unable to produce alarmones [(p)ppGpp0 strain] exhibited unstable growth characteristics and interesting features such as an influence of illumination on its physiology, production of amino acids as well as differences in vitamin and carotenoid production. Differential transcriptome analysis using RNAseq provided numerous indications for the molecular basis of the observed phenotype. An evaluation of the (p)ppGpp-dependent transcriptional regulation under total nutrient starvation revealed a complex interplay with the involvement of ribosome-mediated transcriptional attenuation, the stress-responsive sigma factors σB and σH and transcription factors such as McbR, the master regulator of sulfur metabolism. In addition to the differential regulation of genes connected with various cell functions, the transcriptome analysis revealed conserved motifs within the promoter regions of (p)ppGpp-dependently and independently regulated genes. In particular, the representatives of translation-associated genes are both (p)ppGpp-dependent transcriptionally downregulated and show a highly conserved and so far unknown TTTTG motif in the -35 region, which is also present in other actinobacterial genera.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Ruwe M, Rückert C, Kalinowski J, Persicke M. Functional Characterization of a Small Alarmone Hydrolase in Corynebacterium glutamicum. Front Microbiol 2018; 9:916. [PMID: 29867827 PMCID: PMC5954133 DOI: 10.3389/fmicb.2018.00916] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
The (pp)pGpp metabolism is an important component of bacterial physiology as it is involved in various stress responses and mechanisms of cell homeostasis, e.g., the regulation of growth. However, in order to better understand the (pp)pGpp associated regulation, it is crucial to study the molecular mechanisms of (pp)pGpp metabolism. In recent years, bioinformatic analyses of the RelA/SpoT homolog (RSH) superfamily have led to the discovery of small monofunctional RSH derivatives in addition to the well-known bifunctional Rel proteins. These are also referred to as small alarmone synthetases (SASs) or small alarmone hydrolases (SAHs). In this study, the ORF cg1485 from C. glutamicum was identified as a putative SAH encoding gene, based on a high similarity of the corresponding amino acid sequence with the (pp)pGpp hydrolysis domain. The characterization of its gene product, designated as RelHCg, represents the first functional investigation of a bacterial representative of the SAH subfamily. The predicted pyrophosphohydrolase activity was demonstrated in vivo by expression in two E. coli strains, characterized by different alarmone basal levels, as well as by in vitro analysis of the purified protein. During the assay-based analysis of hydrolysis activity in relation to the three known alarmone species, both RelHCg and the bifunctional RSH enzyme RelCg were found to exhibit a pronounced substrate inhibition for alarmone concentrations of more than 0.75 mM. This characteristic of (pp)pGpp hydrolases could be an important mechanism for realizing the bistable character of the (pp)pGpp metabolism between a (pp)pGpp basal level and stress-associated alarmone production. The deletion of relHCg caused only a minor effect on growth behavior in both wild-type background and deletion mutants with deletion of (pp)pGpp synthetases. Based on this observation, the protein is probably only present or active under specific environmental conditions. The independent loss of the corresponding gene in numerous representatives of the genus Corynebacterium, which was found by bioinformatic analyses, also supports this hypothesis. Furthermore, growth analysis of all possible deletion combinations of the three active C. glutamicum RSH genes revealed interesting functional relationships which will have to be investigated in more detail in the future.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Ruwe M, Kalinowski J, Persicke M. Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum. Front Microbiol 2017; 8:1601. [PMID: 28871248 PMCID: PMC5566576 DOI: 10.3389/fmicb.2017.01601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/07/2017] [Indexed: 11/15/2022] Open
Abstract
The hyperphosphorylated guanosine derivatives ppGpp and pppGpp represent global regulators of the bacterial stress response, as they act as central elements of the stringent response system. Although it was assumed that both, (p)ppGpp synthesis and hydrolysis, are catalyzed by one bifunctional RSH-protein in the actinobacterial model organism Corynebacterium glutamicum ATCC 13032, two putative short alarmone synthetases (SASs) were identified by bioinformatic analyses. The predicted sequences of both enzymes, designated as RelP*Cg and RelSCg, exhibit high similarities to the conserved (p)ppGpp synthetase catalytic domain. In the context of sequence analysis, significant differences were found between the RelP variants of different C. glutamicum isolates. In contrast to the bifunctional RelA/SpoT homolog (RSH) protein RelCg, whose gene deletion results in a reduced growth rate, no change in growth characteristics were observed for deletion mutants of the putative SAS proteins under standard growth conditions. The