1
|
Uenosono Y, Kawakami R, Matsumoto S, Yamaguchi Y. Construction of an experimental study and addition of adapter sequences using HiDi DNA polymerase for improving DNA normalization methods relevant to novel gene discovery. J Microbiol Methods 2023; 204:106631. [PMID: 36503828 DOI: 10.1016/j.mimet.2022.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Microorganisms in the environment can be distinguished into dominant and rare microbial species based on their genes. It is difficult to obtain genetic information derived from rare microbial species (rare genes) because of the differences in relative abundance. DNA normalization is an approach that is used to obtain genetic information derived from rare microbial species from an environmental sample. This method involves the addition of adapter sequences for the amplification, denaturation, and reassociation of the DNA fragments and single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) separation. In this method, the amount of a high-copy-number of DNA fragments and a low-copy-number of DNA fragments can be equalized. Improvements in this technique are expected to provide novel genetic information or genes in rare microbial species. However, few model experimental systems have been reported to validate the DNA normalization techniques. This study is aimed to improve the DNA normalization technique used to obtain genetic information of rare genes from rare microbial species. An experimental study was constructed with two antibiotic resistance genes, whose copy numbers differed up to a million-fold. Both genes were mixed and the mixture of DNA fragments, of high- and low-copy-number, containing these genes was normalized by separating ssDNA/dsDNA fragments using hydroxyapatite. Normalized DNA fragments were introduced into Escherichia coli and DNA normalization was evaluated by counting colonies. Moreover, we improved the method to amplify a low-copy-number of DNA fragments by the addition of adapter sequences to DNA fragments using HiDi DNA polymerase to increase the efficiency of DNA normalization. This normalization method was achieved with a 100,000-fold difference. These methods allowed for quantitative evaluation of the DNA normalization efficiency. The experimental data and methods obtained in this study are expected to improve the DNA normalization efficiency to obtain novel genetic information or genes.
Collapse
Affiliation(s)
- Yuya Uenosono
- Department of Materials Science and Applied Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-8555, Japan
| | - Ryohei Kawakami
- Department of Materials Science and Applied Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-8555, Japan
| | - Shogo Matsumoto
- Department of Materials Science and Applied Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Yamaguchi
- Department of Materials Science and Applied Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-8555, Japan; Environmental Safety Center, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
2
|
Molecular Cloning and Characterization of a New Family VI Esterase from an Activated Sludge Metagenome. Microorganisms 2022; 10:microorganisms10122403. [PMID: 36557656 PMCID: PMC9786865 DOI: 10.3390/microorganisms10122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
A new esterase gene, est6, was discovered in an activated sludge metagenomic library. The 729-bp gene encodes a 242-amino acid protein (designated Est6) with a molecular mass of 26.1 kDa. Est6 shared only a moderate identity to a putative hydrolase with the highest BLASTP analysis score. Most of the closely related proteins are uncharacterized and are predicted from genome sequencing data of microorganisms or metagenomic DNA sequences. The phylogenetic analysis of Est6 showed that the protein was assigned to family VI esterases/lipases. The catalytic triad of Est6 was predicted to be Ser135, Asp188, and His219, with Ser135 in a typically conserved pentapeptide (GFSQG) of family VI members, which was further confirmed by site-directed mutagenesis. The est6 gene was overexpressed successfully in its soluble form in Escherichia coli and then purified to its tag-free form and homogeneity by affinity chromatography. The purified Est6 in pH 8.0 buffer was active as a monomer. The optimal conditions for Est6 activity were at a temperature of 45 °C and pH of 8.0 when using p-nitrophenyl acetate as a substrate. The enzyme was stable over wide temperature and pH ranges, and it exhibited activity in the presence of organic solvents, metal cations, or detergents. Furthermore, the enzyme showed significant regioselectivity in the spectrophotometric analysis. In conclusion, Est6 might have the potential for applications in biotechnological processes.
Collapse
|
3
|
Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 2022; 69:2176-2194. [PMID: 34699092 DOI: 10.1002/bab.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Sumaira Shabbir
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabir Ali
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
4
|
Shahraki MF, Atanaki FF, Ariaeenejad S, Ghaffari MR, Norouzi‐Beirami MH, Maleki M, Salekdeh GH, Kavousi K. A computational learning paradigm to targeted discovery of biocatalysts from metagenomic data: a case study of lipase identification. Biotechnol Bioeng 2022; 119:1115-1128. [DOI: 10.1002/bit.28037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/18/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Mehdi Foroozandeh Shahraki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Mohammad Hossein Norouzi‐Beirami
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran Iran
- Department of Computer Engineering Osku Branch, Islamic Azad University Osku Iran
| | - Morteza Maleki
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
- Department of Molecular Sciences Macquarie University Sydney NSW Australia
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran Iran
| |
Collapse
|
5
|
Al-Dhabaan FA. Isolation and identification of crude oil-degrading yeast strains from Khafji oil field, saud Arabia. Saudi J Biol Sci 2021; 28:5786-5792. [PMID: 34588892 PMCID: PMC8459074 DOI: 10.1016/j.sjbs.2021.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Twenty five yeasts isolated were isolated from Khurais oil field in Saudi Arabia and assayed to evaluate their biodegradability. Only five isolates (namely, A1, A2, A3, A4 and A5) showed potential use of oil as sole carbon source. During incubation period, highest growth rate were recorded for A1, A2 and A3 isolates. Low growth distinguished A4 isolate; A5 isolate could not degrade oil. Spectrophotometrical analysis for four yeast isolates biodegradation activities indicated that, A1 isolate was superior for oil degradation (61%) comparing with A4 isolate which reflected lowest degradation % (33%). A2 and A3 isolates showed moderate biodegradation activity (56 and 51% respectively). D1/D2 domain of the 26S rRNA gene sequence was used as molecular marker to identify five yeast isolates. After comparing 26S rRNA gene sequences of five yeast isolates with highly similarity isolates, five yeast isolates (A1, A2, A3, A4 and A5)were submitted to database as Candida tropicalis (MW488263), Candida tropicalis (MW488264), Rhodotorula mucilaginosa (MW488265) and Rhodosporidium toruloides (MW488266) respectively. Using OXF1/ACR1 primer, specific lipase gene amplicon with 250 bp were detected with in all four yeast isolates.
