1
|
Shiels K, Browne N, Donovan F, Murray P, Saha SK. Molecular Characterization of Twenty-Five Marine Cyanobacteria Isolated from Coastal Regions of Ireland. BIOLOGY 2019; 8:biology8030059. [PMID: 31394859 PMCID: PMC6784279 DOI: 10.3390/biology8030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/04/2019] [Indexed: 11/16/2022]
Abstract
Twenty-five marine cyanobacteria isolated from Irish coasts were characterized based on their morphological characters and 16S rRNA gene sequence analysis. In addition, superoxide dismutase (SOD) and malate dehydrogenase (MDH) isoenzyme banding patterns were used to differentiate two morphologically ambiguous isolates. In this study, six new cyanobacteria-specific primers were designed, and a 16S rRNA gene of twenty-five morphologically diverse cyanobacteria was successfully PCR amplified (1198–1396 bps). Assembled 16S rRNA sequences were used both for a basic local alignment search tool (BLAST) analysis for genus-level identification and to generate a phylogenetic tree, which yielded two major clusters: One with morphologically homogenous cyanobacteria and the other with morphologically very diverse cyanobacteria. Kamptonema okenii and Tychonema decoloratum were isolated from a single field sample of Ballybunion and were originally identified as the same ‘Oscillatoria sp.’ based on preliminary morphological observations. However, an alignment of 16S rRNA gene sequences and SOD and MDH isoenzyme banding pattern analyses helped in differentiating the morphologically-indistinguishable ‘Oscillatoria sp.’. Finally, after a re-evaluation of their morphological characters using modern taxonomic publications, the originally identified ‘Oscillatoria sp.’ were re-identified as Kamptonema okenii and Tychonema decoloratum, thus supporting the polyphasic approach of cyanobacteria characterization.
Collapse
Affiliation(s)
- Katie Shiels
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland
| | - Norma Browne
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland
| | - Fiona Donovan
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland
| | - Sushanta Kumar Saha
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland.
| |
Collapse
|
2
|
Davison M, Hall E, Zare R, Bhaya D. Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity. PHOTOSYNTHESIS RESEARCH 2015; 126:135-146. [PMID: 25515769 DOI: 10.1007/s11120-014-0066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria have played a crucial role in the history of early earth and continue to be instrumental in shaping our planet, yet applications of cutting edge technology have not yet been widely used to explore cyanobacterial diversity. To provide adequate background, we briefly review current sequencing technologies and their innovative uses in genomics and metagenomics. Next, we focus on current cell capture technologies and the challenges of using them with cyanobacteria. We illustrate the utility in coupling breakthroughs in DNA amplification with cell capture platforms, with an example of microfluidic isolation and subsequent targeted amplicon sequencing from individual terrestrial thermophilic cyanobacteria. Single cells of thermophilic, unicellular Synechococcus sp. JA-2-3-B'a(2-13) (Syn OS-B') were sorted in a microfluidic device, lysed, and subjected to whole genome amplification by multiple displacement amplification. We amplified regions from specific CRISPR spacer arrays, which are known to be highly diverse, contain semi-palindromic repeats which form secondary structure, and can be difficult to amplify. Cell capture, lysis, and genome amplification on a microfluidic device have been optimized, setting a stage for further investigations of individual cyanobacterial cells isolated directly from natural populations.
