1
|
Godoy P, Mourenza Á, Hernández-Romero S, González-López J, Manzanera M. Microbial Production of Ethanol From Sludge Derived From an Urban Wastewater Treatment Plant. Front Microbiol 2018; 9:2634. [PMID: 30443244 PMCID: PMC6221965 DOI: 10.3389/fmicb.2018.02634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022] Open
Abstract
A collection of lipase-producing microorganisms was isolated from sludge derived from an urban wastewater treatment plant. The microorganisms with the highest levels of lipase activity were selected in order to use triglycerides present in the sludge effectively and were then transformed with pdc:adhB genes for the production of ethanol. The transgenic strains showed high growth rates in diluted sludge and produced lipase protein in order to utilize fat present in the sludge, which provides an abundant source of carbon. Using sludge derived from treated wastewater as nutrient source, ethanol was produced by certain transgenic species belonging to the genera Proteus. Different forms of sludge were tested for maximal ethanol production, with dehydrated sludge being found to produce the best performance.
Collapse
Affiliation(s)
- Patricia Godoy
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| | - Álvaro Mourenza
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| | - Sergio Hernández-Romero
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| | - Jesús González-López
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| | - Maximino Manzanera
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Gulez G, Altıntaş A, Fazli M, Dechesne A, Workman CT, Tolker-Nielsen T, Smets BF. Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials. Microbiologyopen 2014; 3:457-69. [PMID: 24912454 PMCID: PMC4287175 DOI: 10.1002/mbo3.180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas putida is a versatile bacterial species adapted to soil and its fluctuations. Like many other species living in soil, P. putida often faces water limitation. Alginate, an exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role of different EPS components under mild water limitation. To create environmentally realistic water limited conditions as observed in soil, we used the Pressurized Porous Surface Model. Our main hypothesis was that under water limitation and in the absence of alginate other exopolysaccharides would be more active to maintain homeostasis. To test our hypothesis, we investigated colony morphologies and whole genome transcriptomes of P. putida KT2440 wild type and its mutants deficient in synthesis of either alginate or all known EPS. Overall our results support that alginate is an important exopolysaccharide under water limitation and in the absence of alginate other tolerance mechanisms are activated.
Collapse
Affiliation(s)
- Gamze Gulez
- Department of Environmental Engineering, Technical University of DenmarkBuilding 113, Kongens Lyngby, Denmark
| | - Ali Altıntaş
- Center for Biological Sequencing, Department of Systems Biology, Technical University of DenmarkBuilding 208, Kongens Lyngby, Denmark
| | - Mustafa Fazli
- Faculty of Science, Department of Biology, University of CopenhagenOle Maaløes Vej 5, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of International Health, Immunology, and Microbiology, University of CopenhagenBlegdamsvej 3C, Copenhagen, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of DenmarkBuilding 113, Kongens Lyngby, Denmark
| | - Christopher T Workman
- Center for Biological Sequencing, Department of Systems Biology, Technical University of DenmarkBuilding 208, Kongens Lyngby, Denmark
| | - Tim Tolker-Nielsen
- Faculty of Health and Medical Sciences, Department of International Health, Immunology, and Microbiology, University of CopenhagenBlegdamsvej 3C, Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of DenmarkBuilding 113, Kongens Lyngby, Denmark
- Correspondence Barth F. Smets, Department of Environmental Engineering, Technical University of Denmark, Building 113, Kongens Lyngby, Denmark. Tel: +45 45 25 22 30; Fax: +45 45 93 28 50;, E-mail:
| |
Collapse
|
3
|
Comparative analysis of explosive RDX-induced proteomes in the Pseudomonas sp. HK-6 wild-type strain and its rpoH mutant strain. