1
|
Hussain N, Mikolajek H, Harrison PJ, Paterson N, Akhtar MW, Sadaf S, Naismith JH. Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification. Arch Biochem Biophys 2024; 764:110274. [PMID: 39701201 DOI: 10.1016/j.abb.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C. The enzyme exhibited a high level of processivity on RAC and retained over 90% activity at 80°C for an extended period, indicating exceptional thermal stability. The 1.20 Å crystal structure of the Tt_End5A catalytic domain revealed an archetypal glycoside hydrolase family 5 (GH5) catalytic TIM-(β/α)8-barrel, supplemented with additional β-strands, elongated α-helices, and a rare cis-non-Pro (His481-cis-Ala482) peptide. A large central cleft was observed in the 3D structure, which is likely related to the enzyme's multifunctionality and processivity. The catalytic domain is preceded by a novel N-terminal multivalent carbohydrate-binding module (CBM) that enhances the enzymatic degradation of insoluble polysaccharides. Mutagenesis studies, ligand interaction analyses, and the structurally conserved positions of E329 and E448 in Tt_End5A suggest that these residues function as the proton donor and nucleophile in the catalytic mechanism. Owing to its multifunctionality and processivity, Tt_End5A can reduce the need for multiple saccharification enzymes to generate fermentable sugars from plant biomass for bioethanol production. Additionally, it holds promise for applications in the pharmaceutical, feed, and food industries.
Collapse
Affiliation(s)
- Naveed Hussain
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan; The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK; School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Halina Mikolajek
- The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Peter J Harrison
- The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Neil Paterson
- Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Muhammad W Akhtar
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan; School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Saima Sadaf
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - James H Naismith
- The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK.
| |
Collapse
|
2
|
Han R, Baudrexl M, Ludwig C, Berezina OV, Rykov SV, Liebl W. Identification of a novel xanthan-binding module of a multi-modular Cohnella sp. xanthanase. Front Microbiol 2024; 15:1386552. [PMID: 38596379 PMCID: PMC11002231 DOI: 10.3389/fmicb.2024.1386552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
A new strain of xanthan-degrading bacteria identified as Cohnella sp. has been isolated from a xanthan thickener for food production. The strain was able to utilize xanthan as the only carbon source and to reduce the viscosity of xanthan-containing medium during cultivation. Comparative analysis of the secretomes of Cohnella sp. after growth on different media led to the identification of a xanthanase designated as CspXan9, which was isolated after recombinant production in Escherichia coli. CspXan9 could efficiently degrade the β-1,4-glucan backbone of xanthan after previous removal of pyruvylated mannose residues from the ends of the native xanthan side chains by xanthan lyase treatment (XLT-xanthan). Compared with xanthanase from Paenibacillus nanensis, xanthanase CspXan9 had a different module composition at the N- and C-terminal ends. The main putative oligosaccharides released from XLT-xanthan by CspXan9 cleavage were tetrasaccharides and octasaccharides. To explore the functions of the N- and C-terminal regions of the enzyme, truncated variants lacking some of the non-catalytic modules (CspXan9-C, CspXan9-N, CspXan9-C-N) were produced. Enzyme assays with the purified deletion derivatives, which all contained the catalytic glycoside hydrolase family 9 (GH9) module, demonstrated substantially reduced specific activity on XLT-xanthan of CspXan9-C-N compared with full-length CspXan9. The C-terminal module of CspXan9 was found to represent a novel carbohydrate-binding module of family CBM66 with binding affinity for XLT-xanthan, as was shown by native affinity polyacrylamide gel electrophoresis in the presence of various polysaccharides. The only previously known binding function of a CBM66 member is exo-type binding to the non-reducing fructose ends of the β-fructan polysaccharides inulin and levan.