Collapse
Affiliation(s)
- Michelle Davison
- Department of Plant Biology, Carnegie Institution of Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Eric Hall
- SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| | - Richard Zare
- Department of Chemistry, Stanford University, 333 Campus Drive Mudd Building, Room 121, Stanford, CA, 94305-4401, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution of Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
3
|
Pinevich A, Velichko N, Ivanikova N. Cyanobacteria of the genus prochlorothrix. Front Microbiol 2012; 3:173. [PMID: 22783229 PMCID: PMC3390582 DOI: 10.3389/fmicb.2012.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/19/2012] [Indexed: 11/22/2022] Open
Abstract
Green cyanobacteria differ from the blue-green cyanobacteria by the possession of a chlorophyll-containing light-harvesting antenna. Three genera of the green cyanobacteria namely Acaryochloris, Prochlorococcus, and Prochloron are unicellular and inhabit marine environments. Prochlorococcus marinus attracts most attention due to its prominent role in marine primary productivity. The fourth genus Prochlorothrix is represented by the filamentous freshwater strains. Unlike the other green cyanobacteria, Prochlorothrix strains are remarkably rare: to date, living isolates have been limited to two European locations. Taking into account fluctuating blooms, morphological resemblance to Planktothrix and Pseudanabaena, and unsuccessful attempts to obtain enrichments of Prochlorothrix, the most successful strategy to search for this cyanobacterium involves PCR with environmental DNA and Prochlorothrix-specific primers. This approach has revealed a broader distribution of Prochlorothrix. Marker genes have been found in at least two additional locations. Despite of the growing evidence for naturally occurring Prochlorothrix, there are only a few cultured strains with one of them (PCC 9006) being claimed to be axenic. In multixenic cultures, Prochlorothrix is accompanied by heterotrophic bacteria indicating a consortium-type association. The genus Prochlorothrix includes two species: P. hollandica and P. scandica based on distinctions in genomic DNA, cell size, temperature optimum, and fatty acid composition of membrane lipids. In this short review the properties of cyanobacteria of the genus Prochlorothrix are described. In addition, the evolutionary scenario for green cyanobacteria is suggested taking into account their possible role in the origin of simple chloroplast.
Collapse
Affiliation(s)
- Alexander Pinevich
- Microbiology Department, Faculty of Biology and Soil Science, St. Petersburg State UniversitySt. Petersburg, Russia
| | - Natalia Velichko
- Microbiology Department, Faculty of Biology and Soil Science, St. Petersburg State UniversitySt. Petersburg, Russia
| | - Natalia Ivanikova
- Microbiology Department, Faculty of Biology and Soil Science, St. Petersburg State UniversitySt. Petersburg, Russia
| |
Collapse
|
4
|
Rapid differentiation of phenotypically and genotypically similar Synechococcus elongatus strains by PCR fingerprinting. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Lavin P, González B, Santibáñez JF, Scanlan DJ, Ulloa O. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:728-38. [PMID: 23766277 DOI: 10.1111/j.1758-2229.2010.00167.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The eastern tropical Pacific Ocean holds two of the main oceanic oxygen minimum zones of the global ocean. The presence of an oxygen-depleted layer at intermediate depths, which also impinges on the seafloor and in some cases the euphotic zone, plays a significant role in structuring both pelagic and benthic communities, and also in the vertical partitioning of microbial assemblages. Here, we assessed the genetic diversity and distribution of natural populations of the cyanobacteria Prochlorococcus and Synechococcus within oxic and suboxic waters of the eastern tropical Pacific using cloning and sequencing, and terminal restriction fragment length polymorphism (T-RFLP) analyses applied to the 16S-23S rRNA internal transcribed spacer region. With the T-RFLP approach we could discriminate 19 cyanobacterial clades, of which 18 were present in the study region. Synechococcus was more abundant in the surface oxic waters of the eastern South Pacific, while Prochlorococcus dominated the subsurface low-oxygen waters. Two of the dominant clades in the oxygen-deficient waters belong to novel and yet uncultivated lineages of low-light adapted Prochlorococcus.
Collapse
Affiliation(s)
- Paris Lavin
- Programa de Doctorado, Departamento de Botánica, Universidad de Concepción, Concepción, Chile. Departamento de Oceanografía and Centro de Investigación Oceanográfica en el Pacifico Sudoriental, Universidad de Concepción, Concepción, Chile. Departamento de Genética Molecular y Microbiología, Center for Advanced Studies in Ecology and Biodiversity, and Millennium Nucleus on Microbial Ecology and Environmental Microbiology and Biotechnology, Pontificia Universidad Católica de Chile, Santiago, Chile. Facultad de Ingeniería y Ciencia, Universidad Adolfo Ibáñez, Santiago, Chile. Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
6
|
Valério E, Chambel L, Paulino S, Faria N, Pereira P, Tenreiro R. Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology (Reading) 2009; 155:642-656. [DOI: 10.1099/mic.0.022848-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In order to assess the potential of several molecular targets for the identification, typing and traceability of cyanobacteria in freshwater reservoirs, molecular techniques were applied to 118 cyanobacterial isolates mostly sourced from Portuguese freshwater reservoirs and representative of three orders of cyanobacteria: Chroococcales (54), Oscillatoriales (15) and Nostocales (49). The isolates were previously identified by morphological methods and subsequently characterized by composite hierarchical cluster analysis of STRR and LTRR (short and long tandemly repeated repetitive sequences) PCR fingerprinting profiles. Representative isolates were selected from each cluster and their molecular identification, at the species level, was obtained or confirmed by phylogenetic positioning using 16S rRNA gene and rpoC1 phylogenies. A highly congruent association was observed between STTR- and LTRR-based clusters and taxonomic affiliation, revealing the usefulness of such PCR fingerprinting profiles for the identification of cyanobacteria. Composite analysis of hierarchical clustering of M13 and ERIC PCR fingerprints also appeared suitable for strain typing and traceability within a reservoir, indicating its potential for use in cyanobacterial monitoring, as a quality management control. Based on Simpson (D) and Shannon–Wiener (J′) indices a high diversity was observed within all species, with Planktothrix agardhii showing the lowest diversity values (D=0.83; J′=0.88) and Aphanizomenon flos-aquae the highest ones (D=J′=0.99). A diagnostic key based on 16S-ARDRA, ITS amplification and ITS-ARDRA for identification purposes is also presented.
