1
|
Nie R, Zhu Z, Qi Y, Wang Z, Sun H, Liu G. Bacteriocin production enhancing mechanism of Lactiplantibacillus paraplantarum RX-8 response to Wickerhamomyces anomalus Y-5 by transcriptomic and proteomic analyses. Front Microbiol 2023; 14:1111516. [PMID: 36910197 PMCID: PMC9998909 DOI: 10.3389/fmicb.2023.1111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
Plantaricin is a kind of bacteriocin with broad-spectrum antibacterial activity on several food pathogens and spoilage microorganisms, showing potential in biopreservation applications. However, the low yield of plantaricin limits its industrialization. In this study, it was found that the co-culture of Wickerhamomyces anomalus Y-5 and Lactiplantibacillus paraplantarum RX-8 could enhance plantaricin production. To investigate the response of L. paraplantarum RX-8 facing W. anomalus Y-5 and understand the mechanisms activated when increasing plantaricin yield, comparative transcriptomic and proteomic analyses of L. paraplantarum RX-8 were performed in mono-culture and co-culture. The results showed that different genes and proteins in the phosphotransferase system (PTS) were improved and enhanced the uptake of certain sugars; the key enzyme activity in glycolysis was increased with the promotion of energy production; arginine biosynthesis was downregulated to increase glutamate mechanism and then promoted plantaricin yield; and the expression of several genes/proteins related to purine metabolism was downregulated and those related to pyrimidine metabolism was upregulated. Meanwhile, the increase of plantaricin synthesis by upregulation of plnABCDEF cluster expression under co-culture indicated that the PlnA-mediated quorum sensing (QS) system took part in the response mechanism of L. paraplantarum RX-8. However, the absence of AI-2 did not influence the inducing effect on plantaricin production. Mannose, galactose, and glutamate were critical metabolites and significantly simulate plantaricin production (p < 0.05). In summary, the findings provided new insights into the interaction between bacteriocin-inducing and bacteriocin-producing microorganisms, which may serve as a basis for further research into the detailed mechanism.
Collapse
Affiliation(s)
- Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zekang Zhu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yanwei Qi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Zhao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Haoxuan Sun
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
2
|
The PTS Components in Klebsiella pneumoniae Affect Bacterial Capsular Polysaccharide Production and Macrophage Phagocytosis Resistance. Microorganisms 2021; 9:microorganisms9020335. [PMID: 33567595 PMCID: PMC7914778 DOI: 10.3390/microorganisms9020335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/04/2022] Open
Abstract
Capsular polysaccharide (CPS) is a crucial virulence factor for Klebsiella pneumoniae infection. We demonstrated an association of CPS production with two phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTSs). Deficiency of crr, encoding enzyme IIA of PTS, in K. pneumoniae enhanced the transcriptional activities of galF, wzi and gnd, which are in the cps gene cluster, leading to high CPS production. A crr mutant exhibited a higher survival rate in 1% hydrogen peroxide than the wild-type. The crr mutant showed less sensitivity to engulfment by macrophage (RAW 264.7) than the wild-type by observing the intracellular bacteria using confocal laser scanning microscopy (CLSM) and by calculating the colony-forming units (CFU) of intracellular bacteria. After long-term incubation, the survival rate of the intracellular crr mutant was higher than that of the wild-type. Deficiency of crr enhanced the transcriptional activities of etcABC which encodes another putative enzyme II complex of a PTS. Deletion of etcABC in the crr mutant reduced CPS production and the transcriptional activities of galF compared to those of the crr mutant. These results indicated that one PTS component, Crr, represses CPS production by repressing another PTS component, EtcABC, in K. pneumoniae. In addition, PTS plays a role in bacterial resistance to macrophage phagocytosis.
Collapse
|
3
|
Jabbar Z, Mukhtar H, Tayyeb A, Manzoor A. Next-generation sequencing to elucidate adaptive stress response and plantaricin genes among Lactobacillus plantarum strains. Future Microbiol 2020; 15:333-348. [PMID: 32286104 DOI: 10.2217/fmb-2019-0158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The objective of this study was to identify the genes involved in plantaricin synthesis and adaptive stress response in four Lactobacillus plantarum strains (AS-6, AS-8, AS-9 and AS-10) and one Lactobacillus paraplantarum strain (AS-7) for their usage in medicine and industry. Materials & methods: Whole genomes of these strains were sequenced by a high-throughput sequencing technique known as next-generation sequencing via Ilumina MiSeq platform and the genes were identified by using various bioinformatics tools and software. Results: Plantaricin genes (plnD, plnE, plnF, plnG, plnI) and genes regulating response to temperature, pH, bile salt, osmotic and oxidative stress were identified in all strains. Conclusion: Lactobacilli could be an option to combat antimicrobial resistance and might replace harmful antibiotics in future.