Collapse
Affiliation(s)
- Rui Han
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Melanie Baudrexl
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Sergey V. Rykov
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Wolfgang Liebl
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Li D, Ren S, Wang X, Chen L, You S, Tang Y, Chen L. Gated nanoprobe utilizing metal-organic frameworks for identifying and distinguishing between the wild strains and the vaccine strains of brucella. Analyst 2024; 149:1618-1631. [PMID: 38299740 DOI: 10.1039/d4an00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In the assay for Brucella, the identification and differentiation of wild strains and vaccine strains present a significant challenge. Currently, there aren't any commercially available product to address this issue. In this study, we have developed a novel gated nanoprobe by utilizing Metal-Organic Frameworks (MOFs) as a scaffold and hairpin DNA as a "gating switch". Specifically, Probe 1 with hairpin structure (P1h) targets a gene that is present in both wild strains Y3 (B. melitensis biovar 3) and vaccine strains A19 (Brucella abortus strains A19). We successfully applied this probe to screen positive samples of Brucella without any cross-reactivity with other substances. Additionally, we identified another specific gene exclusively found in wild strains, which serves as Probe 2 with hairpin structure (P2h) to confirm the strain type. Simultaneous detachment of both P1h and P2h from the MOFs leads to the release of Rhodamine 6G (Rho 6G) and Fluorescein (Flu), specifically indicating the presence of wild strains. If only P1h detaches and the Flu signal is detected, it suggests the presence of vaccine strains. Importantly, this method offers high accuracy, with a detection rate of 90% and a recovery rate of 94.71% to 107.65%, while avoiding cross-reactions with MO and TB. This one-step experiment provides reliable identification and differentiation of Y3 and A19, addressing concerns related to long periodicity, interference from individual variations, and the complex design of primers in existing laboratory methods. Furthermore, our approach successfully detects target 1 (T1) and target 2 (T2) at concentrations ranging from 10-6 M to 10-9 M, with a detection limit of 6.7 × 10-10 M and 6.4 × 10-10 M, respectively. Importantly, our strategy is cost-effective (around $1) and offers higher detection efficiency compared to traditional laboratory methods.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; Key Laboratory of Eco-chemical Engineering; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Shuna Ren
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; Key Laboratory of Eco-chemical Engineering; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xiaotong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; Key Laboratory of Eco-chemical Engineering; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lili Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; Key Laboratory of Eco-chemical Engineering; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Shuang You
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; Key Laboratory of Eco-chemical Engineering; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yan Tang
- Xinjiang Agricultural vocational Technical College; Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, PR China.
| | - Lihua Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; Key Laboratory of Eco-chemical Engineering; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
4
|
Chhiba V, Pillay P, Mtimka S, Moonsamy G, Kwezi L, Pooe OJ, Tsekoa TL. South Africa's indigenous microbial diversity for industrial applications: A review of the current status and opportunities. Heliyon 2023; 9:e16723. [PMID: 37484259 PMCID: PMC10360602 DOI: 10.1016/j.heliyon.2023.e16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.
Collapse
Affiliation(s)
- Varsha Chhiba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Sibongile Mtimka
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ghaneshree Moonsamy
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse J. Pooe
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
5
|
Grenier V, Gonzalez E, Brereton NJB, Pitre FE. Dynamics of bacterial and archaeal communities during horse bedding and green waste composting. PeerJ 2023; 11:e15239. [PMID: 37159830 PMCID: PMC10163874 DOI: 10.7717/peerj.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Organic waste decomposition can make up substantial amounts of municipal greenhouse emissions during decomposition. Composting has the potential to reduce these emissions as well as generate sustainable fertilizer. However, our understanding of how complex microbial communities change to drive the chemical and biological processes of composting is still limited. To investigate the microbiota associated with organic waste decomposition, initial composting feedstock (Litter), three composting windrows of 1.5 months (Young phase), 3 months (Middle phase) and 12 months (Aged phase) old, and 24-month-old mature Compost were sampled to assess physicochemical properties, plant cell wall composition and the microbial community using 16S rRNA gene amplification. A total of 2,612 Exact Sequence Variants (ESVs) included 517 annotated as putative species and 694 as genera which together captured 57.7% of the 3,133,873 sequences, with the most abundant species being Thermobifida fusca, Thermomonospora chromogena and Thermobifida bifida. Compost properties changed rapidly over time alongside the diversity of the compost community, which increased as composting progressed, and multivariate analysis indicated significant variation in community composition between each time-point. The abundance of bacteria in the feedstock is strongly correlated with the presence of organic matter and the abundance of plant cell wall components. Temperature and pH are the most strongly correlated parameters with bacterial abundance in the thermophilic and cooling phases/mature compost respectively. Differential abundance analysis revealed 810 ESVs annotated as species significantly varied in relative abundance between Litter and Young phase, 653 between the Young and Middle phases, 1182 between Middle and Aged phases and 663 between Aged phase and mature Compost. These changes indicated that structural carbohydrates and lignin degrading species were abundant at the beginning of the thermophilic phase, especially members of the Firmicute and Actinobacteria phyla. A high diversity of species capable of putative ammonification and denitrification were consistently found throughout the composting phases, whereas a limited number of nitrifying bacteria were identified and were significantly enriched within the later mesophilic composting phases. High microbial community resolution also revealed unexpected species which could be beneficial for agricultural soils enriched with mature compost or for the deployment of environmental and plant biotechnologies. Understanding the dynamics of these microbial communities could lead to improved waste management strategies and the development of input-specific composting protocols to optimize carbon and nitrogen transformation and promote a diverse and functional microflora in mature compost.