Collapse
Affiliation(s)
- Elisabete Valério
- Laboratório de Microbiologia e Ecotoxicologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
- Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICAT, Campus da FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Lélia Chambel
- Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICAT, Campus da FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sérgio Paulino
- Laboratório de Microbiologia e Ecotoxicologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Natália Faria
- Laboratório de Microbiologia e Ecotoxicologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Paulo Pereira
- Laboratório de Microbiologia e Ecotoxicologia, Instituto Nacional de Saúde Dr Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Rogério Tenreiro
- Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICAT, Campus da FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Cytomorphological and genetic characterization of troglobitic Leptolyngbya strains isolated from Roman hypogea. Appl Environ Microbiol 2008; 75:608-17. [PMID: 19047394 DOI: 10.1128/aem.01183-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six Leptolyngbya strains, isolated from the archaeological surfaces of hypogean sites, were phenotypically and genetically characterized by light and electron microscopy and 16S rRNA gene and 16S-23S internally transcribed spacer (ITS) sequencing. Three phycoerythrin-rich (red) and three phycocyanin-rich (green) isolates were assigned to different operational taxonomic units (OTUs). Among the green isolates, one strain showed an OTU intraspecific variation due to differences in the ITS sequences and genomic polymorphism. Within the ITS sequence, variable regions, conserved domains and tRNA(Ile) and tRNA(Ala) genes showed high sequence identity among the phylotypes. Together, these data indicated a relatedness of the six strains to other Leptolyngbya from subaerophytic and geothermal environments and allowed the definition of novel Leptolyngbya OTUs.
Collapse
|
8
|
ERWIN PATRICKM, THACKER ROBERTW. Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 2008; 17:2937-47. [DOI: 10.1111/j.1365-294x.2008.03808.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Different genotypes of anatoxin-producing cyanobacteria coexist in the Tarn River, France. Appl Environ Microbiol 2007; 73:7605-14. [PMID: 17933923 DOI: 10.1128/aem.01225-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repeated dog deaths occurred in 2002, 2003, and 2005 after the animals drank water from the shoreline of the Tarn River in southern France. Signs of intoxication indicated acute poisoning due to a neurotoxin. Floating scum and biofilms covering pebbles were collected in the summers of 2005 and 2006 from six different sites along 30 km from the border of this river. The cyanobacterial neurotoxic alkaloid anatoxin-a and/or its methyl homolog, homoanatoxin-a, was detected in the extracts of most samples examined by gas chromatography-mass spectrometry. Fifteen filamentous cyanobacteria of the order Oscillatoriales were isolated and displayed four distinct phenotypes based on morphological characteristics and pigmentation. Three of the phenotypes can be assigned to the genus Oscillatoria or Phormidium, depending on the taxonomic treatises (bacteriological/botanical) employed for identification. The fourth phenotype is typical of the genus Geitlerinema Anagnostidis 1989. Eight strains rendered axenic were analyzed for production of anatoxin-a and homoanatoxin-a, and all strains of Oscillatoria/Phormidium proved to be neurotoxic. The genetic relatedness of the new isolates was evaluated by comparison of the intergenic transcribed spacer sequences with those of six oscillatorian strains from the Pasteur Culture Collection of Cyanobacteria. These analyses showed that the neurotoxic representatives are composed of five different genotypes, three of which correspond to phenotypes isolated in this study. Our findings prove that neurotoxic oscillatorian cyanobacteria exist in the Tarn River and thus were most likely implicated in the reported dog poisonings. Furthermore, they reemphasize the importance of monitoring benthic cyanobacteria in aquatic environments to fully assess the health risks associated with these organisms.