Collapse
Affiliation(s)
- Zuriat Jabbar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of The Punjab, Lahore 54590, Pakistan
| | - Asma Manzoor
- Institute of Biochemistry & Biotechnology, University of The Punjab, Lahore 54590, Pakistan
| |
Collapse
|
4
|
Rabelo CABS, Soares LA, Sakamoto IK, Silva EL, Varesche MBA. Optimization of hydrogen and organic acids productions with autochthonous and allochthonous bacteria from sugarcane bagasse in batch reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:952-963. [PMID: 30007891 DOI: 10.1016/j.jenvman.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The individual and mutual effects of substrate concentration (from 0.8 to 9.2 g/L) and pH (from 4.6 to 7.4) on hydrogen and volatile fatty acids production from sugarcane bagasse (SCB) were investigated in batch reactors, using a response surface methodology (RSM) and central composite design (CCD). The maximum of 23.10 mmoL H2/L was obtained under optimized conditions of 7.0 g SCB/L and pH 7.2, at 37 °C through the acetic acid pathway (1.57 g/L). Butyric and succinic acids were the major volatile fatty acids (VFA) produced in the fermentation process (from 0.66 to 1.88 g/L and from 1.06 to 1.65 g/L, respectively). According to the results, the RSM and CCD were useful tools to achieve high hydrogen production rates using Clostridium, Bacillus and Enterobacter, identified by Illumina sequencing (16S RNAr) in the fermentative consortium, and Clostridium and Paenibacillus, autochthonous bacteria from SCB. Significant changes were observed in the microbial community according to the changes in the independent variables, since the genera in the central point condition (5.0 g SCB/L and pH 6.0) were Lactobacillus, Escherichia and Clostridium, and Bacteroides and Enterobacter, which were identified in the optimized condition (7.0 g SCB/L and pH 7.2).
Collapse
Affiliation(s)
| | - Laís Américo Soares
- University of São Paulo, João Dagnone Avenue, 1100, CEP 13563-120, São Carlos, SP, Brazil.
| | - Isabel Kimiko Sakamoto
- University of São Paulo, João Dagnone Avenue, 1100, CEP 13563-120, São Carlos, SP, Brazil.
| | - Edson Luiz Silva
- Federal University of São Carlos, Rod Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil.
| | | |
Collapse
|
5
|
Distribution and functions of phosphotransferase system genes in the genome of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 2013; 79:3371-9. [PMID: 23524676 DOI: 10.1128/aem.00380-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oenococcus oeni, the lactic acid bacterium primarily responsible for malolactic fermentation in wine, is able to grow on a large variety of carbohydrates, but the pathways by which substrates are transported and phosphorylated in this species have been poorly studied. We show that the genes encoding the general phosphotransferase proteins, enzyme I (EI) and histidine protein (HPr), as well as 21 permease genes (3 isolated ones and 18 clustered into 6 distinct loci), are highly conserved among the strains studied and may form part of the O. oeni core genome. Additional permease genes differentiate the strains and may have been acquired or lost by horizontal gene transfer events. The core pts genes are expressed, and permease gene expression is modulated by the nature of the bacterial growth substrate. Decryptified O. oeni cells are able to phosphorylate glucose, cellobiose, trehalose, and mannose at the expense of phosphoenolpyruvate. These substrates are present at low concentrations in wine at the end of alcoholic fermentation. The phosphotransferase system (PTS) may contribute to the perfect adaptation of O. oeni to its singular ecological niche.
Collapse
|
6
|
Rodríguez-Díaz J, Rubio-del-Campo A, Yebra MJ. Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine. Biotechnol Bioeng 2012; 109:1704-12. [PMID: 22383248 DOI: 10.1002/bit.24475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/11/2012] [Accepted: 02/09/2012] [Indexed: 11/12/2022]
Abstract
UDP-sugars are used as glycosyl donors in many enzymatic glycosylation processes. In bacteria UDP-N-acetylglucosamine (UDP-GlcNAc) is synthesized from fructose-6-phosphate by four successive reactions catalyzed by three enzymes: Glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM), and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). In this work several metabolic engineering strategies, aimed to increment UDP-GlcNAc biosynthesis, were applied in the probiotic bacterium Lactobacillus casei strain BL23. This strain does not produce exopolysaccharides, therefore it could be a suitable host for the production of oligosaccharides. The genes glmS, glmM, and glmU coding for GlmS, GlmM, and GlmU activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous over-expression. The recombinant L. casei strain over-expressing simultaneously the genes glmM and glmS showed a 3.47 times increase in GlmS activity and 6.43 times increase in GlmM activity with respect to the control strain. Remarkably, these incremented activities resulted in about fourfold increase of the UDP-GlcNAc pool. In L. casei BL23 wild type strain transcriptional analyses showed that glmM and glmU are constitutively transcribed. By contrast, glmS transcription is down-regulated with a 21-fold decrease of glmS mRNA in cells cultured with N-acetylglucosamine as the sole carbon source compared to cells cultured with glucose. Our results revealed for the first time that GlmS, GlmM, and GlmU are responsible for UDP-GlcNAc biosynthesis in lactobacilli.
