1
|
Esteban-Torres M, Ruiz L, Rossini V, Nally K, van Sinderen D. Intracellular glycogen accumulation by human gut commensals as a niche adaptation trait. Gut Microbes 2023; 15:2235067. [PMID: 37526383 PMCID: PMC10395257 DOI: 10.1080/19490976.2023.2235067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The human gut microbiota is a key contributor to host metabolism and physiology, thereby impacting in various ways on host health. This complex microbial community has developed many metabolic strategies to colonize, persist and survive in the gastrointestinal environment. In this regard, intracellular glycogen accumulation has been associated with important physiological functions in several bacterial species, including gut commensals. However, the role of glycogen storage in shaping the composition and functionality of the gut microbiota offers a novel perspective in gut microbiome research. Here, we review what is known about the enzymatic machinery and regulation of glycogen metabolism in selected enteric bacteria, while we also discuss its potential impact on colonization and adaptation to the gastrointestinal tract. Furthermore, we survey the presence of such glycogen biosynthesis pathways in gut metagenomic data to highlight the relevance of this metabolic trait in enhancing survival in the highly competitive and dynamic gut ecosystem.
Collapse
Affiliation(s)
- Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
- Functionality and Ecology of Benefitial Microbes (MicroHealth Group), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Cleaver LM, Moazzez RV, Carpenter GH. Evidence for Proline Utilization by Oral Bacterial Biofilms Grown in Saliva. Front Microbiol 2021; 11:619968. [PMID: 33552029 PMCID: PMC7855038 DOI: 10.3389/fmicb.2020.619968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Within the mouth bacteria are starved of saccharides as their main nutrient source between meals and it is unclear what drives their metabolism. Previously oral in vitro biofilms grown in saliva have shown proteolytic degradation of salivary proteins and increased extracellular proline. Although arginine and glucose have been shown before to have an effect on oral biofilm growth and activity, there is limited evidence for proline. Nuclear magnetic resonance (NMR) spectroscopy was used to identify extracellular metabolites produced by bacteria in oral biofilms grown on hydroxyapatite discs. Biofilms were inoculated with stimulated whole mouth saliva and then grown for 7 days using sterilized stimulated whole mouth saliva supplemented with proline, arginine or glucose as a growth-medium. Overall proline had a beneficial effect on biofilm growth-with significantly fewer dead bacteria present by biomass and surface area of the biofilms (p < 0.05). Where arginine and glucose significantly increased and decreased pH, respectively, the pH of proline supplemented biofilms remained neutral at pH 7.3-7.5. SDS-polyacrylamide gel electrophoresis of the spent saliva from proline and arginine supplemented biofilms showed inhibition of salivary protein degradation of immature biofilms. NMR analysis of the spent saliva revealed that proline supplemented biofilms were metabolically similar to unsupplemented biofilms, but these biofilms actively metabolized proline to 5-aminopentanoate, butyrate and propionate, and actively utilized glycine. This study shows that in a nutrient limited environment, proline has a beneficial effect on in vitro oral biofilms grown from a saliva inoculum.
Collapse
Affiliation(s)
- Leanne M. Cleaver
- Centre for Host Microbiome Interactions, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| | - Rebecca V. Moazzez
- Centre for Oral, Clinical and Translational Science, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| | - Guy H. Carpenter
- Centre for Host Microbiome Interactions, King's College London Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| |
Collapse
|
3
|
Zhang T, Zhu J, Wei S, Luo Q, Li L, Li S, Tucker A, Shao H, Zhou R. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis. Sci Rep 2016; 6:27169. [PMID: 27255540 PMCID: PMC4891663 DOI: 10.1038/srep27169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/16/2016] [Indexed: 01/02/2023] Open
Abstract
The (p)ppGpp signal molecules play a central role in the stringent response (SR) to adapt to nutrient starvation in bacteria, yet the carbohydrate starvation induced adaptive response and the roles of SR in this response is not well characterized, especially in Gram-positives. Here, two (p)ppGpp synthetases RelA and RelQ are identified in Streptococcus suis, an important emerging zoonotic Gram-positive bacterium, while only RelA is functional under glucose starvation. To characterize the roles of RelA/(p)ppGpp in glucose starvation response in S. suis, the growth curves and transcriptional profiles were compared between the mutant strain ΔrelA [a (p)ppGpp0 strain under glucose starvation] and its parental strain SC-19 [(p)ppGpp+]. The results showed great difference between SC-19 and ΔrelA on adaptive responses when suffering glucose starvation, and demonstrated that RelA/(p)ppGpp plays important roles in adaptation to glucose starvation. Besides the classic SR including inhibition of growth and related macromolecular synthesis, the extended adaptive response also includes inhibited glycolysis, and carbon catabolite repression (CCR)-mediated carbohydrate-dependent metabolic switches. Collectively, the pheno- and genotypic characterization of the glucose starvation induced adaptive response in S. suis makes a great contribution to understanding better the mechanism of SR.