Collapse
Affiliation(s)
- Fahad A Al-Dhabaan
- Department of Biology, Science and Humanities College, Shaqra University, Alquwayiyah, Saudi Arabia
| |
Collapse
|
6
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
7
|
Gonzalez-Perez D, Ratcliffe J, Tan SK, Wong MCM, Yee YP, Nyabadza N, Xu JH, Wong TS, Tee KL. Random and combinatorial mutagenesis for improved total production of secretory target protein in Escherichia coli. Sci Rep 2021; 11:5290. [PMID: 33674702 PMCID: PMC7935960 DOI: 10.1038/s41598-021-84859-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Signal peptides and secretory carrier proteins are commonly used to secrete heterologous recombinant protein in Gram-negative bacteria. The Escherichia coli osmotically-inducible protein Y (OsmY) is a carrier protein that secretes a target protein extracellularly, and we have previously applied it in the Bacterial Extracellular Protein Secretion System (BENNY) to accelerate directed evolution. In this study, we reported the first application of random and combinatorial mutagenesis on a carrier protein to enhance total secretory target protein production. After one round of random mutagenesis followed by combining the mutations found, OsmY(M3) (L6P, V43A, S154R, V191E) was identified as the best carrier protein. OsmY(M3) produced 3.1 ± 0.3 fold and 2.9 ± 0.8 fold more secretory Tfu0937 β-glucosidase than its wildtype counterpart in E. coli strains BL21(DE3) and C41(DE3), respectively. OsmY(M3) also produced more secretory Tfu0937 at different cultivation temperatures (37 °C, 30 °C and 25 °C) compared to the wildtype. Subcellular fractionation of the expressed protein confirmed the essential role of OsmY in protein secretion. Up to 80.8 ± 12.2% of total soluble protein was secreted after 15 h of cultivation. When fused to a red fluorescent protein or a lipase from Bacillus subtillis, OsmY(M3) also produced more secretory protein compared to the wildtype. In this study, OsmY(M3) variant improved the extracellular production of three proteins originating from diverse organisms and with diverse properties, clearly demonstrating its wide-ranging applications. The use of random and combinatorial mutagenesis on the carrier protein demonstrated in this work can also be further extended to evolve other signal peptides or carrier proteins for secretory protein production in E. coli.
Collapse
Affiliation(s)
- David Gonzalez-Perez
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
- Department of Drug Discovery, Moffitt Cancer Center & Research Institute, Stabile Research Building, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - James Ratcliffe
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Shu Khan Tan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Mary Chen May Wong
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Yi Pei Yee
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Natsai Nyabadza
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Jian-He Xu
- Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Tuck Seng Wong
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Kang Lan Tee
- Department of Chemical and Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
8
|
Almeida JM, Alnoch RC, Souza EM, Mitchell DA, Krieger N. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140320. [PMID: 31756433 DOI: 10.1016/j.bbapap.2019.140320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
In recent years, metagenomic strategies have been widely used to isolate and identify new enzymes from uncultivable components of microbial communities. Among these enzymes, various lipases have been obtained from metagenomic libraries from different environments and characterized. Although many of these lipases have characteristics that could make them interesting for application in biocatalysis, relatively little work has been done to evaluate their potential to catalyze industrially important reactions. In the present article, we highlight the latest research on lipases obtained through metagenomic tools, focusing on studies of activity and stability and investigations of application in biocatalysis. We also discuss the challenges of metagenomic approaches for the bioprospecting of new lipases.
Collapse
Affiliation(s)
- Janaina Marques Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Robson Carlos Alnoch
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Emanuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx.P. 19032 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil.
| |
Collapse
|
9
|
Tutuncu HE, Balci N, Tuter M, Karaguler NG. Recombinant production and characterization of a novel esterase from a hypersaline lake, Acıgöl, by metagenomic approach. Extremophiles 2019; 23:507-520. [PMID: 31154531 DOI: 10.1007/s00792-019-01103-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
The aim of this study was to isolate a novel esterase from a hypersaline lake by sequence-based metagenomics. The metagenomic DNA was isolated from the enriched hypersaline lake sediment. Degenerate primers targeting the conserved regions of lipolytic enzymes of halophilic microorganisms were used for polymerase chain reaction (PCR) and a whole gene was identified by genome walking. The gene was composed of 783 bp, which corresponds to 260 amino acids with a molecular weight of 28.2 kDa. The deduced amino acid sequence best matched with the esterase from Halomonas gudaonensis with an identity of 91%. Recombinantly expressed enzyme exhibited maximum activity towards pNP-hexanoate with a kcat value of 12.30 s-1. The optimum pH and temperature of the enzyme were found as 9 and 30 °C, respectively. The effects of NaCl, solvents, metal ions, detergents and enzyme inhibitors were also studied. In conclusion, a novel enzyme, named as hypersaline lake "Acıgöl" esterase (hAGEst), was identified by sequence-based metagenomics. The high expression level, the ability to maintain activity at cold temperatures and tolerance to DMSO and metal ions are the most outstanding properties of the hAGEst.