Collapse
|
10
|
Haverkamp T, Acinas SG, Doeleman M, Stomp M, Huisman J, Stal LJ. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ Microbiol 2007; 10:174-88. [PMID: 17903216 DOI: 10.1111/j.1462-2920.2007.01442.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Picocyanobacteria of the genus Synechococcus span a range of different colours, from red strains rich in phycoerythrin (PE) to green strains rich in phycocyanin (PC). Here, we show that coexistence of red and green picocyanobacteria in the Baltic Sea is widespread. The diversity and phylogeny of red and green picocyanobacteria was analysed using three different genes: 16S rRNA-ITS, the cpeBA operon of the red PE pigment and the cpcBA operon of the green PC pigment. Sequencing of 209 clones showed that Baltic Sea picocyanobacteria exhibit high levels of microdiversity. The partial nucleotide sequences of the cpcBA and cpeBA operons from the clone libraries of the Baltic Sea revealed two distinct phylogenetic clades: one clade containing mainly sequences from cultured PC-rich picocyanobacteria, while the other contains only sequences from cultivated PE-rich strains. A third clade of phycourobilin (PUB) containing strains of PE-rich Synechococcus spp. did not contain sequences from the Baltic Sea clone libraries. These findings differ from previously published phylogenies based on 16S rRNA gene analysis. Our data suggest that, in terms of their pigmentation, Synechococcus spp. represent three different lineages occupying different ecological niches in the underwater light spectrum. Strains from different lineages can coexist in light environments that overlap with their light absorption spectra.
Collapse
Affiliation(s)
- Thomas Haverkamp
- Department of Marine Microbiology, Netherlands Institute of Ecology, NIOO-KNAW, P.O. Box 140, 4400 AC Yerseke, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Marquardt J, Palinska KA. Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 2006; 187:397-413. [PMID: 17186222 DOI: 10.1007/s00203-006-0204-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 11/23/2006] [Accepted: 11/28/2006] [Indexed: 11/27/2022]
Abstract
In this study, 30 strains of filamentous, non-heterocystous cyanobacteria from different habitats and different geographical regions assigned to diverse oscillatorian genera but here collectively referred to as members of the Phormidium group have been characterized using a polyphasic approach by comparing phenotypic and molecular characteristics. The phenotypic analysis dealt with cell and filament morphology, ultrastructure, phycoerythrin content, and complementary chromatic adaptation. The molecular phylogenetic analyses were based on sequences of the 16S rRNA gene and the adjacent intergenic transcribed spacer (ITS). The sequences were located on multiple branches of the inferred cyanobacterial 16S rRNA tree. For some, but not all, strains with identical 16S rDNA sequences, a higher level of discrimination was achieved by analyses of the less conserved ITS sequences. As shown for other cyanobacteria, no correlation was found between position of the strains in the phylogenetic tree and their geographic origin. Genetically similar strains originated from distant sites while other strains isolated from the same sampling site were in different phylogenetic clusters. Also the presence of phycoerythrin was not correlated with the strains' position in the phylogenetic trees. In contrast, there was some correlation among inferred phylogenetic relationship, original environmental habitat, and morphology. Closely related strains came from similar ecosystems and shared the same morphological and ultrastructural features. Nevertheless, structural properties are insufficient in themselves for identification at the genus or species level since some phylogenetically distant members also showed similar morphological traits. Our results reconfirm that the Phormidium group is not phylogenetically coherent and requires revision.
Collapse
Affiliation(s)
- Jürgen Marquardt
- Geomicrobiology, ICBM, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | | |
Collapse
|
12
|
Chen F, Wang K, Kan J, Suzuki MT, Wommack KE. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences. Appl Environ Microbiol 2006; 72:2239-43. [PMID: 16517680 PMCID: PMC1393199 DOI: 10.1128/aem.72.3.2239-2243.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
rRNA internal transcribed spacer phylogeny showed that Chesapeake Bay is populated with diverse Synechococcus strains, including members of the poorly studied marine cluster B. Marine cluster B prevailed in the upper bay, while marine cluster A was common in the lower bay. Interestingly, marine cluster B Synechococcus included phycocyanin- and phycoerythrin-rich strains.