growth deficit of the Δrel strain could be restored by the additional deletion of the gene encoding RelSCg, which clearly indicates a functional relationship between both enzymes. The predicted pyrophosphokinase activity of RelSCg was demonstrated by means of genetic complementation of an Escherichia coli ΔrelAΔspoT strain. For the expression of RelP*Cg, as well as the slightly differing variant RelPCg from C. glutamicum AS1.542, no complementation was observed, concluding that both RelP versions possess no significant pyrophosphokinase activity in vivo. The results were confirmed by in vitro characterization of the corresponding proteins. In the course of this investigation, the additional conversion of GMP to pGpp was determined for the enzyme RelSCg. Since the SAS species analyzed extend both the network of stringent response related enzymes and the number of substances involved, the study of this class of enzymes is an important component in understanding the bacterial stress response. In addition to the comprehension of important biological processes, such as growth rate regulation and the survival of pathogenic species in the host organism, SAS enzymes can be used to produce novel hyperphosphorylated nucleotide species, such as pGpp.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
5
|
Kulis-Horn RK, Rückert C, Kalinowski J, Persicke M. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond. BMC Microbiol 2017; 17:161. [PMID: 28720084 PMCID: PMC5516325 DOI: 10.1186/s12866-017-1069-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background The eighth step of l-histidine biosynthesis is carried out by an enzyme called histidinol-phosphate phosphatase (HolPase). Three unrelated HolPase families are known so far. Two of them are well studied: HAD-type HolPases known from Gammaproteobacteria like Escherichia coli or Salmonella enterica and PHP-type HolPases known from yeast and Firmicutes like Bacillus subtilis. However, the third family of HolPases, the inositol monophosphatase (IMPase)-like HolPases, present in Actinobacteria like Corynebacterium glutamicum (HisN) and plants, are poorly characterized. Moreover, there exist several IMPase-like proteins in bacteria (e.g. CysQ, ImpA, and SuhB) which are very similar to HisN but most likely do not participate in l-histidine biosynthesis. Results Deletion of hisN, the gene encoding the IMPase-like HolPase in C. glutamicum, does not result in complete l-histidine auxotrophy. Out of four hisN homologs present in the genome of C. glutamicum (impA, suhB, cysQ, and cg0911), only cg0911 encodes an enzyme with HolPase activity. The enzymatic properties of HisN and Cg0911 were determined, delivering the first available kinetic data for IMPase-like HolPases. Additionally, we analyzed the amino acid sequences of potential HisN, ImpA, SuhB, CysQ and Cg0911 orthologs from bacteria and identified six conserved sequence motifs for each group of orthologs. Mutational studies confirmed the importance of a highly conserved aspartate residue accompanied by several aromatic amino acid residues present in motif 5 for HolPase activity. Several bacterial proteins containing all identified HolPase motifs, but showing only moderate sequence similarity to HisN from C. glutamicum, were experimentally confirmed as IMPase-like HolPases, demonstrating the value of the identified motifs. Based on the confirmed IMPase-like HolPases two profile Hidden Markov Models (HMMs) were build using an iterative approach. These HMMs allow the fast, reliable detection and differentiation of the two paralog groups from each other and other IMPases. Conclusion The kinetic data obtained for HisN from C. glutamicum, as an example for an IMPase-like HolPases, shows remarkable differences in enzyme properties as compared to HAD- or PHP-type HolPases. The six sequence motifs and the HMMs presented in this study can be used to reliably differentiate between IMPase-like HolPases and IMPase-like proteins with no such activity, with the potential to enhance current and future genome annotations. A phylogenetic analysis reveals that IMPase-like HolPases are not only present in Actinobacteria and plant but can be found in further bacterial phyla, including, among others, Proteobacteria, Chlorobi and Planctomycetes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1069-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Kasimir Kulis-Horn
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
6
|
Klymyshin DO, Stephanyshyn OM, Fedorenko VO. Participation of (p)ppGpp molecules in the formation of “stringent response” in bacteria, as well as in the biosynthesis of antibiotics and morphological differentiation in actinomycetes. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Hattangady DS, Singh AK, Muthaiyan A, Jayaswal RK, Gustafson JE, Ulanov AV, Li Z, Wilkinson BJ, Pfeltz RF. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain. Antibiotics (Basel) 2015; 4:76-112. [PMID: 27025616 PMCID: PMC4790321 DOI: 10.3390/antibiotics4010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022] Open
Abstract
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p(-)m⁺V20 (vancomycin MIC = 16 µg/mL) than strain 13136p(-)m⁺V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype.