Collapse
Affiliation(s)
- Vanessa Grenier
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de Recherche en Biologie Végétale, Montréal, Québec, Canada
| | - Emmanuel Gonzalez
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nicholas JB Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Frederic E. Pitre
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de Recherche en Biologie Végétale, Montréal, Québec, Canada
- Montreal Botanical Garden, Montréal, Québec, Canada
| |
Collapse
|
6
|
Shen C, Su L, Zhao Y, Liu W, Liu R, Zhang F, Shi Y, Wang J, Tang Q, Yang Y, Bon Man Y, Zhang J. Plants boost pyrrhotite-driven nitrogen removal in constructed wetlands. BIORESOURCE TECHNOLOGY 2023; 367:128240. [PMID: 36332867 DOI: 10.1016/j.biortech.2022.128240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pyrrhotite is a promising electron donor for autotrophic denitrification. Using pyrrhotite as the substrate in constructed wetlands (CWs) can enhance the nitrogen removal performance in carbon-limited wastewater treatment. However, the role of plants in pyrrhotite-integrated CW is under debate as the oxygen released from plant roots may destroy the anoxic condition for autotrophic denitrification. This study compared pyrrhotite-integrated CWs with and without plants and identified the effects of plants' presence in nitrogen removal, pyrrhotite oxidized dissolution, and microbial community. The results show that plants enhanced the TN removal significantly (from 41.6 ± 3.9 % to 97.1 ± 2.6 %). Plants can accelerate the PAD in CW through the strengthening of pyrrhotite dissolution. Enriched functional (Thiobacillus and Acidiferrobacter) and a more complex bacterial co-occurrence network has been found in CW with plants. This study identified the role of plants in PAD acceleration, providing an in-depth understanding of pyrrhotite in CW systems.
Collapse
Affiliation(s)
- Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield Dublin 4, Ireland
| | - Liti Su
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Yaqian Zhao
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield Dublin 4, Ireland; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Wenbo Liu
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Ranbin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield Dublin 4, Ireland
| | - Fuhao Zhang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, China; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yun Shi
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Jie Wang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Qiuqi Tang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Yan Yang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
7
|
Cazaudehore G, Guyoneaud R, Lallement A, Gassie C, Monlau F. Biochemical methane potential and active microbial communities during anaerobic digestion of biodegradable plastics at different inoculum-substrate ratios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116369. [PMID: 36202034 DOI: 10.1016/j.jenvman.2022.116369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The influence of the inoculum-substrate ratio (ISR) on the mesophilic and thermophilic biochemical methane potential test of two biodegradable plastics was evaluated. Poly(lactic acid) (PLA) and polyhydroxybutyrate (PHB) were selected for this study, the first for being recalcitrant to mesophilic anaerobic digestion (AD) and the second, by contrast, for being readily biodegradable. Several ISRs, calculated on the basis of volatile solids (VS), were tested: 1, 2, 2.85, 4, and 10 g(VS of inoculum).g(VS of substrate)-1. A high ISR was associated with an enhanced methane production rate (i.e., biodegradation kinetics). However, the ultimate methane production did not change, except when inhibition was observed. Indeed, applying the lowest ISR to readily biodegradable plastics such as PHB resulted in inhibition of methane production. Based on these experiments, in order to have reproducible degradation kinetics and optimal methane production, an ISR between 2.85 and 4 is recommended for biodegradable plastics. The active microbial communities were analyzed, and the active bacteria differed depending on the plastic digested (PLA versus PHB) and the temperature of the process (mesophilic versus thermophilic). Previously identified PHB degraders (Ilyobacter delafieldii and Enterobacter) were detected in PHB-fed reactors. Thermogutta and Tepidanaerobacter were detected during the thermophilic AD of PLA, and they are probably involved in PLA hydrolysis and lactate conversion, respectively.