Collapse
Affiliation(s)
- Feng Chen
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, MD 21202, USA.
| | | | | | | | | |
Collapse
|
13
|
García-Fernández JM, de Marsac NT, Diez J. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 2005; 68:630-8. [PMID: 15590777 PMCID: PMC539009 DOI: 10.1128/mmbr.68.4.630-638.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prochlorococcus is one of the dominant cyanobacteria and a key primary producer in oligotrophic intertropical oceans. Here we present an overview of the pathways of nitrogen assimilation in Prochlorococcus, which have been significantly modified in these microorganisms for adaptation to the natural limitations of their habitats, leading to the appearance of different ecotypes lacking key enzymes, such as nitrate reductase, nitrite reductase, or urease, and to the simplification of the metabolic regulation systems. The only nitrogen source utilizable by all studied isolates is ammonia, which is incorporated into glutamate by glutamine synthetase. However, this enzyme shows unusual regulatory features, although its structural and kinetic features are unchanged. Similarly, urease activities remain fairly constant under different conditions. The signal transduction protein P(II) is apparently not phosphorylated in Prochlorococcus, despite its conserved amino acid sequence. The genes amt1 and ntcA (coding for an ammonium transporter and a global nitrogen regulator, respectively) show noncorrelated expression in Prochlorococcus under nitrogen stress; furthermore, high rates of organic nitrogen uptake have been observed. All of these unusual features could provide a physiological basis for the predominance of Prochlorococcus over Synechococcus in oligotrophic oceans.
Collapse
Affiliation(s)
- Jose Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Planta 1, Campus de Rabanales, 14071-Córdoba, Spain.
| | | | | |
Collapse
|
14
|
Janse I, Meima M, Kardinaal WEA, Zwart G. High-resolution differentiation of Cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl Environ Microbiol 2004; 69:6634-43. [PMID: 14602623 PMCID: PMC262283 DOI: 10.1128/aem.69.11.6634-6643.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many ecological studies of cyanobacteria, it is essential that closely related species or strains can be discriminated. Since this is often not possible by using morphological features, cyanobacteria are frequently studied by using DNA-based methods. A powerful method for analysis of the diversity and dynamics of microbial populations and for checking the purity and affiliation of cultivated strains is denaturing gradient gel electrophoresis (DGGE). We realized high-resolution discrimination of a variety of cyanobacteria by means of DGGE analysis of sections of the internal transcribed spacer between the 16S and 23S rRNA genes (rRNA-ITS). A forward primer specific for cyanobacteria, targeted at the 3' end of the 16S rRNA gene, was designed. The combination of this primer and three different reverse primers targeted to the rRNA-ITS or to the 23S rRNA gene yielded PCR products of different sizes from cultures of all 16 cyanobacterial genera that were tested but not from other bacteria. DGGE profiles produced from the shortest section of rRNA-ITS consisted of one band for all but one cyanobacterial genera, and those generated from longer stretches of rRNA-ITS yielded DGGE profiles containing one to four bands. The suitability of DGGE for detecting intrageneric and intraspecific variation was tested by using strains of the genus Microcystis: Many strains could be discriminated by means of rRNA-ITS DGGE, and the resolution of this method was strikingly higher than that obtained with previously described methods. The applicability of the developed DGGE assays for analysis of cyanobacteria in field samples was demonstrated by using samples from freshwater lakes. The advantages and disadvantages associated with the use of each developed primer set are discussed.
Collapse
Affiliation(s)
- Ingmar Janse
- Department of Microbial Ecology, Centre for Limnology, Netherlands Institute for Ecology, 3631 AC Nieuwersluis, The Netherlands.