Collapse
Affiliation(s)
- Jesús Rodríguez-Díaz
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain
| | | | | |
Collapse
|
7
|
McLeod A, Snipen L, Naterstad K, Axelsson L. Global transcriptome response in Lactobacillus sakei during growth on ribose. BMC Microbiol 2011; 11:145. [PMID: 21702908 PMCID: PMC3146418 DOI: 10.1186/1471-2180-11-145] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactobacillus sakei is valuable in the fermentation of meat products and exhibits properties that allow for better preservation of meat and fish. On these substrates, glucose and ribose are the main carbon sources available for growth. We used a whole-genome microarray based on the genome sequence of L. sakei strain 23K to investigate the global transcriptome response of three L. sakei strains when grown on ribose compared with glucose. RESULTS The function of the common regulated genes was mostly related to carbohydrate metabolism and transport. Decreased transcription of genes encoding enzymes involved in glucose metabolism and the L-lactate dehydrogenase was observed, but most of the genes showing differential expression were up-regulated. Especially transcription of genes directly involved in ribose catabolism, the phosphoketolase pathway, and in alternative fates of pyruvate increased. Interestingly, the methylglyoxal synthase gene, which encodes an enzyme unique for L. sakei among lactobacilli, was up-regulated. Ribose catabolism seems closely linked with catabolism of nucleosides. The deoxyribonucleoside synthesis operon transcriptional regulator gene was strongly up-regulated, as well as two gene clusters involved in nucleoside catabolism. One of the clusters included a ribokinase gene. Moreover, hprK encoding the HPr kinase/phosphatase, which plays a major role in the regulation of carbon metabolism and sugar transport, was up-regulated, as were genes encoding the general PTS enzyme I and the mannose-specific enzyme II complex (EIIman). Putative catabolite-responsive element (cre) sites were found in proximity to the promoter of several genes and operons affected by the change of carbon source. This could indicate regulation by a catabolite control protein A (CcpA)-mediated carbon catabolite repression (CCR) mechanism, possibly with the EIIman being indirectly involved. CONCLUSIONS Our data shows that the ribose uptake and catabolic machinery in L. sakei is highly regulated at the transcription level. A global regulation mechanism seems to permit a fine tuning of the expression of enzymes that control efficient exploitation of available carbon sources.
Collapse
Affiliation(s)
- Anette McLeod
- Nofima Mat AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, Ås, NO-1430, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Ås, NO-1432, Norway
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Ås, NO-1432, Norway
| | - Kristine Naterstad
- Nofima Mat AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, Ås, NO-1430, Norway
| | - Lars Axelsson
- Nofima Mat AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, Ås, NO-1430, Norway
| |
Collapse
|
8
|
Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 2011; 156:286-301. [PMID: 21729724 DOI: 10.1016/j.jbiotec.2011.06.017] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/31/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the "conventional" processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria.
Collapse
Affiliation(s)
- Mohamed Ali Abdel-Rahman
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
9
|
Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjärvi T, de Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics 2010; 10:M110.002741. [PMID: 21078892 DOI: 10.1074/mcp.m110.002741] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactobacillus rhamnosus GG (GG) is a widely used and intensively studied probiotic bacterium. Although the health benefits of strain GG are well documented, the systematic exploration of mechanisms by which this strain exerts probiotic effects in the host has only recently been initiated. The ability to survive the harsh conditions of the gastrointestinal tract, including gastric juice containing bile salts, is one of the vital characteristics that enables a probiotic bacterium to transiently colonize the host. Here we used gene expression profiling at the transcriptome and proteome levels to investigate the cellular response of strain GG toward bile under defined bioreactor conditions. The analyses revealed that in response to growth of strain GG in the presence of 0.2% ox gall the transcript levels of 316 genes changed significantly (p < 0.01, t test), and 42 proteins, including both intracellular and surface-exposed proteins (i.e. surfome), were differentially abundant (p < 0.01, t test in total proteome analysis; p < 0.05, t test in surfome analysis). Protein abundance changes correlated with transcriptome level changes for 14 of these proteins. The identified proteins suggest diverse and specific changes in general stress responses as well as in cell envelope-related functions, including in pathways affecting fatty acid composition, cell surface charge, and thickness of the exopolysaccharide layer. These changes are likely to strengthen the cell envelope against bile-induced stress and signal the GG cells of gut entrance. Notably, the surfome analyses demonstrated significant reduction in the abundance of a protein catalyzing the synthesis of exopolysaccharides, whereas a protein dedicated for active removal of bile compounds from the cells was up-regulated. These findings suggest a role for these proteins in facilitating the well founded interaction of strain GG with the host mucus in the presence of sublethal doses of bile. The significance of these findings in terms of the functionality of a probiotic bacterium is discussed.