Collapse
Affiliation(s)
- Dipti S Hattangady
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Atul K Singh
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Arun Muthaiyan
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | | | - John E Gustafson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Richard F Pfeltz
- BD Diagnostic Systems, Microbiology Research and Development, Sparks, MD 21152, USA.
| |
Collapse
|
8
|
He P, Deng C, Liu B, Zeng L, Zhao W, Zhang Y, Jiang X, Guo X, Qin J. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. FEMS Microbiol Lett 2013; 348:133-42. [PMID: 24111633 DOI: 10.1111/1574-6968.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/05/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022] Open
Abstract
Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.
Collapse
Affiliation(s)
- Ping He
- Department of Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kulis-Horn RK, Persicke M, Kalinowski J. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb Biotechnol 2013; 7:5-25. [PMID: 23617600 PMCID: PMC3896937 DOI: 10.1111/1751-7915.12055] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023] Open
Abstract
l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-producing bacterium Corynebacterium glutamicum, revealing similarities to E. coli and S. typhimurium, as well as differences. This review summarizes the current knowledge of l-histidine biosynthesis in C. glutamicum. The genes involved and corresponding enzymes are described, in particular focusing on the imidazoleglycerol-phosphate synthase (HisFH) and the histidinol-phosphate phosphatase (HisN). The transcriptional organization of his genes in C. glutamicum is also reported, including the four histidine operons and their promoters. Knowledge of transcriptional regulation during stringent response and by histidine itself is summarized and a translational regulation mechanism is discussed, as well as clues about a histidine transport system. Finally, we discuss the potential of using this knowledge to create or improve C. glutamicum strains for the industrial l-histidine production.
Collapse
Affiliation(s)
- Robert K Kulis-Horn
- Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, 33615, Bielefeld, Germany
| | | | | |
Collapse
|
10
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
Factors enhancing l-valine production by the growth-limited l-isoleucine auxotrophic strain Corynebacterium glutamicum ΔilvA ΔpanB ilvNM13 (pECKAilvBNC). J Ind Microbiol Biotechnol 2010; 37:689-99. [DOI: 10.1007/s10295-010-0712-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|
12
|
Hänßler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A. A game with many players: Control of gdh transcription in Corynebacterium glutamicum. J Biotechnol 2009; 142:114-22. [DOI: 10.1016/j.jbiotec.2009.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 11/25/2022]
|
13
|
Abstract
Corynebacterium glutamicum accumulates up to 300 mM of inorganic polyphosphate (PolyP) in the cytosol or in granules. The gene products of cg0488 (ppx1) and cg1115 (ppx2) were shown to be active as exopolyphosphatases (PPX), as overexpression of either gene resulted in higher exopolyphosphatase activities in crude extracts and deletion of either gene with lower activities than those of the wild-type strain. PPX1 and PPX2 from C. glutamicum share only 25% identical amino acids and belong to different protein groups, which are distinct from enterobacterial, archaeal, and yeast exopolyphosphatases. In comparison to that in the wild type, more intracellular PolyP accumulated in the Deltappx1 and Deltappx2 deletion mutations but less when either ppx1 or ppx2 was overexpressed. When C. glutamicum was shifted from phosphate-rich to phosphate-limiting conditions, a growth advantage of the deletion mutants and a growth disadvantage of the overexpression strains compared to the wild type were observed. Growth experiments, exopolyphosphatase activities, and intracellular PolyP concentrations revealed PPX2 as being a major exopolyphosphatase from C. glutamicum. PPX2(His) was purified to homogeneity and shown to be active as a monomer. The enzyme required Mg2+ or Mn2+ cations but was inhibited by millimolar concentrations of Mg2+, Mn2+, and Ca2+. PPX2 from C. glutamicum was active with short-chain polyphosphates, even accepting pyrophosphate, and was inhibited by nucleoside triphosphates.