| | | | | | | |
Collapse
|
15
|
El Alaoui S, Diez J, Toribio F, Gómez-Baena G, Dufresne A, García-Fernández JM. Glutamine synthetase from the marine cyanobacteria Prochlorococcus spp: characterization, phylogeny and response to nutrient limitation. Environ Microbiol 2003; 5:412-23. [PMID: 12713467 DOI: 10.1046/j.1462-2920.2003.00433.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of glutamine synthetase (EC 6.3.1.2) from Prochlorococcus was previously shown to exhibit unusual features: it is not upregulated by nitrogen starvation and it is not inactivated by darkness (El Alaoui et al. (2001) Appl Environ Microbiol 67: 2202-2207). These are probably caused by adaptations to oligotrophic environments, as confirmed in this work by the marked decrease in the enzymatic activity when cultures were subjected to iron or phosphorus starvation. In order to further understand the adaptive features of ammonium assimilation in this cyanobacterium, glutamine synthetase was purified from two Prochlorococcus strains: PCC 9511 (high-light adapted) and SS120 (low-light adapted). We obtained approximately 100-fold purified samples of glutamine synthetase electrophoretically homogeneous, with a yield of approximately 30%. The estimated molecular mass of the subunits was roughly the same for both strains: 48.3 kDa. The apparent Km constants for the biosynthetic activity were 0.30 mM for ammonium, 1.29 mM for glutamate and 1.35 mM for ATP; the optimum pH was 8.0. Optimal temperature was surprisingly high (55 degrees C). Phylogenetic analysis of glnA from three Prochlorococcus strains (MED4, MIT9313 and SS120) showed they group closely with marine Synechococcus isolates, in good agreement with other studies based on 16 S RNA sequences. All of our results suggest that the structure and kinetics of glutamine synthetase in Prochlorococcus have not been significantly modified during the evolution within the cyanobacterial radiation, in sharp contrast with its regulatory properties.
Collapse
Affiliation(s)
- Sabah El Alaoui
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, Campus de Rabanales, 14071-Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 2003; 69:2430-43. [PMID: 12732508 PMCID: PMC154553 DOI: 10.1128/aem.69.5.2430-2443.2003] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic relationships among members of the marine Synechococcus genus were determined following sequencing of the 16S ribosomal DNA (rDNA) from 31 novel cultured isolates from the Red Sea and several other oceanic environments. This revealed a large genetic diversity within the marine Synechococcus cluster consistent with earlier work but also identified three novel clades not previously recognized. Phylogenetic analyses showed one clade, containing halotolerant isolates lacking phycoerythrin (PE) and including strains capable, or not, of utilizing nitrate as the sole N source, which clustered within the MC-A (Synechococcus subcluster 5.1) lineage. Two copies of the 16S rRNA gene are present in marine Synechococcus genomes, and cloning and sequencing of these copies from Synechococcus sp. strain WH 7803 and genomic information from Synechococcus sp. strain WH 8102 reveal these to be identical. Based on the 16S rDNA sequence information, clade-specific oligonucleotides for the marine Synechococcus genus were designed and their specificity was optimized. Using dot blot hybridization technology, these probes were used to determine the in situ community structure of marine Synechococcus populations in the Red Sea at the time of a Synechococcus maximum during April 1999. A predominance of genotypes representative of a single clade was found, and these genotypes were common among strains isolated into culture. Conversely, strains lacking PE, which were also relatively easily isolated into culture, represented only a minor component of the Synechococcus population. Genotypes corresponding to well-studied laboratory strains also appeared to be poorly represented in this stratified water column in the Red Sea.
Collapse
Affiliation(s)
- Nicholas J Fuller
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Ferris MJ, Kühl M, Wieland A, Ward DM. Cyanobacterial ecotypes in different optical microenvironments of a 68 degrees C hot spring mat community revealed by 16S-23S rRNA internal transcribed spacer region variation. Appl Environ Microbiol 2003; 69:2893-8. [PMID: 12732563 PMCID: PMC154543 DOI: 10.1128/aem.69.5.2893-2898.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the population of unicellular cyanobacteria (Synechococcus) in the upper 3-mm vertical interval of a 68 degrees C region of a microbial mat in a hot spring effluent channel (Yellowstone National Park, Wyoming). Fluorescence microscopy and microsensor measurements of O(2) and oxygenic photosynthesis demonstrated the existence of physiologically distinct Synechococcus populations at different depths along a light gradient quantified by scalar irradiance microprobes. Molecular methods were used to evaluate whether physiologically distinct populations could be correlated with genetically distinct populations over the vertical interval. We were unable to identify patterns in genetic variation in Synechococcus 16S rRNA sequences that correlate with different vertically distributed populations. However, patterns of variation at the internal transcribed spacer locus separating 16S and 23S rRNA genes suggested the existence of closely related but genetically distinct populations corresponding to different functional populations occurring at different depths.