Collapse
Affiliation(s)
- Kerttu Koskenniemi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim JH, Block DE, Shoemaker SP, Mills DA. Atypical ethanol production by carbon catabolite derepressed lactobacilli. BIORESOURCE TECHNOLOGY 2010; 101:8790-8797. [PMID: 20663662 DOI: 10.1016/j.biortech.2010.06.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/10/2010] [Accepted: 06/20/2010] [Indexed: 05/29/2023]
Abstract
Cost effective use of lignocellulosic biomass for bio-based chemical production requires the discovery of novel strains and processes. Lactobacillus pentosus JH5XP5 is a carbon catabolite repression negative mutant which utilizes glucose and pentoses derived from lignocellulosic biomass in the media simultaneously. With a broad range of carbon substrates, L. pentosus JH5XP5 produced a significant amount of ethanol without acetate formation. The yields of ethanol were 2.0- to 2.5-fold higher than those of lactate when glucose, galactose or maltose was used either as a single carbon source or simultaneously with glucose. L. pentosus JH5XP5 was successfully used in an integrated process of simultaneous saccharification and mixed sugar fermentation of rice straw hydrolysate. During the fermentation, the enzyme activities for the saccharification of cellulose were not diminished. Moreover glucose, xylose, and arabinose sugars derived from rice straw hyrolysate were consumed concurrently as if a single carbon source existed and no sugars or cellulosic fiber remained after the fermentation.
Collapse
Affiliation(s)
- Jae-Han Kim
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
11
|
Rud I, Naterstad K, Bongers RS, Molenaar D, Kleerebezem M, Axelsson L. Functional analysis of the role of CggR (central glycolytic gene regulator) in Lactobacillus plantarum by transcriptome analysis. Microb Biotechnol 2010; 4:345-56. [PMID: 21375718 PMCID: PMC3818993 DOI: 10.1111/j.1751-7915.2010.00223.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The level of the central glycolytic gene regulator (CggR) was engineered in Lactobacillus plantarum NC8 and WCFS1 by overexpression and in‐frame mutation of the cggR gene in order to evaluate its regulatory role on the glycolytic gap operon and the glycolytic flux. The repressor role of CggR on the gap operon was indicated through identification of a putative CggR operator and transcriptome analysis, which coincided with decreased growth rate and glycolytic flux when cggR was overexpressed in NC8 and WCFS1. The mutation of cggR did not affect regulation of the gap operon, indicating a more prominent regulatory role of CggR on the gap operon under other conditions than tested (e.g. fermentation of other sugars than glucose or ribose) and when the level of the putative effector molecule FBP is reduced. Interestingly, the mutation of cggR had several effects in NC8, i.e. increased growth rate and glycolytic flux and regulation of genes with functions associated with glycerol and pyruvate metabolism; however, no effects were observed in WCFS1. The affected genes in NC8 are presumably regulated by CcpA, since putative CRE sites were identified in their upstream regions. The interconnection with CggR and CcpA‐mediated control on growth and metabolism needs to be further elucidated.
Collapse
Affiliation(s)
- Ida Rud
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
| | | | | | | | | | | |
Collapse
|
12
|
Kim JH, Block DE, Mills DA. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 2010; 88:1077-85. [PMID: 20838789 PMCID: PMC2956055 DOI: 10.1007/s00253-010-2839-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy.
Collapse
Affiliation(s)
- Jae-Han Kim
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - David E. Block
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - David A. Mills
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
13
|
|
14
|
Involvement of the mannose phosphotransferase system of Lactobacillus plantarum WCFS1 in peroxide stress tolerance. Appl Environ Microbiol 2010; 76:3748-52. [PMID: 20363783 DOI: 10.1128/aem.00073-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Lactobacillus plantarum strain with a deletion in the gene rpoN, encoding the alternative sigma factor 54 (sigma(54)), displayed a 100-fold-higher sensitivity to peroxide than its parental strain. This feature could be due to sigma(54)-dependent regulation of genes involved in the peroxide stress response. However, transcriptome analyses of the wild type and the mutant strain during peroxide exposure did not support such a role for sigma(54). Subsequent experiments revealed that the impaired expression of the mannose phosphotransferase system (PTS) operon in the rpoN mutant caused the observed increased peroxide sensitivity.
Collapse
|
15
|
Stevens MJA, Molenaar D, de Jong A, De Vos WM, Kleerebezem M. sigma54-Mediated control of the mannose phosphotransferase sytem in Lactobacillus plantarum impacts on carbohydrate metabolism. MICROBIOLOGY-SGM 2009; 156:695-707. [PMID: 19942662 DOI: 10.1099/mic.0.034165-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sigma factors direct specific binding of the bacterial RNA polymerase to the promoter. Here we present the elucidation of the sigma(54 ) regulon in Lactobacillus plantarum. A sequence-based regulon prediction of sigma(54)-dependent promoters revealed an operon encoding a mannose phosphotransferase system (PTS) as the best candidate for sigma(54)-mediated control. A sigma (54) (rpoN) mutant derivative did not grow on mannose, confirming this prediction. Additional mutational analyses established the presence of one functional mannose PTS in L. plantarum, the expression of which is controlled by sigma(54) in concert with the sigma(54)-activator ManR. Genome-wide transcription comparison of the wild-type and the rpoN-deletion strain revealed nine upregulated genes in the wild-type, including the genes of the mannose PTS, and 21 upregulated genes in the rpoN mutant. The sigma(54)-controlled mannose PTS was shown also to transport glucose in L. plantarum wild-type cells, and its presence causes a lag phase when cultures are transferred from glucose- to galactose-containing media. The mannose PTS appeared to drain phosphoenolpyruvate (PEP) pools in resting cells, since no PEP could be detected in resting wild-type cells, while mannose PTS mutant derivatives contained 1-3 muM PEP (mg protein)(-1 ). Our data provide new insight into the role of sigma( 54) in L. plantarum and possibly other Gram-positive bacteria in the control of expression of an important glucose transporter that contributes to glucose-mediated catabolite control via modulation of the PEP pool.