Collapse
|
14
|
Lemos JA, Lin VK, Nascimento MM, Abranches J, Burne RA. Three gene products govern (p)ppGpp production by Streptococcus mutans. Mol Microbiol 2007; 65:1568-81. [PMID: 17714452 DOI: 10.1111/j.1365-2958.2007.05897.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current dogma implicating RelA as the sole enzyme controlling (p)ppGpp production and degradation in Gram-positive bacteria does not apply to Streptococcus mutans. We have now identified and characterized two genes, designated as relP and relQ, encoding novel enzymes that are directly involved in (p)ppGpp synthesis. Additionally, relP is co-transcribed with a two-component signal transduction system (TCS). Analysis of the (p)ppGpp synthetic capacity of various mutants and the behaviour of strains lacking combinations of the synthetase enzymes have revealed a complex regulon and fundamental differences in the way S. mutans manages alarmone production compared with bacterial paradigms. The functionality of the RelP and RelQ enzymes was further confirmed by demonstrating that expression of relP and relQ restored growth of a (p)ppGpp(0) Escherichia coli strain in minimal medium, SMG and on medium containing 3-amino-1,2,4-triazole, and by demonstrating (p)ppGpp production in various complemented mutant strains of E. coli and S. mutans. Notably, RelQ, and RelP and the associated TCS, are harboured in some, but not all, pathogenic streptococci and related Gram-positive organisms, opening a new avenue to explore the variety of strategies employed by human and animal pathogens to survive in adverse conditions that are peculiar to environments in their hosts.
Collapse
Affiliation(s)
- José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, PO Box 100424, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
15
|
Brockmann-Gretza O, Kalinowski J. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 2006; 7:230. [PMID: 16961923 PMCID: PMC1578569 DOI: 10.1186/1471-2164-7-230] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 09/08/2006] [Indexed: 12/01/2022] Open
Abstract
Background The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides (p)ppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize (p)ppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX) in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be responsible for the complex transcriptional patterns detected in the rel mutant when compared directly with its rel-proficient parent strain. Conclusion In C. glutamicum the stringent response enfolds a fast answer to an induced amino acid starvation on the transcriptome level. It also showed some significant differences to the transcriptional reactions occuring in Escherichia coli and Bacillus subtilis. Notable are the rel-dependent regulation of the nitrogen metabolism genes and the rel-independent regulation of the genes encoding ribosomal proteins.
Collapse
Affiliation(s)
- Olaf Brockmann-Gretza
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
16
|
Hayashi M, Mizoguchi H, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto SI, Ikeda M. A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2006; 72:783-9. [PMID: 16944136 DOI: 10.1007/s00253-006-0539-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 11/26/2022]
Abstract
We previously found by transcriptome analysis that global induction of amino acid biosynthetic genes occurs in a classically derived industrial L-lysine producer, Corynebacterium glutamicum B-6. Based on this stringent-like transcriptional profile in strain B-6, we analyzed the relevant mutations from among those identified in the genome of the strain, with special attention to the genes that are involved in amino acid biosynthesis and metabolism. Among these mutations, a Gly-456-->Asp mutation in the 3-isopropylmalate dehydratase large subunit gene (leuC) was defined as a useful mutation. Introduction of the leuC mutation into a defined L-lysine producer, AHD-2 (hom59 and lysC311), by allelic replacement led to the phenotype of a partial requirement for L-leucine and approximately 14% increased L-lysine production. Transcriptome analysis revealed that many amino acid biosynthetic genes, including lysC-asd operon, were significantly upregulated in the leuC mutant in a rel-independent manner.