Collapse
Affiliation(s)
- Mike J Ferris
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717-3120, USA.
| | | | | | | |
Collapse
|
18
|
Becker S, Fahrbach M, Böger P, Ernst A. Quantitative tracing, by Taq nuclease assays, of a synechococcus ecotype in a highly diversified natural population. Appl Environ Microbiol 2002; 68:4486-94. [PMID: 12200304 PMCID: PMC124134 DOI: 10.1128/aem.68.9.4486-4494.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantitative Taq nuclease assays (TNAs) (TaqMan PCR), nested PCR in combination with denaturing gradient gel electrophoresis (DGGE), and epifluorescence microscopy were used to analyze the autotrophic picoplankton (APP) of Lake Constance. Microscopic analysis revealed dominance of phycoerythrin (PE)-rich Synechococcus spp. in the pelagic zone of this lake. Cells passing a 3- micro m-pore-size filter were collected during the growth period of the years 1999 and 2000. The diversity of PE-rich Synechococcus spp. was examined using DGGE to analyze GC-clamped amplicons of a noncoding section of the 16S-23S intergenic spacer in the ribosomal operon. In both years, genotypes represented by three closely related PE-rich Synechococcus strains of our culture collection dominated the population, while other isolates were traced sporadically or were not detected in their original habitat by this method. For TNAs, primer-probe combinations for two taxonomic levels were used, one to quantify genomes of all known Synechococcus-type cyanobacteria in the APP of Lake Constance and one to enumerate genomes of a single ecotype represented by the PE-rich isolate Synechococcus sp. strain BO 8807. During the growth period, genome numbers of known Synechococcus spp. varied by 2 orders of magnitude (2.9 x 10(3) to 3.1 x 10(5) genomes per ml). The ecotype Synechococcus sp. strain BO 8807 was detected in every sample at concentrations between 1.6 x 10(1) and 1.3 x 10(4) genomes per ml, contributing 0.02 to 5.7% of the quantified cyanobacterial picoplankton. Although the quantitative approach taken in this study has disclosed several shortcomings in the sampling and detection methods, this study demonstrated for the first time the extensive internal dynamics that lie beneath the seemingly arbitrary variations of a population of microbial photoautotrophs in the pelagic habitat.
Collapse
Affiliation(s)
- Sven Becker
- Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, 78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
19
|
Palinska KA, Laloui W, Bédu S, Loiseaux-de Goer S, Castets AM, Rippka R, Tandeau de Marsac N. The signal transducer P(II) and bicarbonate acquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2405-2412. [PMID: 12177334 DOI: 10.1099/00221287-148-8-2405] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The amino acid sequence of the signal transducer P(II) (GlnB) of the oceanic photosynthetic prokaryote Prochlorococcus marinus strain PCC 9511 displays a typical cyanobacterial signature and is phylogenetically related to all known cyanobacterial glnB genes, but forms a distinct subclade with two other marine cyanobacteria. P(II) of P. marinus was not phosphorylated under the conditions tested, despite its highly conserved primary amino acid sequence, including the seryl residue at position 49, the site for the phosphorylation of the protein in the cyanobacterium Synechococcus PCC 7942. Moreover, P. marinus lacks nitrate and nitrite reductase activities and does not take up nitrate and nitrite. This strain, however, expresses a low- and a high-affinity transport system for inorganic carbon (C(i); K(m,app) 240 and 4 micro M, respectively), a result consistent with the unphosphorylated form of P(II) acting as a sensor for the control of C(i) acquisition, as proposed for the cyanobacterium Synechocystis PCC 6803. The present data are discussed in relation to the genetic information provided by the P. marinus MED4 genome sequence.
Collapse
Affiliation(s)
- Katarzyna A Palinska
- Unité; des Cyanobacté;ries, CNRS URA 2172, Département de Microbiologie Fondamentale et Mé;dicale, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Wassila Laloui
- Unité; des Cyanobacté;ries, CNRS URA 2172, Département de Microbiologie Fondamentale et Mé;dicale, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Sylvie Bédu
- Laboratoire de Chimie Bacté;rienne, CNRS, 31 chemin Joseph Aiguier, BP71 13277, Marseille Cedex 9, France2
| | | | - Anne Marie Castets
- Unité; des Cyanobacté;ries, CNRS URA 2172, Département de Microbiologie Fondamentale et Mé;dicale, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Rosmarie Rippka
- Unité; des Cyanobacté;ries, CNRS URA 2172, Département de Microbiologie Fondamentale et Mé;dicale, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Nicole Tandeau de Marsac
- Unité; des Cyanobacté;ries, CNRS URA 2172, Département de Microbiologie Fondamentale et Mé;dicale, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|