Collapse
Affiliation(s)
- Marc J A Stevens
- NIZO food research, PO Box 20, 6710 BA Ede, The Netherlands.,TI Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands.,Laboratory of Microbiology, Wageningen University and Research Centre, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Douwe Molenaar
- NIZO food research, PO Box 20, 6710 BA Ede, The Netherlands.,TI Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands
| | - Anne de Jong
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Rijksuniversiteit Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Willem M De Vos
- Laboratory of Microbiology, Wageningen University and Research Centre, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.,TI Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Laboratory of Microbiology, Wageningen University and Research Centre, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.,NIZO food research, PO Box 20, 6710 BA Ede, The Netherlands.,TI Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands
| |
Collapse
|
16
|
Kim JH, Shoemaker SP, Mills DA. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology (Reading) 2009; 155:1351-1359. [DOI: 10.1099/mic.0.024653-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prioritization of sugar consumption is a common theme in bacterial growth and a problem for complete utilization of five and six carbon sugars derived from lignocellulose. Growth studies show that Lactobacillus brevis simultaneously consumes numerous carbon sources and appears to lack normal hierarchical control of carbohydrate utilization. Analysis of several independent L. brevis isolates indicated that co-utilization of xylose and glucose is a common trait for this species. Moreover, carbohydrates that can be used as a single carbon source are simultaneously utilized with glucose. Analysis of the proteome of L. brevis cells grown on glucose, xylose or a glucose/xylose mixture revealed the constitutive expression of the enzymes of the heterofermentative pathway. In addition, fermentative mass balances between mixed sugar inputs and end-products indicated that both glucose and xylose are simultaneously metabolized through the heterofermentative pathway. Proteomic and mRNA analyses revealed that genes in the xyl operon were expressed in the cells grown on xylose or on glucose/xylose mixtures but not in those grown on glucose alone. However, the expression level of XylA and XylB proteins in cells grown on a glucose/xylose mixture was reduced 2.7-fold from that observed in cells grown solely on xylose. These results suggest that regulation of xylose utilization in L. brevis is not stringently controlled as seen in other lactic acid bacteria, where carbon catabolite repression operates to prioritize carbohydrate utilization more rigorously.
Collapse
Affiliation(s)
- Jae-Han Kim
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Sharon P. Shoemaker
- California Institute of Food and Agricultural Research, University of California, Davis, CA 95616, USA
| | - David A. Mills
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Goh S, Ong PF, Song KP, Riley TV, Chang BJ. The complete genome sequence of Clostridium difficile phage phiC2 and comparisons to phiCD119 and inducible prophages of CD630. MICROBIOLOGY-SGM 2007; 153:676-685. [PMID: 17322187 DOI: 10.1099/mic.0.2006/002436-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complete genomic sequence of a previously characterized temperate phage of Clostridium difficile, C2, is reported. The genome is 56 538 bp and organized into 84 putative ORFs in six functional modules. The head and tail structural proteins showed similarities to that of C. difficile phage CD119 and Streptococcus pneumoniae phage EJ-1, respectively. Homologues of structural and replication proteins were found in prophages 1 and 2 of the sequenced C. difficile CD630 genome. A putative holin appears unique to the C. difficile phages and was functional when expressed in Escherichia coli. Nucleotide sequence comparisons of C2 to CD119 and the CD630 prophage sequences showed relatedness between C2 and the prophages, but less so to CD119. C2 integrated into a gene encoding a putative transcriptional regulator of the gntR family. C2, CD119 and CD630 prophage 1 genomes had a Cdu1-attP-integrase arrangement, suggesting that the pathogenicity locus (PaLoc) of C. difficile, flanked by cdu1, has phage origins. The attP sequences of C2, CD119 and CD630 prophages were dissimilar. C2-related sequences were found in 84 % of 37 clinical C. difficile isolates and typed reference strains.