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0249-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Crabbé A, Leroy B, Wattiez R, Aertsen A, Leys N, Cornelis P, Van Houdt R. Differential proteomics and physiology of Pseudomonas putida KT2440 under filament-inducing conditions. BMC Microbiol 2012. [PMID: 23186381 PMCID: PMC3538555 DOI: 10.1186/1471-2180-12-282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Pseudomonas putida exerts a filamentous phenotype in response to environmental stress conditions that are encountered during its natural life cycle. This study assessed whether P. putida filamentation could confer survival advantages. Filamentation of P. putida was induced through culturing at low shaking speed and was compared to culturing in high shaking speed conditions, after which whole proteomic analysis and stress exposure assays were performed. Results P. putida grown in filament-inducing conditions showed increased resistance to heat and saline stressors compared to non-filamented cultures. Proteomic analysis showed a significant metabolic change and a pronounced induction of the heat shock protein IbpA and recombinase RecA in filament-inducing conditions. Our data further indicated that the associated heat shock resistance, but not filamentation, was dependent of RecA. Conclusions This study provides insights into the altered metabolism of P. putida in filament-inducing conditions, and indicates that the formation of filaments could potentially be utilized by P. putida as a survival strategy in its hostile, recurrently changing habitat.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Unit of Microbiology, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | | | | | | | | | | |
Collapse
|
5
|
Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Appl Microbiol Biotechnol 2011; 91:1297-304. [PMID: 21769483 DOI: 10.1007/s00253-011-3461-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) increase the viability and health of host plants when they colonize roots and engage in associative symbiosis (Bashan et al. 2004). In return, PGPR viability is increased by host plant roots by the provision of nutrients and a more protective environment (Richardson et al. in Plant Soil 321:305-339, 2009). The PGPR have great potential in agriculture since the combination of certain microorganisms and plants can increase crop production and increase protection against frost, salinity, drought and other environmental stresses such as the presence of xenobiotic pollutants. But there is a great challenge in combining plants and microorganisms without compromising the viability of either microorganisms or seeds. In this paper, we review how anhydrobiotic engineering can be used for the formulation of biotechnological tools that guarantee the supply of both plants and microorganisms in the dry state. We also describe the application of this technology for the selection of desiccation-tolerant PGPR for polycyclic aromatic hydrocarbons bioremediation, in soils subjected to seasonal drought, by the rhizoremediation process.
Collapse
|
6
|
Kobayashi Y, Ohtsu I, Fujimura M, Fukumori F. A mutation in dnaK causes stabilization of the heat shock sigma factor σ32, accumulation of heat shock proteins and increase in toluene-resistance in Pseudomonas putida. Environ Microbiol 2010; 13:2007-17. [PMID: 20880327 DOI: 10.1111/j.1462-2920.2010.02344.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat shock gene expression is regulated by the cellular level and activity of the stress sigma factor σ(32) in Gram-negative bacteria. A toluene-resistant, temperature-sensitive derivative strain of Pseudomonas putida KT2442, designated KT2442-R2 (R2), accumulated several heat shock proteins (HSPs) under non-stress conditions. Genome sequencing of strain R2 revealed that its genome contains a number of point mutations, including a CGT to CCT change in dnaK resulting in an Arg445 to Pro substitution in DnaK. DNA microarray and real-time reverse transcription polymerase chain reaction analyses revealed that the mRNA levels of representative hsp genes (e.g. dnaK, htpG and groEL) were upregulated in R2 cells in the stationary phase. Wild-type and R2 cells showed similar heat shock responses at hsp mRNA and HSP levels; however, the σ(32) level in the mutant was not downregulated in the shut-off stage. Strain R2 harbouring plasmid-borne dnaK grew at 37°C, did not accumulate HSPs, and was more sensitive to toluene than strain R2. It is worth to note that that revertant of R2 able to grow at 37°C were isolated and exhibited a replacement of Pro445 by Ser or Leu in DnaK. Thus, the mutation in dnaK causes the temperature-sensitive phenotype, improper stabilization of σ(32) leading to HSP accumulation and increased toluene resistance in strain R2.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | | | | | | |
Collapse
|
7
|
Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H. Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 2007; 189:6849-60. [PMID: 17675379 PMCID: PMC2045235 DOI: 10.1128/jb.00684-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/19/2007] [Indexed: 11/20/2022] Open
Abstract