Collapse
Affiliation(s)
- Havva Esra Tutuncu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, 34469, Istanbul, Turkey
- Istanbul Technical University Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, 34469, Istanbul, Turkey
- Department of Gastronomy and Culinary Arts, Istanbul Gedik University, 34876, Istanbul, Turkey
| | - Nurgul Balci
- Department of Geological Engineering, Faculty of Mines, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Melek Tuter
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Nevin Gul Karaguler
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, 34469, Istanbul, Turkey.
- Istanbul Technical University Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, 34469, Istanbul, Turkey.
| |
Collapse
|
10
|
Sehajpal P, Kirar S, Ghosh S, Banerjee UC. Generation of novel family of reductases from PCR based library for the synthesis of chiral alcohols and amines. Enzyme Microb Technol 2018; 118:83-91. [PMID: 30143204 DOI: 10.1016/j.enzmictec.2018.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/26/2018] [Accepted: 07/27/2018] [Indexed: 11/19/2022]
Abstract
Biocatalysis has shown tremendous potential in the synthesis of drugs and drug intermediates in the last decade. Screening of novel biocatalysts from the natural genome space is the growing trend to replenish the harsh chemical synthetic routes, commonly used in the pharmaceutical and chemical industry. Here, we report a novel ketoreductase (KERD) and a nitrile reductase isolated from the PCR based library generated from the genome of Rhodococcus ruber and Bacillus subtilis, respectively. Both the proteins are hypothetical in nature as there is no putative homology found in the database, although both the enzymes have significant activity towards the synthesis of chiral alcohols and amines. Enzyme activity over a wide range of substrates (aromatic and aliphatic) for both the novel catalysts was observed. From the unique gene sequence to activity over a broad range of substrate and >99% conversion at higher concentrations (100 mM and above) entitles both the hypothetical enzymes as novel. The novel KERD has shown >99% selectivity for the synthesis of (S)-phenylethanol which makes it a potential candidate for industrial catalysis. The novel nitrile reductase has also shown promising activity for the synthesis of (R)-2-phenylethanolamine, which is a difficult moiety to synthesize chemically. In this report, starting from a homology based library, two highly potent whole cell biocatalysts are obtained.
Collapse
Affiliation(s)
- Pallvi Sehajpal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, 160062, Punjab, India
| | - Seema Kirar
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, 160062, Punjab, India
| | - Saptarshi Ghosh
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, 160062, Punjab, India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, 160062, Punjab, India.
| |
Collapse
|
11
|
Fagervold SK, Intertaglia L, Batailler N, Bondoso J, Lebaron P. Saonia flava gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from coastal seawater. Int J Syst Evol Microbiol 2017; 67:3246-3250. [DOI: 10.1099/ijsem.0.002095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sonja K. Fagervold
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Laurent Intertaglia
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), F-66650 Banyuls/Mer, France
| | - Nicole Batailler
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Joana Bondoso
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Philippe Lebaron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
| |
Collapse
|
12
|
Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past. PLoS One 2017; 12:e0181029. [PMID: 28742841 PMCID: PMC5526573 DOI: 10.1371/journal.pone.0181029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/25/2017] [Indexed: 11/19/2022] Open
Abstract
A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain) allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.
Collapse
|
13
|
Kotik M, Vanacek P, Kunka A, Prokop Z, Damborsky J. Metagenome-derived haloalkane dehalogenases with novel catalytic properties. Appl Microbiol Biotechnol 2017; 101:6385-6397. [PMID: 28674849 DOI: 10.1007/s00253-017-8393-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/30/2023]
Abstract
Haloalkane dehalogenases (HLDs) are environmentally relevant enzymes cleaving a carbon-halogen bond in a wide range of halogenated pollutants. PCR with degenerate primers and genome-walking was used for the retrieval of four HLD-encoding genes from groundwater-derived environmental DNA. Using specific primers and the environmental DNA as a template, we succeeded in generating additional amplicons, resulting altogether in three clusters of sequences with each cluster comprising 8-13 closely related putative HLD-encoding genes. A phylogenetic analysis of the translated genes revealed that three HLDs are members of the HLD-I subfamily, whereas one gene encodes an enzyme from the subfamily HLD-II. Two metagenome-derived HLDs, eHLD-B and eHLD-C, each from a different subfamily, were heterologously produced in active form, purified and characterized in terms of their thermostability, pH and temperature optimum, quaternary structure, substrate specificity towards 30 halogenated compounds, and enantioselectivity. eHLD-B and eHLD-C showed striking differences in their activities, substrate preferences, and tolerance to temperature. Profound differences were also determined in the enantiopreference and enantioselectivity of these enzymes towards selected substrates. Comparing our data with those of known HLDs revealed that eHLD-C exhibits a unique combination of high thermostability, high activity, and an unusually broad pH optimum, which covers the entire range of pH 5.5-8.9. Moreover, a so far unreported high thermostability for HLDs was determined for this enzyme at pH values lower than 6.0. Thus, eHLD-C represents an attractive and novel biocatalyst for biotechnological applications.