Collapse
Affiliation(s)
- Shan Goh
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Microbiology, 5 Science Drive 2, #05-03, 117597, Singapore
| | - Peh Fern Ong
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Microbiology, 5 Science Drive 2, #05-03, 117597, Singapore
| | - Keang Peng Song
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Microbiology, 5 Science Drive 2, #05-03, 117597, Singapore
| | - Thomas V Riley
- Division of Microbiology and Infectious Diseases, The Western Australian Centre for Pathology and Medical Research, Nedlands, WA 6009, Australia
- Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
| | - Barbara J Chang
- Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
18
|
Arous S, Dalet K, Héchard Y. Involvement of thempooperon in resistance to class IIa bacteriocins inListeria monocytogenes. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09734.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Silveira MG, Baumgärtner M, Rombouts FM, Abee T. Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 2004; 70:2748-55. [PMID: 15128528 PMCID: PMC404408 DOI: 10.1128/aem.70.5.2748-2755.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol adaptation, including cytoplasmic, membrane-associated, and integral membrane proteins, was investigated. Ethanol triggers alterations in protein patterns of O. oeni cells stressed with 12% ethanol for 1 h and those of cells grown in the presence of 8% ethanol. Levels of inosine-5'-monophosphate dehydrogenase and phosphogluconate dehydrogenase, which generate reduced nicotinamide nucleotides, were decreased during growth in the presence of ethanol, while glutathione reductase, which consumes NADPH, was induced, suggesting that maintenance of the redox balance plays an important role in ethanol adaptation. Phosphoenolpyruvate:mannose phosphotransferase system (PTS) components of mannose PTS, including the phosphocarrier protein HPr and EII(Man), were lacking in ethanol-adapted cells, providing strong evidence that mannose PTS is absent in ethanol-adapted cells, and this represents a metabolic advantage to O. oeni cells during malolactic fermentation. In cells grown in the presence of ethanol, a large increase in the number of membrane-associated proteins was observed. Interestingly, two of these proteins, dTDT-glucose-4,6-dehydratase and D-alanine:D-alanine ligase, are known to be involved in cell wall biosynthesis. Using a proteomic approach, we provide evidence for an active ethanol adaptation response of O. oeni at the cytoplasmic and membrane protein levels.
Collapse
Affiliation(s)
- M Graça Silveira
- Laboratory of Food Microbiology, Wageningen University, 6700 EV Wageningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Arous S, Buchrieser C, Folio P, Glaser P, Namane A, Hébraud M, Héchard Y. Global analysis of gene expression in an rpoN mutant of Listeria monocytogenes. MICROBIOLOGY-SGM 2004; 150:1581-1590. [PMID: 15133119 DOI: 10.1099/mic.0.26860-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of the alternative sigma(54) factor, encoded by the rpoN gene, was investigated in Listeria monocytogenes by comparing the global gene expression of the wild-type EGDe strain and an rpoN mutant. Gene expression, using whole-genome macroarrays, and protein content, using two-dimensional gel electrophoresis, were analysed. Seventy-seven genes and nine proteins, whose expression was modulated in the rpoN mutant as compared to the wild-type strain, were identified. Most of the modifications were related to carbohydrate metabolism and in particular to pyruvate metabolism. However, under the conditions studied, only the mptACD operon was shown to be directly controlled by sigma(54). Therefore, the remaining modifications seem to be due to indirect effects. In parallel, an in silico analysis suggests that sigma(54) may directly control the expression of four different phosphotransferase system (PTS) operons, including mptACD. PTS activity is known to have a direct effect on the pyruvate pool and on catabolite regulation. These results suggest that sigma(54) is mainly involved in the control of carbohydrate metabolism in L. monocytogenes via direct regulation of PTS activity, alteration of the pyruvate pool and modulation of carbon catabolite regulation.
Collapse
Affiliation(s)
- Safia Arous
- Equipe de Microbiologie Fondamentale et Appliquée, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - Carmen Buchrieser
- Laboratoire de Génomique des Micro-organismes Pathogènes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Patrice Folio
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique de Theix, 63122 Saint-Genes Champanelle, France
| | - Philippe Glaser
- Laboratoire de Génomique des Micro-organismes Pathogènes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Abdelkader Namane
- Plateforme de protéomique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Michel Hébraud
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique de Theix, 63122 Saint-Genes Champanelle, France
| | - Yann Héchard
- Equipe de Microbiologie Fondamentale et Appliquée, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| |
Collapse
|
21
|
Vadyvaloo V, Snoep JL, Hastings JW, Rautenbach M. Physiological implications of class IIa bacteriocin resistance in Listeria monocytogenes strains. MICROBIOLOGY-SGM 2004; 150:335-340. [PMID: 14766911 DOI: 10.1099/mic.0.26731-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High-level resistance to class IIa bacteriocins has been directly associated with the absent EIIAB(Man) (MptA) subunit of the mannose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS) (EIIt(MAN)) in Listeria monocytogenes strains. Class IIa bacteriocin-resistant strains used in this study were a spontaneous resistant, L. monocytogenes B73-MR1, and a defined mutant, L. monocytogenes EGDe-mptA. Both strains were previously reported to have the EIIAB(Man) PTS component missing. This study shows that these class IIa bacteriocin-resistant strains have significantly decreased specific growth and glucose consumption rates, but they also have a significantly higher growth yield than their corresponding wild-type strains, L. monocytogenes B73 and L. monocytogenes EGDe, respectively. In the presence of glucose, the strains showed a shift from a predominantly lactic-acid to a mixed-acid fermentation. It is here proposed that elimination of the EIIAB(Man) in the resistant strains has caused a reduced glucose consumption rate and a reduced specific growth rate. The lower glucose consumption rate can be correlated to a shift in metabolism to a more efficient pathway with respect to ATP production per glucose, leading to a higher biomass yield. Thus, the cost involved in obtaining bacteriocin resistance, i.e. losing substrate transport capacity leading to a lower growth rate, is compensated for by a higher biomass yield.