The IncP-7 plasmid pCAR1 of Pseudomonas resinovorans CA10 confers the ability to degrade carbazole upon transfer to the recipient strain P. putida KT2440. We designed a customized whole-genome oligonucleotide microarray to study the coordinated expression of pCAR1 and the chromosome in the transconjugant strain KT2440(pCAR1). First, the transcriptome of KT2440(pCAR1) during growth with carbazole as the sole carbon source was compared to that during growth with succinate. The carbazole catabolic car and ant operons were induced, along with the chromosomal cat and pca genes involved in the catechol branch of the beta-ketoadipate pathway. Additionally, the regulatory gene antR encoding the AraC/XylS family transcriptional activator specific for car and ant operons was upregulated. The characterization of the antR promoter revealed that antR is transcribed from an RpoN-dependent promoter, suggesting that the successful expression of the carbazole catabolic operons depends on whether the chromosome contains the specific RpoN-dependent activator. Next, to analyze whether the horizontal transfer of a plasmid alters the transcription network of its host chromosome, we compared the chromosomal transcriptomes of KT2440(pCAR1) and KT2440 under the same growth conditions. Only subtle changes were caused by the transfer of pCAR1, except for the significant induction of the hypothetical gene PP3700, designated parI, which encodes a putative ParA-like ATPase with an N-terminal Xre-type DNA-binding motif. Further transcriptional analyses showed that the parI promoter was positively regulated by ParI itself and the pCAR1-encoded protein ParA.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Yuste L, Hervás AB, Canosa I, Tobes R, Jiménez JI, Nogales J, Pérez-Pérez MM, Santero E, Díaz E, Ramos JL, de Lorenzo V, Rojo F. Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 2006; 8:165-77. [PMID: 16343331 DOI: 10.1111/j.1462-2920.2005.00890.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial transcriptional networks are built on a hierarchy of regulators, on top of which lie the components of the RNA polymerase (in particular the sigma factors) and the global control elements, which play a pivotal role. We have designed a genome-wide oligonucleotide-based DNA microarray for Pseudomonas putida KT2440. In combination with real-time reverse transcription polymerase chain reaction (RT-PCR), we have used it to analyse the expression pattern of the genes encoding the RNA polymerase subunits (the core enzyme and the 24 sigma factors), and various proteins involved in global regulation (Crc, Lrp, Fur, Anr, Fis, CsrA, IHF, HupA, HupB, HupN, BipA and several MvaT-like proteins), during the shift from exponential growth in rich medium into starvation and stress brought about by the entry into stationary phase. Expression of the genes encoding the RNA polymerase core and the vegetative sigma factor decreased in stationary phase, while that of sigma(S) increased. Data obtained for sigma(N), sigma(H), FliA and for the 19 extracytoplasmic function (ECF)-like sigma factors suggested that their mRNA levels change little upon entry into stationary phase. Expression of Crc, BipA, Fis, HupB, HupN and the MvaT-like protein PP3693 decreased in stationary phase, while that of HupA and the MvaT-like protein PP3765 increased significantly. Expression of IHF was indicative of post-transcriptional control. These results provide the first global study of the expression of the transcriptional machinery through the exponential stationary-phase shift in P. putida.
Collapse
Affiliation(s)
- Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 - Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yamauchi S, Okuyama H, Nishiyama Y, Hayashi H. The rpoH gene encoding heat shock sigma factor sigma32 of psychrophilic bacterium Colwellia maris. Extremophiles 2005; 10:149-58. [PMID: 16362517 DOI: 10.1007/s00792-005-0485-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/20/2005] [Indexed: 01/25/2023]
Abstract
The rpoH gene encoding a heat shock sigma factor, sigma(32), was cloned from the psychrophilic bacterium Colwellia maris. The deduced amino acid sequence of sigma(32) from C. maris is more than 60% homologous to that of sigma(32) from mesophilic bacteria. The RpoH box, a 9-amino-acid sequence region (QRKLFFNLR) specific to sigma(32), and two downstream box sequences complementary to a part of 16S rRNA were identified. Primer extension analysis showed that the C. maris rpoH is expressed from only one sigma(70)-type promoter. Northern blot analysis showed that the level of rpoH mRNA was clearly increased at 20 degrees C, a temperature that induces heat shock in this organism. In the presence of an inhibitor of transcriptional initiation, the degradation of rpoH mRNA was much slower at 20 degrees C than at 10 degrees C. Thus, increased stability of the rpoH mRNA might be responsible for the rpoH mRNA accumulation. The predicted secondary structure of the 5'-region of C. maris rpoH mRNA was different from the conserved patterns reported for most mesophilic bacteria, and the base pairing of the downstream boxes appeared to be less stable than that of Escherichia coli rpoH mRNA. Thus, essential features that ensure the HSP expression at a relatively low temperature are embedded in the rpoH gene of psychrophiles.