Collapse
Affiliation(s)
- Mikiro Hayashi
- BioFrontier Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida, Tokyo 194-8533, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Mercade M, Cocaign-Bousquet M, Loubière P. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH. J Appl Microbiol 2006; 100:1364-72. [PMID: 16696685 DOI: 10.1111/j.1365-2672.2006.02867.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To analyse the phenotype of a relA acid-resistant mutant of Lactococcus lactis ssp. cremoris MG1363, and to compare the glyceraldehyde-3-phosphate dehydrogenase regulation in both strains. METHODS AND RESULTS Lactococcus lactis ssp. cremoris MG1363 and the relA mutant affected in the (p)ppGpp synthetase were grown in a series of batch-mode fermentation at different pH-regulated conditions with glucose as carbon substrate. All the determinants of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regulation were quantified. In L. lactis MG1363, the GAPDH was strongly inhibited in vitro by decreased pH values, but this inhibition was totally compensated in vivo by the lower NADH/NAD+ ratio and more efficiently by the important increase in the intracellular amount of GAPDH. In contrast to the wild type, GAPDH activity of the relA strain was not increased when grown at low pH but the level of GAPDH remained constitutively high. However, pH homeostasis was not improved in the relA mutant and it grew slower and exhibited a lower glycolytic flux than the wild-type strain at low pH. CONCLUSIONS Despite a better resistance to acid stress, the increased survival in L. lactis relA mutant at low pH was not related with an improved pH homeostasis but was associated with a diminished capacity to maintain a high flux through glycolysis. SIGNIFICANCE AND IMPACT OF THE STUDY The phenotype of a strong acid-resistant L. lactis strain was established in acid conditions and some key metabolic parameters compared with the wild type. This analysis led to the conclusion that growth and survival seem to be antinomic parameters, since improving one of them leads to a decrease in the other one.
Collapse
Affiliation(s)
- M Mercade
- Laboratoire de Biotechnologie-Bioprocédés, Institut National des Sciences Appliquées, UMR INSA/CNRS 5504 & UMR INSA/INKA 792 Toulouse Cedex 4, France
| | | | | |
Collapse
|
18
|
Seletzky JM, Noack U, Fricke J, Hahn S, Büchs J. Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress. Appl Microbiol Biotechnol 2006; 72:1297-307. [PMID: 16642330 DOI: 10.1007/s00253-006-0436-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/19/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Respiration measurement in shake flasks is introduced as a new method to characterize the metabolic activity of microorganisms during and after stress exposure. The major advantage of the new method is the possibility to determine the metabolic activity independent of manual sampling without the necessity to change the culture vessel or the cultivation medium. This excludes stress factors, which may be induced by transferring the microorganisms to plates or respirometers. The negative influence, which interruptions of the shaker during sampling times may have on the growth of microorganisms was demonstrated. The applicability of the method was verified by characterizing the behavior of Corynebacterium glutamicum grown on the carbon source L: -lactic acid under stress factors such as carbon starvation, anaerobic conditions, lactic acid, osmolarity, and pH. The following conditions had no effect on the metabolic activity of C. glutamicum: a carbon starvation of up to 19 h, anaerobic conditions, lactic acid concentrations up to 10 g/l, 3-(N-morpholino) propanesulfonic acid buffer concentrations up to 42 g/l, or pH from 6.4 to 7.4. Lactic-acid concentrations from 10 to 30 g/l lead to a decrease of the growth rate and the biomass substrate yield without effecting the oxygen substrate conversion. Without adaptation, the organism did not grow at pH< or =5 or > or =9.
Collapse
Affiliation(s)
- Juri M Seletzky
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, 52056 Aachen, Germany
| | | | | | | | | |
Collapse
|
19
|
Tauch A, Homann I, Mormann S, Rüberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Rückert C, Schischka N, Wrenger C, Hoheisel J, Möckel B, Huthmacher K, Pfefferle W, Pühler A, Kalinowski J. Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol 2002; 95:25-38. [PMID: 11879709 DOI: 10.1016/s0168-1656(01)00443-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.
Collapse
Affiliation(s)
- Andreas Tauch
- Zentrum für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tauch A, Wehmeier L, Götker S, Pühler A, Kalinowski J. Relaxed rrn expression and amino acid requirement of a Corynebacterium glutamicum rel mutant defective in (p)ppGpp metabolism. FEMS Microbiol Lett 2001; 201:53-8. [PMID: 11445167 DOI: 10.1111/j.1574-6968.2001.tb10732.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The stringent response in Corynebacterium glutamicum was investigated. Sets of rrn-cat fusions were constructed in their native chromosomal position to examine the effects of amino acid starvation in a rel(+) strain and a Deltarel mutant defective in (p)ppGpp metabolism. The expression of the six rrn operons in the rel(+) control was stringently regulated and reduced to 79% upon induction of amino acid starvation. The Deltarel mutant displayed a relaxed regulation and was unable to reduce the rrn expression under amino acid depletion conditions. In addition, the Deltarel mutant grew more slowly in minimal medium than a rel(+) control. This growth effect was restored by a plasmid-encoded copy of rel or, alternatively, by supplementation of the minimal medium with the amino acid mixture casamino acids. In particular, the Deltarel strain of C. glutamicum displayed a requirement for the amino acids histidine and serine.