Collapse
Affiliation(s)
- G Cazaudehore
- APESA, Pôle Valorisation, 64121 Montardon, France; Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France.
| | - R Guyoneaud
- Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France
| | - A Lallement
- APESA, Pôle Valorisation, 64121 Montardon, France
| | - C Gassie
- Université de Pau et des Pays de l'Adour / E2S UPPA / CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000, Pau, France
| | - F Monlau
- APESA, Pôle Valorisation, 64121 Montardon, France
| |
Collapse
|
8
|
Podosokorskaya OA, Elcheninov AG, Novikov AA, Kublanov IV. Fontivita pretiosa gen. nov., sp. nov., a thermophilic planctomycete of the order Tepidisphaerales from a hot spring of Baikal lake region. Syst Appl Microbiol 2022; 45:126375. [DOI: 10.1016/j.syapm.2022.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
|
9
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rubinisphaera margarita sp. nov., a novel planctomycete isolated from marine sediments collected in the Portuguese north coast. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylum
Planctomycetota
is constituted by bacteria with unique features that are well adapted to a vast range of habitats. Here, we describe a novel planctomycete isolated from marine sediments collected on a beach in Matosinhos (Portugal) using an iChip-based culturing technique. Strain ICM_H10T forms beige-coloured colonies in modified M14 medium and its cells are spherical to ovoid in shape, stalked, rosette-forming and showing motility in a phase of the life cycle. Transmission electron microscopy observations showed a typical planctomycetal cell plan and cell division by budding. This strain requires salt for growth and grows in the range of 2.0–5.0 % (w/v) NaCl, from 20 to 37 °C, within a pH of 6.0–9.0 and is able to use diverse nitrogen and carbon sources. It is heterotrophic, aerobic and capable of microaerobic growth. This strain has a genome size of approximately 6.0 Mb and a G+C content of 58.1 mol%. A 16S rRNA gene-based phylogenetic analysis supports the association of strain ICM_H10T to the phylum
Planctomycetota
and the family
Planctomycetaceae
, as it shares only 96.8 and 96.4% similarity to its closest relatives
Rubinisphaera italica
Pan54T and
Rubinisphaera brasiliensis
IFAM 1448T, respectively. Other phylogenetic markers also support the separation of this strain into a novel species. Morphological, physiological and genomic comparisons between strain ICM_H10T and its closest relatives strongly suggest that ICM_H10T represents a new species of the genus
Rubinisphaera
, for which we propose the name Rubinisphaera margarita sp. nov., with ICM_H10T (=CECT 30326T=LMG 32234T) as type strain.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Olga Maria Lage
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Kochetkova TV, Podosokorskaya OA, Elcheninov AG, Kublanov IV. Diversity of Thermophilic Prokaryotes Inhabiting Russian Natural Hot Springs. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
12
|
Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V, Lage OM. Novel and Conventional Isolation Techniques to Obtain Planctomycetes from Marine Environments. Microorganisms 2021; 9:2078. [PMID: 34683399 PMCID: PMC8541047 DOI: 10.3390/microorganisms9102078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - José Diogo Neves Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain;
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
13
|
Wiegand S, Rast P, Kallscheuer N, Jogler M, Heuer A, Boedeker C, Jeske O, Kohn T, Vollmers J, Kaster AK, Quast C, Glöckner FO, Rohde M, Jogler C. Analysis of Bacterial Communities on North Sea Macroalgae and Characterization of the Isolated Planctomycetes Adhaeretor mobilis gen. nov., sp. nov., Roseimaritima multifibrata sp. nov., Rosistilla ulvae sp. nov. and Rubripirellula lacrimiformis sp. nov. Microorganisms 2021; 9:microorganisms9071494. [PMID: 34361930 PMCID: PMC8303584 DOI: 10.3390/microorganisms9071494] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Planctomycetes are bacteria that were long thought to be unculturable, of low abundance, and therefore neglectable in the environment. This view changed in recent years, after it was shown that members of the phylum Planctomycetes can be abundant in many aquatic environments, e.g., in the epiphytic communities on macroalgae surfaces. Here, we analyzed three different macroalgae from the North Sea and show that Planctomycetes is the most abundant bacterial phylum on the alga Fucus sp., while it represents a minor fraction of the surface-associated bacterial community of Ulva sp. and Laminaria sp. Especially dominant within the phylum Planctomycetes were Blastopirellula sp., followed by Rhodopirellula sp., Rubripirellula sp., as well as other Pirellulaceae and Lacipirellulaceae, but also members of the OM190 lineage. Motivated by the observed abundance, we isolated four novel planctomycetal strains to expand the collection of species available as axenic cultures since access to different strains is a prerequisite to investigate the success of planctomycetes in marine environments. The isolated strains constitute four novel species belonging to one novel and three previously described genera in the order Pirellulales, class Planctomycetia, phylum Planctomycetes.