Collapse
Affiliation(s)
- Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Pavel Vanacek
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic.
| |
Collapse
|
14
|
Dong H, Secundo F, Xue C, Mao X. Whole-Cell Biocatalytic Synthesis of Cinnamyl Acetate with a Novel Esterase from the DNA Library of Acinetobacter hemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2120-2128. [PMID: 28220703 DOI: 10.1021/acs.jafc.6b05799] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cinnamyl acetate has a wide application in the flavor and fragrance industry because of its sweet, balsamic, and floral odor. Up to now, lipases have been mainly used in enzyme-mediated synthesis of cinnamyl acetate, whereas esterases are used in only a few cases. Moreover, the use of purified enzymes is often a disadvantage, which leads to increases of the production costs. In this paper, a genomic DNA library of Acinetobacter hemolyticus was constructed, and a novel esterase (EstK1) was identified. After expression in Escherichia coli, the whole-cell catalyst of EstK1 displayed high transesterification activity to produce cinnamyl acetate in nonaqueous systems. Furthermore, under optimal conditions (vinyl acetate as acyl donor, isooctane as solvent, molar ratio 1:4, temperature 40 °C), the conversion ratio of cinnamyl alcohol could be up to 94.1% at 1 h, and it reached an even higher level (97.1%) at 2 h.
Collapse
Affiliation(s)
- Hao Dong
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR , v. Mario Bianco 9, 20131 Milan, Italy
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| |
Collapse
|
15
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
16
|
Panda AK, Bisht SPS, Panigrahi AK, De Mandal S, Senthil Kumar N. Cloning and In Silico Analysis of a High-Temperature Inducible Lipase from Brevibacillus. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1975-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Diegelmann C, Weber J, Heinzel-Wieland R, Kemme M. Characterization of a cypermethrin-degradingMethylobacteriumsp. strain A-1 and molecular cloning of its carboxylesterase gene. J Basic Microbiol 2015; 55:1245-54. [DOI: 10.1002/jobm.201500186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/14/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Corinna Diegelmann
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt; University of Applied Sciences; Darmstadt Germany
| | - Joachim Weber
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt; University of Applied Sciences; Darmstadt Germany
| | - Regina Heinzel-Wieland
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt; University of Applied Sciences; Darmstadt Germany
| | - Michael Kemme
- Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt; University of Applied Sciences; Darmstadt Germany
| |
Collapse
|
18
|
López-López O, Cerdán ME, González Siso MI. New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 2015; 15:445-55. [PMID: 24588890 PMCID: PMC4093774 DOI: 10.2174/1389203715666140228153801] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 01/21/2014] [Accepted: 02/25/2014] [Indexed: 11/22/2022]
Abstract
Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Maria I González Siso
- University of A Coruna, Faculty of Sciences, Department of Cellular and Molecular Biology, Biochemistry and Molecular Biology Area. Campus A Zapateira s/n, 15071, A Coruna, Spain.
| |
Collapse
|
19
|
Tian R, Chen H, Ni Z, Zhang Q, Zhang Z, Zhang T, Zhang C, Yang S. Expression and Characterization of a Novel Thermo-Alkalistable Lipase from Hyperthermophilic Bacterium Thermotoga maritima. Appl Biochem Biotechnol 2015; 176:1482-97. [DOI: 10.1007/s12010-015-1659-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022]
|
20
|
Sangeetha R, Arulpandi I, Geetha A. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2. Braz J Microbiol 2014; 45:389-93. [PMID: 25242920 PMCID: PMC4166261 DOI: 10.1590/s1517-83822014000200004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/14/2014] [Indexed: 11/22/2022] Open
Abstract
Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.
Collapse
Affiliation(s)
- R Sangeetha
- Department of Biochemistry School of Life Sciences Vels University Chennai India Department of Biochemistry, School of Life Sciences, Vels University, Chennai, India
| | - I Arulpandi
- Research Department of Microbiology Asan Memorial College Chennai India Research Department of Microbiology, Asan Memorial College, Chennai, India
| | - A Geetha
- Department of Biochemistry Bharathi Women's College Chennai India Department of Biochemistry, Bharathi Women's College, Chennai, India
| |
Collapse
|
21
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 2014; 5:399-412. [PMID: 24317337 PMCID: PMC3979868 DOI: 10.4161/viru.27208] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.
Collapse
Affiliation(s)
- Eamonn P Culligan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- School of Microbiology; University College Cork; Cork, Ireland
| | - Roy D Sleator
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Julian R Marchesi
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- Cardiff School of Biosciences; Cardiff University; Cardiff, UK
- Department of Hepatology and Gastroenterology; Imperial College London; London, UK
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- School of Microbiology; University College Cork; Cork, Ireland
| |
Collapse
|
22
|
Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus. Biotechnol Lett 2014; 36:1295-302. [PMID: 24563306 DOI: 10.1007/s10529-014-1475-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
A bacterium with lipolytic activity was isolated from the Chukchi Sea within the Arctic Ocean. The lipase BpL5 from the isolate, Bacillus pumilus ArcL5, belongs to subfamily 4 of lipase family I. The optimum pH and temperature of the recombinant enzyme BpL5, as expressed in Escherichia coli, were 9.0 and 20 °C, respectively. The enzyme retained 85 % of its activity at 5 °C. There was a significant difference between temperatures for maximal activity (20 °C) and for protein denaturation (approx. 45 °C). The enzyme preferred middle-chain (C8) p-nitrophenyl substrates. Two mutants, S139A and S139Y, were rationally designed based on the 3D-structure model, and their activities were compared with that of the wild type. The both mutants showed significantly improved activity against tricaprylin.