Collapse
Affiliation(s)
- Viveka Vadyvaloo
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - John W Hastings
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| | - Marina Rautenbach
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| |
Collapse
|
22
|
Lessard C, Cochu A, Lemay JD, Roy D, Vaillancourt K, Frenette M, Moineau S, Vadeboncoeur C. Phosphorylation of Streptococcus salivarius lactose permease (LacS) by HPr(His ~ P) and HPr(Ser-P)(His ~ P) and effects on growth. J Bacteriol 2003; 185:6764-72. [PMID: 14617640 PMCID: PMC262714 DOI: 10.1128/jb.185.23.6764-6772.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 09/09/2003] [Indexed: 11/20/2022] Open
Abstract
The oral bacterium Streptococcus salivarius takes up lactose via a transporter called LacS that shares 95% identity with the LacS from Streptococcus thermophilus, a phylogenetically closely related organism. S. thermophilus releases galactose into the medium during growth on lactose. Expulsion of galactose is mediated via LacS and stimulated by phosphorylation of the transporter by HPr(His approximately P), a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). Unlike S. thermophilus, S. salivarius grew on lactose without expelling galactose and took up galactose and lactose concomitantly when it is grown in a medium containing both sugars. Analysis of the C-terminal end of S. salivarius LacS revealed a IIA-like domain (IIA(LacS)) almost identical to the IIA domain of S. thermophilus LacS. Experiments performed with purified proteins showed that S. salivarius IIA(LacS) was reversibly phosphorylated on a histidine residue at position 552 not only by HPr(His approximately P) but also by HPr(Ser-P)(His approximately P), a doubly phosphorylated form of HPr present in large amounts in rapidly growing S. salivarius cells. Two other major S. salivarius PTS proteins, IIAB(L)(Man) and IIAB(H)(Man), were unable to phosphorylate IIA(LacS). The effect of LacS phosphorylation on growth was studied with strain G71, an S. salivarius enzyme I-negative mutant that cannot synthesize HPr(His approximately P) or HPr(Ser-P)(His approximately P). These results indicated that (i) the wild-type and mutant strains had identical generation times on lactose, (ii) neither strain expelled galactose during growth on lactose, (iii) both strains metabolized lactose and galactose concomitantly when grown in a medium containing both sugars, and (iv) the growth of the mutant was slightly reduced on galactose.
Collapse
Affiliation(s)
- Christian Lessard
- Groupe de Recherche en Ecologie Buccale, Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, and Faculté de Médecine Dentaire, Université Laval, Québec City, Quebec G1K 7P4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cochu A, Vadeboncoeur C, Moineau S, Frenette M. Genetic and biochemical characterization of the phosphoenolpyruvate:glucose/mannose phosphotransferase system of Streptococcus thermophilus. Appl Environ Microbiol 2003; 69:5423-32. [PMID: 12957931 PMCID: PMC194979 DOI: 10.1128/aem.69.9.5423-5432.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Accepted: 06/29/2003] [Indexed: 11/20/2022] Open
Abstract
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIAB(Man), two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIAB(Man), IIC(Man), IID(Man), and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIAB(Man) as well as membrane fragments containing IIC(Man) and IID(Man). These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIAB(Man).
Collapse
Affiliation(s)
- Armelle Cochu
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec G1K 7P4, Canada
| | | | | | | |
Collapse
|
24
|
Abranches J, Chen YYM, Burne RA. Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Appl Environ Microbiol 2003; 69:4760-9. [PMID: 12902269 PMCID: PMC169087 DOI: 10.1128/aem.69.8.4760-4769.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major sugar uptake system in oral streptococci. The role of EIIAB(Man) (encoded by manL) in gene regulation and sugar transport was investigated in Streptococcus mutans UA159. The manL knockout strain, JAM1, grew more slowly than the wild-type strain in glucose but grew faster in mannose and did not display diauxic growth, indicating that EIIAB(Man) is involved in sugar uptake and in carbohydrate catabolite repression. PTS assays of JAM1, and of strains lacking the inducible (fruI) and constitutive (fruCD) EII fructose, revealed that S. mutans EIIAB(Man) transported mannose and glucose and provided evidence that there was also a mannose-inducible or glucose-repressible mannose PTS. Additionally, there appears to be a fructose PTS that is different than FruI and FruCD. To determine whether EIIAB(Man) controlled expression of the known virulence genes, glucosyltransferases (gtfBC) and fructosyltransferase (ftf) promoter fusions of these genes were established in the wild-type and EIIAB(Man)-deficient strains. In the manL mutant, the level of chloramphenicol acetyltransferase activity expressed from the gtfBC promoter was up to threefold lower than that seen with the wild-type strain at pH 6 and 7, indicating that EIIAB(Man) is required for optimal expression of gtfBC. No significant differences were observed between the mutant and the wild-type background in ftf regulation, with the exception that under glucose-limiting conditions at pH 7, the mutant exhibited a 2.1-fold increase in ftf expression. Two-dimensional gel analysis of batch-grown cells of the EIIAB(Man)-deficient strain indicated that the expression of at least 38 proteins was altered compared to that seen with the wild-type strain, revealing that EIIAB(Man) has a pleiotropic effect on gene expression.