Collapse
Affiliation(s)
- Tengfei Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jiawen Zhu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun Wei
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingping Luo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Shengqing Li
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Alexander Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Huabin Shao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Veterinary Diagnosis (Ministry of Agriculture), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
4
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
5
|
Ceuppens S, Uyttendaele M, Drieskens K, Rajkovic A, Boon N, Wiele TVD. Survival of Bacillus cereus vegetative cells and spores during in vitro simulation of gastric passage. J Food Prot 2012; 75:690-4. [PMID: 22488056 DOI: 10.4315/0362-028x.jfp-11-481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The enteric pathogen Bacillus cereus must survive gastric passage in order to cause diarrhea by enterotoxin production in the small intestine. The acid resistance and the survival after gastric passage were assessed by in vitro experiments with acidified growth medium and gastric simulation medium with B. cereus NVH 1230-88 vegetative cells and spores. First, batch incubations at constant pH values for 4 h, which represented different physiological states of the stomach, showed that spores were resistant to any gastric condition in the pH range of 2.0 to 5.0, while vegetative cells were rapidly inactivated at pH values of ≤4.0. Second, a dynamic in vitro gastric experiment was conducted that simulated the continuously changing in vivo conditions due to digestion dynamics by gradually decreasing the pH from 5.0 to 2.0 and fractional emptying of the stomach 30 to 180 min from the start of the experiment. All of the B. cereus spores and 14% (± 9%) of the vegetative cells survived the dynamic simulation of gastric passage.
Collapse
Affiliation(s)
- Siele Ceuppens
- Faculty of Bioscience Engineering, Department of Food Safety and Quality, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
Ampatzoglou A, Schurr B, Deepika G, Baipong S, Charalampopoulos D. Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Krastel K, Senadheera DB, Mair R, Downey JS, Goodman SD, Cvitkovitch DG. Characterization of a glutamate transporter operon, glnQHMP, in Streptococcus mutans and its role in acid tolerance. J Bacteriol 2010; 192:984-93. [PMID: 20023025 PMCID: PMC2812961 DOI: 10.1128/jb.01169-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 12/07/2009] [Indexed: 12/11/2022] Open
Abstract
Glutamate contributes to the acid tolerance response (ATR) of many Gram-negative and Gram-positive bacteria, but its role in the ATR of the oral bacterium Streptococcus mutans is unknown. This study describes the discovery and characterization of a glutamate transporter operon designated glnQHMP (Smu.1519 to Smu.1522) and investigates its potential role in acid tolerance. Deletion of glnQHMP resulted in a 95% reduction in transport of radiolabeled glutamate compared to the wild-type UA159 strain. The addition of glutamate to metabolizing UA159 cells resulted in an increased production of acidic end products, whereas the glnQHMP mutant produced less lactic acid than UA159, suggesting a link between glutamate metabolism and acid production and possible acid tolerance. To investigate this possibility, we conducted a microarray analysis with glutamate and under pH 5.5 and pH 7.5 conditions which showed that expression of the glnQHMP operon was downregulated by both glutamate and mild acid. We also measured the growth kinetics of UA159 and its glnQHMP-negative derivative at pH 5.5 and found that the mutant doubled at a much slower rate than the parent strain but survived at pH 3.5 significantly better than the wild type. Taken together, these findings support the involvement of the glutamate transporter operon glnQHMP in the acid tolerance response in S. mutans.