Collapse
|
23
|
Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM. Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 2013; 31:1846-59. [DOI: 10.1016/j.biotechadv.2013.08.006] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
|
24
|
Jiao Y, Chen X, Wang X, Liao X, Xiao L, Miao A, Wu J, Yang L. Identification and characterization of a cold-active phthalate esters hydrolase by screening a metagenomic library derived from biofilms of a wastewater treatment plant. PLoS One 2013; 8:e75977. [PMID: 24116085 PMCID: PMC3792999 DOI: 10.1371/journal.pone.0075977] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
A cold-active phthalate esters hydrolase gene (designated dphB) was identified through functional screening of a metagenomic library derived from biofilms of a wastewater treatment plant. The enzyme specifically catalyzed the hydrolysis of dipropyl phthalate, dibutyl phthalate, and dipentyl phthalate to the corresponding monoalkyl phthalate esters at low temperatures. The catalytic triad residues of DphB were proposed to be Ser159, Asp251, and His281.
Collapse
Affiliation(s)
- Yiying Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Biology, School of the Environment, Nanjing University, Nanjing, People’s Republic of China
| | - Xu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Biology, School of the Environment, Nanjing University, Nanjing, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Biology, School of the Environment, Nanjing University, Nanjing, People’s Republic of China
| | - Xuewei Liao
- Center for Analysis and Testing, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Lin Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Biology, School of the Environment, Nanjing University, Nanjing, People’s Republic of China
| | - Aijun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Biology, School of the Environment, Nanjing University, Nanjing, People’s Republic of China
| | - Jun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Biology, School of the Environment, Nanjing University, Nanjing, People’s Republic of China
- * E-mail: (JW); (LY)
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Biology, School of the Environment, Nanjing University, Nanjing, People’s Republic of China
- * E-mail: (JW); (LY)
| |
Collapse
|
25
|
Fagervold SK, Urios L, Intertaglia L, Batailler N, Lebaron P, Suzuki MT. Pleionea mediterranea gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2013; 63:2700-2705. [DOI: 10.1099/ijs.0.045575-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, cream-pigmented, non-motile, non-spore-forming straight rod, strain MOLA115T, was isolated from a coastal water sample from the Mediterranean Sea. On the basis of phylogenetic analysis of the 16S rRNA gene sequences, strain MOLA115T was shown to belong to the
Gammaproteobacteria
, adjacent to members of the genera
Marinicella
,
Arenicella
and
Kangiella
, sharing less than 89 % 16S rRNA gene sequence similarity with strains of all recognized species within the
Gammaproteobacteria
. The only isoprenoid quinone was ubiquinone-8. Polar lipids in strain MOLA115T included phosphatidylethanolamine, an aminolipid, phosphatidylglycerol and an aminophospholipid. Fatty acid analysis revealed iso-C15 : 0 and iso-C17 : 1ω9c to be the dominant components. The DNA G+C content was 44.5 mol%. Based upon the phenotypic and phylogenetic data, we propose that strain MOLA115T should be considered to represent a novel species in a new genus, for which the name Pleionea mediterranea gen. nov., sp. nov. is proposed. The type strain of Pleionea mediterranea is MOLA115T ( = CIP 110343T = DSM 25350T).
Collapse
Affiliation(s)
- Sonja K. Fagervold
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l’Adour, IPREM UMR 5254, Equipe Environnement et Microbiologie, IBEAS, F-64013 PAU, France
| | - Laurent Intertaglia
- CNRS, UMS 2348, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Nicole Batailler
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Philippe Lebaron
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Marcelino T. Suzuki
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| |
Collapse
|
26
|
A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum. Curr Genet 2013; 59:129-37. [PMID: 23779196 DOI: 10.1007/s00294-013-0394-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/10/2013] [Accepted: 06/10/2013] [Indexed: 01/18/2023]
Abstract
Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.
Collapse
|
27
|
Tao W, Shengxue F, Duobin M, Xuan Y, Congcong D, Xihua W. Characterization of a new thermophilic and acid tolerant esterase from Thermotoga maritima capable of hydrolytic resolution of racemic ketoprofen ethyl ester. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Rashamuse K, Mabizela-Mokoena N, Sanyika TW, Mabvakure B, Brady D. Accessing Carboxylesterase Diversity from Termite Hindgut Symbionts through Metagenomics. J Mol Microbiol Biotechnol 2012; 22:277-86. [DOI: 10.1159/000342447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Lee JH, Ashby RD, Needleman DS, Lee KT, Solaiman DKY. Cloning, sequencing, and characterization of lipase genes from a polyhydroxyalkanoate (PHA)-synthesizing Pseudomonas resinovorans. Appl Microbiol Biotechnol 2012; 96:993-1005. [PMID: 22644524 DOI: 10.1007/s00253-012-4133-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 12/01/2022]
Abstract
Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate (PHA)-synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by polymerase chain reaction-based genome walking. Sequence analyses showed a putative Lip gene product (314 amino acids, a.a.) with its catalytic active site (Ser(111), Asp(258), and His(280)) identified. The foldase lif gene that is located 55 bp downstream of lip codes for a putative Lif (345 a.a.). To verify the biological function of the cloned lip gene for lipase expression in P. resinovorans, we constructed a lip knock-out mutant (lip::Tn5<KAN-2>) by transposon insertion. Complementation of the lip knock-out P. resinovorans mutant with a lipase expression plasmid (pBS29-P2-lip) was performed, and its effect on lipase expression was investigated. The wild-type P. resinovorans and the lip::Tn5<KAN-2>[pBS29-P2-lip] recombinant (but not the lip::Tn5<KAN-2> mutant) showed fluorescence on rhodamine B plates indicative of lipase activity. The wild type exhibited extracellular lipase activity when grown on medium containing triacylglycerol substrates (tallow, olive oil, and tributyrin) as sole carbon sources, but the lip::Tn5<KAN-2> mutant did not show such activity. Lipase activity of various strains was also confirmed by TLC analysis of the composition of acylglycerols and free fatty acid in the extracts of the spent culture medium. We further found that tributyrin was more effective than olive oil in inducing lipase expression in P. resinovorans.