Collapse
Affiliation(s)
- Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
25
|
ASANUMA N, HINO T. Regulation of fermentation in a ruminal bacterium,Streptococcus bovis, with special reference to rumen acidosis. Anim Sci J 2002. [DOI: 10.1046/j.1344-3941.2002.00044.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jänsch L, Héchard Y, Hastings JW, Knøchel S. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2361-2369. [PMID: 12177330 DOI: 10.1099/00221287-148-8-2361] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Class IIa bacteriocins may be used as natural food preservatives, yet resistance development in the target organisms is still poorly understood. In this study, the understanding of class IIa resistance development in Listeria monocytogenes is extended, linking the seemingly diverging results previously reported. Eight resistant mutants having a high resistance level (at least a 10(3)-fold increase in MIC), originating from five wild-type listerial strains, were independently isolated following exposure to four different class IIa bacteriocin-producing lactic acid bacteria (including pediocin PA-1 and leucocin A producers). Two of the mutants were isolated from food model systems (a saveloy-type sausage at 10 degrees C, and salmon juice at 5 degrees C). Northern blot analysis showed that the eight mutants all had increased expression of EII(Bgl) and a phospho-beta-glucosidase homologue, both originating from putative beta-glucoside-specific phosphoenolpyruvate-dependent phosphotransferase systems (PTSs). However, disruption of these genes in a resistant mutant did not confer pediocin sensitivity. Comparative two-dimensional gel analysis of proteins isolated from mutant and wild-type strains showed that one spot was consistently missing in the gels from mutant strains. This spot corresponded to the MptA subunit of the mannose-specific PTS, found only in the gels of wild-type strains. The mptACD operon was recently shown to be regulated by the sigma(54) transcription factor in conjunction with the activator ManR. Class IIa bacteriocin-resistant mutants having defined mutations in mpt or manR also exhibited the two diverging PTS expression changes. It is suggested here that high-level class IIa resistance in L. monocytogenes and at least some other Gram-positive bacteria is developed by one prevalent mechanism, irrespective of wild-type strain, class IIa bacteriocin, or the tested environmental conditions. The changes in expression of the beta-glucoside-specific and the mannose-specific PTS are both influenced by this mechanism. The current understanding of the actual cause of class IIa resistance is discussed.
Collapse
Affiliation(s)
- Anne Gravesen
- Department of Dairy and Food Science, Centre for Advanced Food Studies, LMC, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark1
| | - Manilduth Ramnath
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa2
- Department of Dairy and Food Science, Centre for Advanced Food Studies, LMC, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark1
| | - K Björn Rechinger
- Department of Dairy and Food Science, Centre for Advanced Food Studies, LMC, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark1
| | - Natalie Andersen
- Department of Dairy and Food Science, Centre for Advanced Food Studies, LMC, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark1
| | - Lothar Jänsch
- German Research Centre for Biotechnology, Department of Cell Biology, Mascheroder Weg 1, Braunschweig D-38124, Germany3
| | - Yann Héchard
- Laboratoire de Microbiologie Fondamentale et Appliquée, CNRS FRE 2224, IBMIG, UFR Sciences, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France4
| | - John W Hastings
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa2
| | - Susanne Knøchel
- Department of Dairy and Food Science, Centre for Advanced Food Studies, LMC, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark1
| |
Collapse
|
27
|
Posthuma CC, Bader R, Engelmann R, Postma PW, Hengstenberg W, Pouwels PH. Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Appl Environ Microbiol 2002; 68:831-7. [PMID: 11823225 PMCID: PMC126734 DOI: 10.1128/aem.68.2.831-837.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purification of xylulose 5-phosphate phosphoketolase (XpkA), the central enzyme of the phosphoketolase pathway (PKP) in lactic acid bacteria, and cloning and sequence analysis of the encoding gene, xpkA, from Lactobacillus pentosus MD363 are described. xpkA encodes a 788-amino-acid protein with a calculated mass of 88,705 Da. Expression of xpkA in Escherichia coli led to an increase in XpkA activity, while an xpkA knockout mutant of L. pentosus lost XpkA activity and was not able to grow on energy sources that are fermented via the PKP, indicating that xpkA encodes an enzyme with phosphoketolase activity. A database search revealed that there are high levels of similarity between XpkA and a phosphoketolase from Bifidobacterium lactis and between XpkA and a (putative) protein present in a number of evolutionarily distantly related organisms (up to 54% identical residues). Expression of xpkA in L. pentosus was induced by sugars that are fermented via the PKP and was repressed by glucose mediated by carbon catabolite protein A (CcpA) and by the mannose phosphoenolpyruvate phosphotransferase system. Most of the residues involved in correct binding of the cofactor thiamine pyrophosphate (TPP) that are conserved in transketolase, pyruvate decarboxylase, and pyruvate oxidase were also conserved at a similar position in XpkA, implying that there is a similar TPP-binding fold in XpkA.
Collapse
Affiliation(s)
- Clara C Posthuma
- SILS, BioCentrum, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|