Collapse
Affiliation(s)
- Seiji Yamauchi
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | | | | | | |
Collapse
|
10
|
Domínguez-Cuevas P, Marín P, Ramos JL, Marqués S. RNA polymerase holoenzymes can share a single transcription start site for the Pm promoter. Critical nucleotides in the -7 to -18 region are needed to select between RNA polymerase with sigma38 or sigma32. J Biol Chem 2005; 280:41315-23. [PMID: 16230361 DOI: 10.1074/jbc.m505415200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pm promoter of the benzoate meta-cleavage pathway is transcribed with E sigma32 or E sigma38 according to the growth phase, with an identical transcriptional start site. To investigate sequence determinants in the interaction between either of the two RNA polymerases and Pm, all possible single mutants between positions -7 and -18 were generated, and the activity in the exponential and stationary phases of the resulting mutant promoters was compared. The results precisely delimited a -10 element between positions -7 and -12 (TAGGCT), which defined a promoter sharing nucleotides with both sigma38 and sigma32 consensus. The first two and the last positions of this hexamer were crucial for recognition by both polymerases. Position -10 was the only one specifically recognized by E sigma38, whereas positions -8, -9, and the C-track between positions -14 and -17 were important for specific E sigma32 recognition. Western blots showed that sigma32 was only detectable in the exponential phase, and sigma38 appeared in the early stationary phase. In the rpoH mutant KY1429, sigma38 was already present in the exponential growth phase both free and bound to the RNA polymerase core, in good correlation with the transcription levels found. Pm seems to be optimized for recognition by sigma32 as an initial response to the addition of effector to the medium and allows binding of the adaptable sigma38-dependent RNA polymerase in the stationary phase. XylS is always required for Pm transcription. Therefore, the mechanism that controls Pm expression involves specific nucleotide sequences, the abundance of free and core-bound sigma32 and sigma38 factors during growth, and the presence of the regulator activated by an effector.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado de Correos 419, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
11
|
González-Pérez MM, Ramos JL, Marqués S. Cellular XylS levels are a function of transcription of xylS from two independent promoters and the differential efficiency of translation of the two mRNAs. J Bacteriol 2004; 186:1898-901. [PMID: 14996822 PMCID: PMC355962 DOI: 10.1128/jb.186.6.1898-1901.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS controls the expression of the meta-cleavage pathway for the metabolism of benzoates in Pseudomonas putida KT2440. The xylS gene is expressed from two promoters, Ps1 and Ps2. Transcription from Ps2 is low and constitutive, whereas transcription from Ps1 is induced in the presence of toluene. In this study, we also show that translation of mRNA generated from Ps1 is 10 times more efficient than that generated from Ps2. This pattern of transcription and translation of xylS gives rise to two modes of activation of the promoter of the meta pathway operon (Pm) according to the concentration of XylS in the cell. In cells growing with benzoate, with small amounts of XylS, the activated XylS regulator binds the effector and stimulates transcription from Pm, whereas in cells growing with toluene, the high levels of XylS suffice to stimulate transcription from Pm even in the absence of XylS effectors.
Collapse
Affiliation(s)
- M-Mar González-Pérez
- Estación Experimental del Zaidín, CSIC, Departamento de Bioquímica y Biología Molecular y Celular de Plantas, E-18080 Granada, Spain
| | | | | |
Collapse
|
12
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
13
|
Martínez-Bueno MA, Tobes R, Rey M, Ramos JL. Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01. Environ Microbiol 2002; 4:842-55. [PMID: 12534467 DOI: 10.1046/j.1462-2920.2002.00371.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas putida KT2440 is highly successful in colonizing a variety habitats, including aquatic and edaphic niches. In accordance with this ability and with the need to adapt to changing environmental conditions, P. putida has developed sophisticated mechanisms of transcriptional regulation. We analysed, at the genome level, the repertoire of sigma factors in P. putida KT2440 and identified 24 sigma factors, 19 of which corresponded to the subfamily of extracytoplasmic function (ECF) sigma factors. We detected 13 ECF sigma factors that showed similarity to the Escherichia coli FecI sigma factor, which is involved in iron acquisition. In 11 cases, a fecR-like gene was found adjacent to the fecI-like gene and, in 10 cases, a gene encoding an iron receptor lies in the vicinity of the fecI/fecR cluster. This may explain the ability of P. putida KT2440 to grow under low iron availability conditions. Five fecI/fecR/iron receptor gene clusters from P. putida were also identified in the human pathogen Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Manuel A Martínez-Bueno
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof Albareda, 1, 18008 Granada, Spain
| | | | | | | |
Collapse
|
14
|
Juhnke S, Peitzsch N, Hübener N, Grosse C, Nies DH. New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 2002; 179:15-25. [PMID: 12471500 DOI: 10.1007/s00203-002-0492-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 08/21/2002] [Accepted: 09/16/2002] [Indexed: 11/29/2022]
Abstract
Chromate resistance in Ralstonia metallidurans CH34 is based on chromate efflux catalyzed by ChrA efflux pumps. The bacterium harbors two chromate resistance determinants, the previously known chr(1) on plasmid pMOL28 (genes chrI, chrB(1), chrA(1), chrC, chrE, chrF(1)) and chr(2) on the chromosome (genes chrB(2), chrA(2), chrF(2)). Deletion of the genes chrI, chrC, chrA(2), chrB(2) and chrF(2) influenced chromate resistance and transcription from a chrBp(1) ::lacZ fusion. Deletion of the plasmid-encoded gene chrB(1) did not change chromate resistance or chrBp(1) regulation. Northern hybridization and primer-extension experiments were used to study transcription of the plasmid-encoded chr(1) determinant. Transcription of chrB(1), chrA(1) and chrC was induced by chromate. The presence of sulfate influenced transcription positively. The chrBp(1), chrAp(1) and chrCppromoters showed some similarity to heat-shock promoters. Transcription of the gene rpoH encoding a putative heat-shock sigma factor was also induced by chromate, but rpoH was not essential for chromate resistance. The ChrC protein was purified as a homotetramer and exerted superoxide dismutase activity. Thus, possible regulators for chromate resistance (ChrI, ChrB(1), ChrB(2), ChrF(1), and ChrF(2)) and an additional detoxification system (ChrC) were newly identified as parts of chromate resistance in R. metallidurans.