Collapse
Affiliation(s)
- Jeung Hee Lee
- Department of Food and Nutrition, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, South Korea
| | | | | | | | | |
Collapse
|
30
|
Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Xiong X, Yin X, Pei X, Jin P, Zhang A, Li Y, Gong W, Wang Q. Retrieval of glycoside hydrolase family 9 cellulase genes from environmental DNA by metagenomic gene specific multi-primer PCR. Biotechnol Lett 2012; 34:875-82. [PMID: 22261869 DOI: 10.1007/s10529-012-0855-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
Abstract
A new method, termed metagenomic gene specific multi-primer PCR (MGSM-PCR), is presented that uses multiple gene specific primers derived from an isolated gene from a constructed metagenomic library rather than degenerate primers designed based on a known enzyme family. The utility of MGSM-PCR was shown by applying it to search for homologues of the glycoside hydrolase family 9 cellulase in metagenomic DNA. The success of the multiplex PCR was verified by visualizing products on an agarose gel following gel electrophoresis. A total of 127 homologous genes were amplified with combinatorial multi-primer reactions from 34 soil DNA samples. Multiple alignments revealed extensive sequence diversity among these captured sequences with sequence identity varying from 26 to 99.7%. These results indicated that significantly diverse homologous genes were indeed readily accessible when using multiple metagenomic gene specific primers.
Collapse
Affiliation(s)
- Xiaolong Xiong
- Center for Biomedicine and Health, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310015, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Lipases are ubiquitous enzymes, widespread in nature. They were first isolated from bacteria in the early nineteenth century and the associated research continuously increased due to the particular characteristics of these enzymes. This chapter reviews the main sources, structural properties, and industrial applications of these highly studied enzymes.
Collapse
Affiliation(s)
- Leticia Casas-Godoy
- Equipe de Catalyse et Ingénierie Moléculaire Enzymatique, Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
| | | | | | | | | |
Collapse
|
33
|
Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods Mol Biol 2012; 861:239-66. [PMID: 22426723 DOI: 10.1007/978-1-61779-600-5_15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extremophiles are organisms that have evolved to exist in a variety of extreme environments. They fall into a number of different classes that include thermophiles, halophiles, acidophiles, alkalophiles, psychrophiles, and barophiles (piezophiles). Extremophiles have the potential to produce uniquely valuable biocatalysts that function under conditions in which usually the enzymes of their nonextremophilic counterparts could not. Among novel enzymes isolated from extremophilic microorganisms, hydrolases, and particularly lipases and esterases are experiencing a growing demand. Lipases (EC 3.1.1.3) and esterases (EC 3.1.1.1) catalyze the cleavage of ester bounds in aqueous media and the reverse reaction in organic solvents. Both lipolytic enzymes have relevant applications in food, dairy, detergent, biofuel, and pharmaceutical industries. Here, we summarize the properties of lipases and esterases from the main extremophile groups: thermophiles and hyperthermophiles, psychrophiles, halophiles, alkalophiles/acidophiles, and solvent-resistant microorganisms.We report the biomass and lipolytic activity production by Thermus thermophilus HB27 in 5-L stirred-tank bioreactor at 70°C. Suitability of thermal spring water for culture media formulation is shown. In addition, a protocol to isolate and purify a cell-bound esterase from this microorganism is described.
Collapse
|
34
|
Sharma PK, Singh K, Singh R, Capalash N, Ali A, Mohammad O, Kaur J. Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature. Mol Biol Rep 2011; 39:2795-804. [PMID: 21678056 DOI: 10.1007/s11033-011-1038-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 06/04/2011] [Indexed: 11/27/2022]
Abstract
A gene encoding extracellular lipase was cloned and characterized from metagenomic DNA extracted from hot spring soil. The recombinant gene was expressed in E. coli and expressed protein was purified to homogeneity using hydrophobic interactions chromatography. The mature polypeptide consists of 388 amino acids with apparent molecular weight of 43 kDa. The enzyme displayed maximum activity at 50 °C and pH 9.0. It showed thermal stability up to 40 °C without any loss of enzyme activity. Nearly 80% enzyme activity was retained at 50 °C even after incubation for 75 min. However above 50 °C the enzyme displayed thermal instability. The half life of the enzyme was determined to be 5 min at 60 °C. Interestingly the CD spectroscopic study carried out in the temperature range of 25-95 °C revealed distortion in solution structure above 35 °C. However the intrinsic tryptophan fluorescence spectroscopic study revealed that even with the loss of secondary structure at 35 °C and above the tertiary structure was retained. With p-nitrophenyl laurate as a substrate, the enzyme exhibited a K ( m ), V ( max ) and K ( cat ) of 0.73 ± 0.18 μM, 239 ± 16 μmol/ml/min and 569 s(-1) respectively. Enzyme activity was strongly inhibited by CuCl(2), HgCl(2) and DEPC but not by PMSF, eserine and SDS. The protein retained significant activity (~70%) with Triton X-100. The enzyme displayed 100% activity in presence of 30% n-Hexane and acetone.