Collapse
Affiliation(s)
- A Tauch
- Department of Genetics, University of Bielefeld, P.O. Box 100131, D-33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
21
|
Sun J, Hesketh A, Bibb M. Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J Bacteriol 2001; 183:3488-98. [PMID: 11344157 PMCID: PMC99647 DOI: 10.1128/jb.183.11.3488-3498.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Accepted: 03/01/2001] [Indexed: 11/20/2022] Open
Abstract
Deletion of the (p)ppGpp synthetase gene, relA, of Streptomyces coelicolor A3(2) results in loss of production of the antibiotics actinorhodin (Act) and undecylprodigiosin (Red) and delayed morphological differentiation when the mutant is grown under conditions of nitrogen limitation. To analyze the role of (p)ppGpp as an intracellular signaling molecule for the initiation of antibiotic production, several C-terminally deleted derivatives of S. coelicolor relA that could potentially function in the absence of ribosome activation were placed under the control of the thiostrepton-inducible tipA promoter. While 0.82- and 1.28-kb N-terminal segments failed to restore (p)ppGpp and antibiotic production upon induction in a relA null mutant, 1.46- and 2.07-kb segments did. Under conditions of phosphate limitation, deletion of relA had little or no effect on Act or Red synthesis, potentially reflecting an alternative mechanism for ppGpp synthesis. A second S. coelicolor RelA homologue (RshA, with 42% identity to S. coelicolor RelA) was identified in the genome sequence. However, deletion of rshA had no effect on the ability of the relA mutant to make Act and Red when grown under conditions of phosphate limitation. While high-level induction of tipAp::rshA in the relA mutant resulted in growth inhibition, low-level induction restored antibiotic production and sporulation. In neither case, nor in the relA mutant that was grown under phosphate limitation and producing Act and Red, could (p)ppGpp synthesis be detected. Thus, a ppGpp-independent mechanism exists to activate antibiotic production under conditions of phosphate limitation that can be mimicked by overexpression of rshA.
Collapse
Affiliation(s)
- J Sun
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | |
Collapse
|
22
|
Barreiro C, González-Lavado E, Martín JF. Organization and transcriptional analysis of a six-gene cluster around the rplK-rplA operon of Corynebacterium glutamicum encoding the ribosomal proteins L11 and L1. Appl Environ Microbiol 2001; 67:2183-90. [PMID: 11319098 PMCID: PMC92853 DOI: 10.1128/aem.67.5.2183-2190.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cluster of six genes, tRNA(Trp)-secE-nusG-rplK-rplA-pkwR, was cloned and sequenced from a Corynebacterium glutamicum cosmid library and shown to be contiguous in the C. glutamicum genome. These genes encode a tryptophanyl tRNA, the protein translocase component SecE, the antiterminator protein NusG, and the ribosomal proteins L11 and L1 in addition to PkwR, a putative regulatory protein of the LacI-GalR family. S1 nuclease mapping analysis revealed that nusG and rplK are expressed as separate transcriptional units and rplK and rplA are cotranscribed as a single mRNA. A 19-nucleotide inverted repeat that appears to correspond to a transcriptional terminator was located in the 3' region downstream from nusG. Northern analysis with different probes confirmed the S1 mapping results and showed that the secE-rplA four-gene region gives rise to four transcripts. secE was transcribed as a 0.5-kb monocistronic mRNA, nusG formed two transcripts of 1.4 and 1.0 kb from different initiation sites, and the two ribosomal protein genes rplK and rplA were cotranscribed as a single mRNA of 1.6 kb. A consensus L1 protein binding sequence was identified in the leader region of the rplK-rplA transcript, suggesting that expression of the rplK-rplA cluster was regulated by autogenous regulation exerted by the L1 protein at the translation level. The promoters of the nusG and rplK-rplA genes were subcloned in a novel corynebacterial promoter-probe vector and shown to confer strong expression of the reporter gene.