Collapse
Affiliation(s)
- Kirsten Krastel
- Dental Research Institute, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada, Division of Diagnostic Sciences and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Dilani B. Senadheera
- Dental Research Institute, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada, Division of Diagnostic Sciences and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Richard Mair
- Dental Research Institute, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada, Division of Diagnostic Sciences and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Jennifer S. Downey
- Dental Research Institute, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada, Division of Diagnostic Sciences and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Steven D. Goodman
- Dental Research Institute, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada, Division of Diagnostic Sciences and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Dennis G. Cvitkovitch
- Dental Research Institute, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada, Division of Diagnostic Sciences and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
8
|
Papadimitriou K, Boutou E, Zoumpopoulou G, Tarantilis PA, Polissiou M, Vorgias CE, Tsakalidou E. RNA arbitrarily primed PCR and fourier transform infrared spectroscopy reveal plasticity in the acid tolerance response of Streptococcus macedonicus. Appl Environ Microbiol 2008; 74:6068-76. [PMID: 18689510 PMCID: PMC2565966 DOI: 10.1128/aem.00315-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 08/03/2008] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that an acid tolerance response (ATR) can be induced in Streptococcus macedonicus cells at mid-log phase after autoacidification, transient exposure to acidic pH, or acid habituation, as well as at stationary phase. Here, we compared the transcriptional profiles of these epigenetic phenotypes, by RNA arbitrarily primed PCR (RAP-PCR), and their whole-cell chemical compositions, by Fourier transform infrared spectroscopy (FT-IR). RAP-PCR fingerprints revealed significant differences among the phenotypes, indicating that gene expression during the ATR is influenced not only by the growth phase but also by the treatments employed to induce the response. The genes coding for the mannose-specific IID component, the 1,2-diacylglycerol 3-glucosyltransferase, the 3-oxoacyl-acyl carrier protein, the large subunit of carbamoyl-phosphate synthase, and a hypothetical protein were found to be induced at least under some of the acid-adapting conditions. Furthermore, principal component analysis of the second-derivative-transformed FT-IR spectra segregated S. macedonicus phenotypes individually in all spectral regions that are characteristic for major cellular constituents like the polysaccharides of the cell wall, fatty acids of the cell membrane, proteins, and other compounds that absorb in these regions. These findings provide evidence for major changes in cellular composition due to acid adaptation that were clearly different to some extent among the phenotypes. Overall, our data demonstrate the plasticity in the ATR of S. macedonicus, which reflects the inherent ability of the bacterium to adjust the response to the distinctiveness of the imposed stress condition, probably to maximize its adaptability.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
9
|
Uppuluri P, Chaffin WL. Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Mol Microbiol 2007; 64:1572-86. [PMID: 17555439 DOI: 10.1111/j.1365-2958.2007.05760.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stationary phase Candida albicans yeast cells harbour properties of better adherence, virulence and elevated drug resistance. C. albicans stationary phase is not well characterized in vitro either physiologically or molecularly. C. albicans yeast cells were grown in rich medium with 2% glucose. Based on growth and DNA profiles of cells, and by measurement of glucose and ethanol in the medium, we defined the timing of C. albicans entry into different growth transitions. We found that, compared with 24 h cells, mRNA content was less abundant in post-diauxic shift phase and even less in stationary phase C. albicans cells. Further analysis of the C. albicans transcriptome with oligonucleotide-based microarrays revealed that although the overall mRNA content had decreased, transcripts of many genes increased in post-diauxic shift phase as well as stationary phase. Genes involved in processes such as gluconeogenesis, stress resistance, adherence, DNA repair and ageing were expressed at higher levels at and beyond post-diauxic shift phase. Many C. albicans genes associated with virulence, drug resistance and cell-wall biosynthesis were expressed only at stationary phase. By screening 108 C. albicans transcription factor and cell-wall mutants we identified 17 genes essential for either entry or survival in stationary phase at 30 degrees C.
Collapse
Affiliation(s)
- Priya Uppuluri
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
10
|
Papadimitriou K, Pratsinis H, Nebe-von-Caron G, Kletsas D, Tsakalidou E. Acid tolerance of Streptococcus macedonicus as assessed by flow cytometry and single-cell sorting. Appl Environ Microbiol 2007; 73:465-76. [PMID: 17098924 PMCID: PMC1796968 DOI: 10.1128/aem.01244-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 10/27/2006] [Indexed: 12/27/2022] Open
Abstract