Collapse
|
35
|
Isolation and characterization of a family VII esterase derived from alluvial soil metagenomic library. J Microbiol 2011; 49:178-85. [PMID: 21538236 DOI: 10.1007/s12275-011-1102-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
A novel esterase gene, estDL30, was isolated from an alluvial metagenomic library using function-driven screening. estDL30 consisted of 1,524 nucleotides and encoded a 507-amino acid protein. Sequence analysis revealed that EstDL30 is similar to many type B carboxylesterases, containing a G-E-S-A-G pentapeptide with a catalytic Ser residue. Phylogenetic analysis suggested that EstDL30 belongs to the family VII lipases, together with esterases from Bacillus subtilis (P37967), Streptomyces coelicolor A3(2) (CAA22794), and Arthrobacter oxydans (Q01470). Purified EstDL30 showed its highest catalytic efficiency toward p-nitrophenyl butyrate, with a k (cat) of 2293 s(-1) and k (cat)/K (m) of 176.4 s(-1)mM(-1); however, little activity was detected when the acyl chain length exceeded C(8). Biochemical characterization of EstDL30 revealed that it is an alkaline esterase that possesses maximal activity at pH 8 and 40° C. The effects of denaturants and divalent cations were also investigated. EstDL30 tolerated well the presence of methanol and Tween 20. Its activity was strongly inhibited by 1 mM Cu(2+) and Zn(2+), but stimulated by Fe(2+). The unique properties of EstDL30, its high activity under alkaline conditions and stability in the presence of organic solvents, may render it applicable to organic synthesis.
Collapse
|
36
|
Neveu J, Regeard C, DuBow MS. Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Appl Microbiol Biotechnol 2011; 91:635-44. [PMID: 21494865 DOI: 10.1007/s00253-011-3256-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
The screening of environmental DNA metagenome libraries for functional activities can provide an important source of new molecules and enzymes. In this study, we identified 17 potential protease-producing clones from two metagenomic libraries derived from samples of surface sand from the Gobi and Death Valley deserts. Two of the proteases, DV1 and M30, were purified and biochemically examined. These two proteases displayed a molecular mass of 41.5 kDa and 45.7 kDa, respectively, on SDS polyacrylamide gels. Alignments with known protease sequences showed less than 55% amino acid sequence identity. These two serine proteases appear to belong to the subtilisin (S8A) family and displayed several unique biochemical properties. Protease DV1 had an optimum pH of 8 and an optimal activity at 55°C, while protease M30 had an optimum pH >11 and optimal activity at 40°C. The properties of these enzymes make them potentially useful for biotechnological applications and again demonstrate that metagenomic approaches can be useful, especially when coupled with the study of novel environments such as deserts.
Collapse
Affiliation(s)
- Julie Neveu
- Univ Paris-Sud, Institut de Génétique et Microbiologie, CNRS UMR 8621, Bât. 409, Orsay 91405, France
| | | | | |
Collapse
|
37
|
Chakravorty D, Parameswaran S, Dubey VK, Patra S. In silico characterization of thermostable lipases. Extremophiles 2010; 15:89-103. [PMID: 21153672 DOI: 10.1007/s00792-010-0337-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 11/15/2010] [Indexed: 11/28/2022]
Abstract
Thermostable lipases are of high priority for industrial applications as they are endowed with the capability of carrying out diversified reactions at elevated temperatures. Extremophiles are their potential source. Sequence and structure annotation of thermostable lipases can elucidate evolution of lipases from their mesophilic counterparts with enhanced thermostability hence better industrial potential. Sequence analysis highlighted the conserved residues in bacterial and fungal thermostable lipases. Higher frequency of AXXXA motif and poly Ala residues in lid domain of thermostable Bacillus lipases were distinguishing characteristics. Comparison of amino acid composition among thermostable and mesostable lipases brought into light the role of neutral, charged and aromatic amino acid residues in enhancement of thermostability. Structural annotation of thermostable lipases with that of mesostable lipases revealed some striking features which are increment of gamma turns in thermostable lipases; being first time reported in our paper, longer beta strands, lesser beta-branched residues in helices, increase in charged-neutral hydrogen bonding pair, hydrophobic-hydrophobic contact and differences in the N-cap and C-cap residues of the α helices. Conclusively, it can be stated that subtle changes in the arrangement of amino acid residues in the tertiary structure of lipases contributes to enhanced thermostability.
Collapse
Affiliation(s)
- Debamitra Chakravorty
- Department of Biotechnology, Indian Institute of Technology, Guwahati 781039, Assam, India
| | | | | | | |
Collapse
|
38
|
Wang Q, Wu H, Wang A, Du P, Pei X, Li H, Yin X, Huang L, Xiong X. Prospecting metagenomic enzyme subfamily genes for DNA family shuffling by a novel PCR-based approach. J Biol Chem 2010; 285:41509-16. [PMID: 20962349 DOI: 10.1074/jbc.m110.139659] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64-99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering.
Collapse
Affiliation(s)
- Qiuyan Wang
- Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou 310012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kotik M, Štěpánek V, Grulich M, Kyslík P, Archelas A. Access to enantiopure aromatic epoxides and diols using epoxide hydrolases derived from total biofilter DNA. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
|
41
|
Significantly Improved Expression and Biochemical Properties of Recombinant Serratia marcescens Lipase as Robust Biocatalyst for Kinetic Resolution of Chiral Ester. Appl Biochem Biotechnol 2010; 162:2387-99. [DOI: 10.1007/s12010-010-9011-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
42
|
Chen R, Guo L, Dang H. Gene cloning, expression and characterization of a cold-adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0475-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Yrjälä K, Keskinen AK, Akerman ML, Fortelius C, Sipilä TP. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1680-1688. [PMID: 20022155 DOI: 10.1016/j.envpol.2009.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 05/28/2023]
Abstract
To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation.