Collapse
Affiliation(s)
- C Barreiro
- Instituto de Biotecnologia (INBIOTEC), Parque Cientifico de León, Avda. del Real, no. 1, 24006 León, Spain
| | | | | |
Collapse
|
23
|
Wehmeier L, Brockmann-Gretza O, Pisabarro A, Tauch A, Pühler A, Martin JF, Kalinowski J. A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation. MICROBIOLOGY (READING, ENGLAND) 2001; 147:691-700. [PMID: 11238976 DOI: 10.1099/00221287-147-3-691] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The rplK gene of Corynebacterium glutamicum ATCC13032 comprises 438 nucleotides and encodes a protein of 145 amino acids with a molecular mass of 15.3 kDa. The amino acid sequence revealed extensive similarities to the large ribosomal subunit protein L11 from several Gram-positive and Gram-negative bacteria. The C. glutamicum rplK gene is located downstream of secE, representing part of the protein export apparatus, and of nusG, encoding a transcription antiterminator protein. The rplK gene is followed by an ORF homologous to rplA encoding the 50S ribosomal protein L1. Northern analysis revealed that transcription of the rplK-rplA cluster resulted in two different transcripts of 1.5 and 0.6 kb. The 1.5 kb transcript corresponds to the entire rplK-rplA cluster and the short transcript originates from the rplK gene. A C. glutamicum rplK mutant strain carrying a 12 bp in-frame deletion within rplK, which resulted in the loss of the tetrapeptide Pro-Ala-Leu-Gly in the L11 protein, was constructed. The mutant failed to accumulate (p)ppGpp in response to amino acid starvation and exhibited an increased tolerance to the antibiotic thiostrepton. Evidently, the C. glutamicum rplK gene is required for (p)ppGpp accumulation upon nutritional starvation.
Collapse
Affiliation(s)
- Lutz Wehmeier
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany1
| | - Olaf Brockmann-Gretza
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany1
| | - Agustin Pisabarro
- Area Microbiologia, Dpto Ecologia, Genetica y Microbiologia, Facultad de Biologia, Universidad de Leon, Campus de Vegazana, E-24071 Leon, Spain2
| | - Andreas Tauch
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany1
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany1
| | - Juan F Martin
- Area Microbiologia, Dpto Ecologia, Genetica y Microbiologia, Facultad de Biologia, Universidad de Leon, Campus de Vegazana, E-24071 Leon, Spain2
| | - Jörn Kalinowski
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany1
| |
Collapse
|
24
|
Wendrich TM, Beckering CL, Marahiel MA. Characterization of the relA/spoT gene from Bacillus stearothermophilus. FEMS Microbiol Lett 2000; 190:195-201. [PMID: 11034279 DOI: 10.1111/j.1574-6968.2000.tb09286.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
By use of degenerate primers, we amplified a fragment of a relA/spoT homologous gene from Bacillus stearothermophilus. Chromosomal walking enabled us to sequence the entire gene and its flanking regions. The primary sequence of the gene product is 78% identical to the RelA/SpoT homologue of Bacillus subtilis and both gene loci share a similar genetic organization. The B. stearothermophilus rel gene was analyzed in vivo by heterologous expression in the B. subtilis relA deletion strain TW30, and is shown to complement the growth defects of TW30. The recombinant RelBst protein was detected by Western immunoanalysis, and synthesizes guanosine-3'-diphosphate-5'-(tri)diphosphate ((p)ppGpp) after amino acid stress and carbon starvation. These in vivo data, the genetic organization, and the primary structure compared to other RelA/SpoT homologues provide circumstantial evidence that the identified gene encodes the only (p)ppGpp synthetase in B. stearothermophilus presumed to serve also as (p)ppGpp hydrolase.
Collapse
Affiliation(s)
- T M Wendrich
- Department of Chemistry, Philipps-University, Marburg, Germany
| | | | | |
Collapse
|
25
|
Gentry D, Li T, Rosenberg M, McDevitt D. The rel gene is essential for in vitro growth of Staphylococcus aureus. J Bacteriol 2000; 182:4995-7. [PMID: 10940046 PMCID: PMC111382 DOI: 10.1128/jb.182.17.4995-4997.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response in Staphylococcus aureus is mediated by the nucleotide guanosine pentaphosphate, whose synthesis is catalyzed by the product of the rel gene. We report here that the rel gene is essential for the in vitro growth of S. aureus, distinguishing it from all other bacteria tested for this requirement.