An in situ flow cytometric viability assay employing carboxyfluorescein diacetate and propidium iodide was used to identify Streptococcus macedonicus acid tolerance phenotypes. The logarithmic-phase acid tolerance response (L-ATR) was evident when cells were (i) left to autoacidify unbuffered medium, (ii) transiently exposed to nonlethal acidic pH, or (iii) systematically grown under suboptimal acidic conditions (acid habituation). Stationary-phase ATR was also detected; this phenotype was gradually degenerated while cells resided at this phase. Single-cell analysis of S. macedonicus during induction of L-ATR revealed heterogeneity in both the ability and the rate of tolerance acquisition within clonal populations. L-ATR was found to be partially dependent on de novo protein synthesis and compositional changes of the cell envelope. Interestingly, acid-habituated cells were interlaced in lengthier chains and exhibited an irregular pattern of active peptidoglycan biosynthesis sites when probed with BODIPY FL vancomycin. L-ATR caused cells to retain their membrane potential after lethal challenge, as judged by ratiometric analysis with oxonol [DiBAC(4)(3)]. Furthermore, F-ATPase was important during the induction of L-ATR, but in the case of a fully launched response, inhibition of F-ATPase affected acid resistance only partially. Activities of both F-ATPase and the glucose-specific phosphoenolpyruvate-dependent phosphotransferase system were increased after L-ATR induction, distinguishing S. macedonicus from oral streptococci. Finally, the in situ viability assessment was compared to medium-based recovery after single-cell sorting, revealing that the culturability of subpopulations with identical fluorescence characteristics is dependent on the treatments imposed to the cells prior to acid challenge.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | | | | | | |
Collapse
|
11
|
Hasona A, Zuobi-Hasona K, Crowley PJ, Abranches J, Ruelf MA, Bleiweis AS, Brady LJ. Membrane composition changes and physiological adaptation by Streptococcus mutans signal recognition particle pathway mutants. J Bacteriol 2006; 189:1219-30. [PMID: 17085548 PMCID: PMC1797365 DOI: 10.1128/jb.01146-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previously, we presented evidence that the oral cariogenic species Streptococcus mutans remains viable but physiologically impaired and sensitive to environmental stress when genes encoding the minimal conserved bacterial signal recognition particle (SRP) elements are inactivated. Two-dimensional gel electrophoresis of isolated membrane fractions from strain UA159 and three mutants (Deltaffh, DeltascRNA, and DeltaftsY) grown at pH 7.0 or pH 5.0 allowed us to obtain insight into the adaptation process and the identities of potential SRP substrates. Mutant membrane preparations contained increased amounts of the chaperones DnaK and GroES and ClpP protease but decreased amounts of transcription- and translation-related proteins, the beta subunit of ATPase, HPr, and several metabolic and glycolytic enzymes. Therefore, the acid sensitivity of SRP mutants might be caused in part by diminished ATPase activity, as well as the absence of an efficient mechanism for supplying ATP quickly at the site of proton elimination. Decreased amounts of LuxS were also observed in all mutant membranes. To further define physiological changes that occur upon disruption of the SRP pathway, we studied global gene expression in S. mutans UA159 (parent strain) and AH333 (Deltaffh mutant) using microarray analysis. Transcriptome analysis revealed up-regulation of 81 genes, including genes encoding chaperones, proteases, cell envelope biosynthetic enzymes, and DNA repair and replication enzymes, and down-regulation of 35 genes, including genes concerned with competence, ribosomal proteins, and enzymes involved in amino acid and protein biosynthesis. Quantitative real-time reverse transcription-PCR analysis of eight selected genes confirmed the microarray data. Consistent with a demonstrated defect in competence and the suggested impairment of LuxS-dependent quorum sensing, biofilm formation was significantly decreased in each SRP mutant.
Collapse
Affiliation(s)
- Adnan Hasona
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Renye JA, Piggot PJ, Daneo-Moore L, Buttaro BA. Persistence of Streptococcus mutans in stationary-phase batch cultures and biofilms. Appl Environ Microbiol 2004; 70:6181-7. [PMID: 15466565 PMCID: PMC522126 DOI: 10.1128/aem.70.10.6181-6187.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Streptococcus mutans is a member of oral plaque biofilms and is considered the major etiological agent of dental caries. We have characterized the survival of S. mutans strain UA159 in both batch cultures and biofilms. Bacteria grown in batch cultures in a chemically defined medium, FMC, containing an excess of glucose or sucrose caused the pH to decrease to 4.0 at the entry into stationary phase, and they survived for about 3 days. Survival was extended up to 11 days when the medium contained a limiting concentration of glucose or sucrose that was depleted by the time the bacteria reached stationary phase. Sugar-limited cultures maintained a pH of 7.0 throughout stationary phase. Their survival was shortened to 3 days by the addition of exogenous lactic acid at the entry into stationary phase. Sugar starvation did not lead to comparable survival in biofilms. Although the pH remained at 7.0, bacteria could no longer be cultured from biofilms 4 days after the imposition of glucose or sucrose starvation; BacLight staining results did not agree with survival results based on culturability. In both batch cultures and biofilms, survival could be extended by the addition of 0.5% mucin to the medium. Batch survival increased to an average of 26 (+/-8) days, and an average of 2.7 x 10(5) CFU per chamber were still present in biofilms that were starved of sucrose for 12 days.