Collapse
Affiliation(s)
- Susanne Juhnke
- Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle, Germany, European Community
| | | | | | | | | |
Collapse
|
15
|
González-Pérez MM, Marqués S, Domínguez-Cuevas P, Ramos JL. XylS activator and RNA polymerase binding sites at the Pm promoter overlap. FEBS Lett 2002; 519:117-22. [PMID: 12023029 DOI: 10.1016/s0014-5793(02)02730-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transcription from the TOL plasmid meta-cleavage pathway operon, Pm, depends on the XylS protein being activated by a benzoate effector. The XylS binding sites are two imperfect 5'-TGCAN(6)GGNTA-3' direct repeats located between positions -70/-56 and -49/-35 [González-Pérez et al. (1999) J. Biol. Chem. 274, 2286-2290]. An intrinsic bending of 40 degrees, which is not essential for transcription, is centered at position -43. We have determined the potential overlap between the XylS and RNA polymerase binding sites. The insertion of 2 or more bp between C and T at positions -37 and -36 abolished transcription activation by the wild-type XylS and by XylSS229I, a mutant with increased affinity for the XylS binding sites. In contrast, a 1-bp insertion at -37 was permissible, although when in addition to the 1-bp insertion at -37 the mutant promoter had a point mutation at the XylS binding site (C-47-->T), transcription was abolished with the wild-type XylS protein, but not with XylSS229I. The overlap between the proximal XylS binding site and the -35 region recognized by RNA polymerase at positions -35 and -36 appears to be critical for transcription.
Collapse
Affiliation(s)
- M Mar González-Pérez
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, Spain
| | | | | | | |
Collapse
|
16
|
Aranda-Olmedo I, Tobes R, Manzanera M, Ramos JL, Marqués S. Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. Nucleic Acids Res 2002; 30:1826-33. [PMID: 11937637 PMCID: PMC113213 DOI: 10.1093/nar/30.8.1826] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas putida KT2440 is a soil bacterium that effectively colonises the roots of many plants and degrades a variety of toxic aromatic compounds. Its genome has recently been sequenced. We describe that a 35 bp sequence with the structure of an imperfect palindrome, originally found repeated three times downstream of the rpoH gene terminator, is detected more than 800 times in the chromosome of this strain. The structure of this DNA segment is analogous to that of the so-called enterobacteriaceae repetitive extragenic palindromic (REP) sequences, although its sequence is different. Computer-assisted analysis of the presence and distribution of this repeated sequence in the P.putida chromosome revealed that in at least 80% of the cases the sequence is extragenic, and in 82% of the cases the distance of this extragenic element to the end of one of the neighbouring genes was <100 bp. This 35 bp element can be found either as a single element, as pairs of elements, or sometimes forming clusters of up to five elements in which they alternate orientation. PCR scanning of chromosomes from different isolates of Pseudomonas sp. strains using oligonucleotides complementary to the most conserved region of this sequence shows that it is only present in isolates of the species P.putida. For this reason we suggest that the P.putida 35 bp element is a distinctive REP sequence in P.putida. This is the first time that REP sequences have been described and characterised in a group of non-enterobacteriaceae.
Collapse
Affiliation(s)
- Isabel Aranda-Olmedo
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Departamento de Bioquímica y Biología Molecular y Celular de Plantas, Apdo. de correos 419, E-18080 Granada, Spain
| | | | | | | | | |
Collapse
|