Collapse
Affiliation(s)
- D Gentry
- SmithKline Beecham Pharmaceuticals, Collegeville, Pennsylvania 19426, USA.
| | | | | | | |
Collapse
|
26
|
Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 2000; 182:4889-98. [PMID: 10940033 PMCID: PMC111369 DOI: 10.1128/jb.182.17.4889-4898.2000] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response utilizes hyperphosphorylated guanine [(p)ppGpp] as a signaling molecule to control bacterial gene expression involved in long-term survival under starvation conditions. In gram-negative bacteria, (p)ppGpp is produced by the activity of the related RelA and SpoT proteins. Mycobacterium tuberculosis contains a single homolog of these proteins (Rel(Mtb)) and responds to nutrient starvation by producing (p)ppGpp. A rel(Mtb) knockout strain was constructed in a virulent strain of M. tuberculosis, H37Rv, by allelic replacement. The rel(Mtb) mutant displayed a significantly slower aerobic growth rate than the wild type in synthetic liquid media, whether rich or minimal. The growth rate of the wild type was equivalent to that of the mutant when citrate or phospholipid was employed as the sole carbon source. These two organisms also showed identical growth rates within a human macrophage-like cell line. These results suggest that the in vivo carbon source does not represent a stressful condition for the bacilli, since it appears to be utilized in a similar Rel(Mtb)-independent manner. In vitro growth in liquid media represents a condition that benefits from Rel(Mtb)-mediated adaptation. Long-term survival of the rel(Mtb) mutant during in vitro starvation or nutrient run out in normal media was significantly impaired compared to that in the wild type. In addition, the mutant was significantly less able to survive extended anaerobic incubation than the wild-type virulent organism. Thus, the Rel(Mtb) protein is required for long-term survival of pathogenic mycobacteria under starvation conditions.
Collapse
Affiliation(s)
- T P Primm
- Tuberculosis Research Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
27
|
Rallu F, Gruss A, Ehrlich SD, Maguin E. Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals. Mol Microbiol 2000; 35:517-28. [PMID: 10672175 DOI: 10.1046/j.1365-2958.2000.01711.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactococcus lactis growth is accompanied by lactic acid production, which results in acidification of the medium and arrest of cell multiplication. Despite growth limitation at low pH, there is evidence that lactococci do have inducible responses to an acid pH. In order to characterize the genes involved in acid tolerance responses, we selected acid-resistant insertional mutants of the L. lactis strain MG1363. Twenty-one independent characterized mutants were affected in 18 different loci, some of which are implicated in transport systems or base metabolism. None of these genes was identified previously as involved in lactococcal acid tolerance. The various phenotypes obtained by acid stress selection allowed us to define four classes of mutants, two of which comprise multistress-resistant strains. Our results reveal that L. lactis has several means of protecting itself against low pH, at least one of which results in multiple stress resistance. In particular, intracellular phosphate and guanine nucleotide pools, notably (p)ppGpp, are likely to act as signals that determine the level of lactococcal stress response induction. Our results provide a link between the physiological state of the cell and the level of stress tolerance and establish a role for the stringent response in acid stress response regulation.
Collapse
Affiliation(s)
- F Rallu
- Génétique Microbienne; Génétique Appliquée URLGA, INRA, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | | | |
Collapse
|
28
|
Avarbock D, Salem J, Li LS, Wang ZM, Rubin H. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis. Gene 1999; 233:261-9. [PMID: 10375643 DOI: 10.1016/s0378-1119(99)00114-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 2.2kb relA/spoT homologue was isolated from Mycobacterium tuberculosis (Mtb) genomic DNA by PCR-amplification. The Mtb gene encodes a protein of 738 amino acid residues, and is flanked upstream by an ORF that is highly similar to the apt gene, and downstream by an ORF that is highly similar to the cypH gene. This dual function Mtb homologue belongs to the relA/spoT family of genes that mediate the stringent response by regulating the synthesis and degradation of guanosine 3',5'-bis(diphosphate) (ppGpp) and pppGpp. In vitro biochemical data indicate that purified RelMtb is a ribosome- and tRNA-independent ATP:GTP/GDP/ITP 3'-pyrophosphoryltransferase. Additionally, purified RelMtb is an Mn2+-dependent, ribosome and tRNA-independent, (p)ppGpp 3'-pyrophosphohydrolase. These reactions were also assessed in vivo in E. coli deleted in both the relA and spoT genes, which generates a (p)ppGpp0 phenotype. RelMtb can suppress this phenotype and can generate more (p)ppGpp than relA in the wild type E. coli control.
Collapse
Affiliation(s)
- D Avarbock
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|