Collapse
Affiliation(s)
- John A Renye
- Department of Microbiology and Immunology, School of Medicine, Temple University, 505 Kresge Building, 3400 North Broad St., Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
13
|
Urdaneta L, Vanegas G, Premoli G, Avilan L. Plasminogen interaction and activation on Streptococcus mutans surface. ACTA ACUST UNITED AC 2004; 19:257-61. [PMID: 15209997 DOI: 10.1111/j.1399-302x.2004.00149.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A number of pathogenic microorganisms have been previously shown to bind plasminogen. The subsequent activation of plasminogen into plasmin can contribute to their virulence. In this study, we have shown that Streptococcus mutans is able to bind both human plasminogen and plasmin. Binding of plasminogen to S. mutans was inhibited by L-lysine and epsilon-aminocaproic acid, indicating that binding is mediated via lysine-binding sites of plasminogen. S. mutans enhanced the activation of plasminogen by tissue plasminogen activator but not by urokinase. This enhancement turned out to be dependent on cell concentration. Zymogram analysis showed that the plasmin activity acquired after plasminogen binding and activation is the most important proteolytic activity in the strain tested. These results suggest a mechanism involving acquisition of a host protease that might contribute to the infective process of this microorganism.
Collapse
Affiliation(s)
- L Urdaneta
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Universidad de Los Andes, Mérida, Venezuela
| | | | | | | |
Collapse
|
14
|
Ferrari M, Mason PN, Goracci C, Pashley DH, Tay FR. Collagen degradation in endodontically treated teeth after clinical function. J Dent Res 2004; 83:414-9. [PMID: 15111635 DOI: 10.1177/154405910408300512] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Endodontically treated teeth restored with posts are susceptible to coronal leakage after long-term function. We hypothesize that demineralized collagen matrices (DCMs) created in dentin by acidic zinc phosphate cement within the dowel spaces degrade with time. Forty-two post-restored teeth were extracted after three periods of clinical service and were examined, by means of scanning and transmission electron microscopy, for the status of the DCMs. SEM revealed a progressive degradation of the DCMs, becoming less dense after 3 to 5 years, losing structural integrity after 6 to 9 years, and partially disappearing after 10 to 12 years. TEM revealed evidence of collagenolytic activity within the DCMs, with loss of cross-banding and unraveling into microfibrils, and gelatinolytic activity that resulted in disintegration of the microfibrils. Bacterial colonization and the release of bacterial enzymes and of host-derived matrix metalloproteinases may contribute to the degradation of collagen fibrils in root dentin after clinical function.
Collapse
Affiliation(s)
- M Ferrari
- Dental Materials and Restorative Dentistry Department, University of Siena, Italy
| | | | | | | | | |
Collapse
|
15
|
Crowley PJ, Svensäter G, Snoep JL, Bleiweis AS, Brady L. Anffhmutant ofStreptococcus mutansis viable and able to physiologically adapt to low pH in continuous culture. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09550.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Tay FR, Pashley DH. Resin bonding to cervical sclerotic dentin: a review. J Dent 2004; 32:173-96. [PMID: 15001284 DOI: 10.1016/j.jdent.2003.10.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 10/15/2003] [Indexed: 10/26/2022] Open
Abstract
Several reports have indicated that resin bond strengths to noncarious sclerotic cervical dentine are lower than bonds made to normal dentine. This is thought to be due to tubule occlusion by mineral salts, preventing resin tag formation. The purpose of this review was to critically examine what is known about the structure of this type of dentine. Recent transmission electron microscopy revealed that in addition to occlusion of the tubules by mineral crystals, many parts of wedge-shaped cervical lesions contain a hypermineralised surface that resists the etching action of both self-etching primers and phosphoric acid. This layer prevents hybridisation of the underlying sclerotic dentine. In addition, bacteria are often detected on top of the hypermineralised layer. Sometimes the bacteria were embedded in a partially mineralised matrix. Acidic conditioners and resins penetrate variable distances into these multilayered structures. Examination of both sides of the failed bonds revealed a wide variation in fracture patterns that involved all of these structures. Microtensile bond strengths to the occlusal, gingival and deepest portions of these wedge-shaped lesions were significantly lower than similar areas artificially prepared in normal teeth. When resin bonds to sclerotic dentine are extended to include peripheral sound dentine, their bond strengths are probably high enough to permit retention of class V restorations by adhesion, without additional retention.
Collapse
Affiliation(s)
- Franklin R Tay
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong, China.
| | | |
Collapse
|
17
|
Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003; 67:429-53, table of contents. [PMID: 12966143 PMCID: PMC193868 DOI: 10.1128/mmbr.67.3.429-453.2003] [Citation(s) in RCA: 779] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the responses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|