Collapse
Affiliation(s)
- Kim Yrjälä
- Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
44
|
Tuffin M, Anderson D, Heath C, Cowan DA. Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnol J 2010; 4:1671-83. [PMID: 19946882 DOI: 10.1002/biot.200900235] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metagenomics emerged in the late 1990s as a tool for accessing and studying the collective microbial genetic material in the environment. The advent of the technology generated great excitement, as it has provided new opportunities and technologies for studying the wealth of microbial genetic diversity in the environment. Metagenomics has been widely predicted to access new dimensions of protein sequence space. A decade on, we review how far we have actually moved into new sequence space (and other aspects of protein space) using metagenomic tools. While several novel enzyme activities and protein structures have been identified through metagenomic strategies, the greatest advancement has been made in the isolation of novel protein sequences, some of which have no close relatives, form deeply branched lineages and even represent novel families. This is particularly true for glycosyl hydrolases and lipase/esterases, despite the fact that these activities are frequently screened for in metagenomic studies. However, there is much room for improvement in the methods employed and they will need to be addressed so that access to novel biocatalytic activities can be widened.
Collapse
Affiliation(s)
- Marla Tuffin
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of Western Cape, Cape town, South Africa
| | | | | | | |
Collapse
|
45
|
Zhang T, Han WJ. Gene cloning and characterization of a novel esterase from activated sludge metagenome. Microb Cell Fact 2009; 8:67. [PMID: 20028524 PMCID: PMC3224729 DOI: 10.1186/1475-2859-8-67] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/22/2009] [Indexed: 11/29/2022] Open
Abstract
A metagenomic library was prepared using pCC2FOS vector containing about 3.0 Gbp of community DNA from the microbial assemblage of activated sludge. Screening of a part of the un-amplified library resulted in the finding of 1 unique lipolytic clone capable of hydrolyzing tributyrin, in which an esterase gene was identified. This esterase/lipase gene consists of 834 bp and encodes a polypeptide (designated EstAS) of 277 amino acid residuals with a molecular mass of 31 kDa. Sequence analysis indicated that it showed 33% and 31% amino acid identity to esterase/lipase from Gemmata obscuriglobus UQM 2246 (ZP_02733109) and Yarrowia lipolytica CLIB122 (XP_504639), respectively; and several conserved regions were identified, including the putative active site, HSMGG, a catalytic triad (Ser92, His125 and Asp216) and a LHYFRG conserved motif. The EstAS was overexpressed, purified and shown to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤ C8). This EstAS had optimal temperature and pH at 35°C and 9.0, respectively, by hydrolysis of p-NP hexanoate. It also exhibited the same level of stability over wide temperature and pH ranges and in the presence of metal ions or detergents. The high level of stability of esterase EstAS with its unique substrate specificities make itself highly useful for biotechnological applications.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | | |
Collapse
|
46
|
Novel genes retrieved from environmental DNA by polymerase chain reaction: current genome-walking techniques for future metagenome applications. J Biotechnol 2009; 144:75-82. [PMID: 19712711 DOI: 10.1016/j.jbiotec.2009.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/11/2009] [Accepted: 08/17/2009] [Indexed: 11/24/2022]
Abstract
Environmental DNA is an extremely rich source of genes encoding enzymes with novel biocatalytic activities. To tap this source, function-based and sequence-based strategies have been established to isolate, clone, and express these novel metagenome-derived genes. Sequence-based strategies, which rely on PCR with consensus primers and genome walking, represent an efficient and inexpensive alternative to activity-based screening of recombinant strains harbouring fragments of environmental DNA. This review covers the diverse array of genome-walking techniques, which were originally developed for genomic DNA and currently are also used for PCR-based recovery of entire genes from the metagenome. These sequence-based gene mining methods appear to offer a powerful tool for retrieving from the metagenome novel genes encoding biocatalysts with potential applications in biotechnology.
Collapse
|
47
|
Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from antarctic desert soil. Appl Environ Microbiol 2009; 75:4657-9. [PMID: 19411411 DOI: 10.1128/aem.02597-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel esterase was identified through functional screening of a metagenomic library in Escherichia coli obtained from Antarctic desert soil. The 297-amino-acid sequence had only low (<29%) similarity to a putative esterase from Burkholderia xenovorans. The enzyme was active over a temperature range of 7 to 54 degrees C and at alkaline pH levels and is a potential candidate for industrial application.
Collapse
|
48
|
Morimoto S, Fujii T. A new approach to retrieve full lengths of functional genes from soil by PCR-DGGE and metagenome walking. Appl Microbiol Biotechnol 2009; 83:389-96. [PMID: 19370345 DOI: 10.1007/s00253-009-1992-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
Metagenomes are a vast genetic resource, and various approaches have been developed to explore them. Here, we present a new approach to retrieve full lengths of functional genes from soil DNA using PCR-denaturing gradient gel electrophoresis (DGGE) followed by metagenome walking. Partial fragments of benzoate 1,2-dioxygenase alpha subunit gene (benA) were detected from a 3-chlorobenzoate (3CB)-dosed soil by PCR-DGGE, and one DGGE band induced by 3CB was used as a target fragment for metagenome walking. The walking retrieved the flanking regions of the target fragment from the soil DNA, resulting in recovery of the full length of benA and also downstream gene (benB). The same strategy retrieved another gene, tfdC, and a complete tfdC and two downstream genes were obtained from the same soil. PCR-DGGE allows screening for target genes based on their potential for degrading contaminants in the environment. This feature provides an advantage over other existing metagenomic approaches.
Collapse
Affiliation(s)
- Sho Morimoto
- National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| | | |
Collapse
|
49
|
Kotik M, Štěpánek V, Marešová H, Kyslík P, Archelas A. Environmental DNA as a source of a novel epoxide hydrolase reacting with aliphatic terminal epoxides. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Zhang H, Zhang F, Li Z. Gene analysis, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0010-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|