Collapse
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Patrick Rast
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute of Bio- and Geosciences, Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
| | - Anja Heuer
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Christian Boedeker
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Olga Jeske
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Timo Kohn
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
| | - John Vollmers
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Frank Oliver Glöckner
- Alfred Wegener Institute Bremerhaven, MARUM, University of Bremen, 28359 Bremen, Germany;
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christian Jogler
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
- Correspondence: ; Tel.: +49-364-194-9301
| |
Collapse
|
14
|
Denisenko YA, Korotkova OG, Zorov IN, Rozhkova AM, Semenova MV, Elcheninov AG, Kublanov IV, Sinitsyn AP. Heterologous Expression of Thermogutta terrifontis Endo-Xanthanase in Penicillium verruculosum, Isolation and Primary Characterization of the Enzyme. BIOCHEMISTRY (MOSCOW) 2021; 86:489-495. [PMID: 33941069 DOI: 10.1134/s000629792104009x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heterologous endo-xanthanase (EX) from the thermophilic planktomycete Thermogutta terrifontis strain was obtained using Penicillium verruculosum 537 (ΔniaD) expression system with the cellobiohydrolase 1 gene promoter. Homogeneous EX with a molecular weight of 23.7 kDa (pI 6.5) was isolated using liquid chromatography methods. This xanthan degrading enzyme also possesses the enzymatic activity towards CM-cellulose, β-glucan, curdlan, lichenan, laminarin, galactomannan, xyloglucan but not towards p-nitrophenyl derivatives of β-D-glucose, mannose and cellobiose. The temperature and pH optima of EX were 55°C and 4.0, respectively; the enzyme exhibited 90% of its maximum activity in the temperature range 50-60°C and pH 3-5.
Collapse
Affiliation(s)
- Yury A Denisenko
- Federal Research Center "Fundamentals of Fundamental Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Olga G Korotkova
- Federal Research Center "Fundamentals of Fundamental Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ivan N Zorov
- Federal Research Center "Fundamentals of Fundamental Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.,Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra M Rozhkova
- Federal Research Center "Fundamentals of Fundamental Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Margarita V Semenova
- Federal Research Center "Fundamentals of Fundamental Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexandr G Elcheninov
- Federal Research Center "Fundamentals of Fundamental Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ilya V Kublanov
- Federal Research Center "Fundamentals of Fundamental Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Arkady P Sinitsyn
- Federal Research Center "Fundamentals of Fundamental Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.,Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
15
|
Goraj W, Pytlak A, Kowalska B, Kowalski D, Grządziel J, Szafranek-Nakonieczna A, Gałązka A, Stępniewska Z, Stępniewski W. Influence of pipe material on biofilm microbial communities found in drinking water supply system. ENVIRONMENTAL RESEARCH 2021; 196:110433. [PMID: 33166536 DOI: 10.1016/j.envres.2020.110433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The biofilms and water samples from a model installation built of PVC-U, PE-HD and cast iron pipes were investigated using standard heterotrophic plate count and 16S rRNA Next Generation Sequencing. The results of the high throughput identification imply that the construction material strongly influences the microbiome composition. PVC-U and PE-HD pipes were dominated with Proteobacteria (54-60%) while the cast pipe was overgrown by Nitrospirae (64%). It was deduced that the plastic pipes create a more convenient environment for the potentially pathogenic taxa than the cast iron. The 7-year old biofilms were described as complex habitats with sharp oxidation-reduction gradients, where co-existence of methanogenic and methanotrophic microbiota takes place. Furthermore, it was found that the drinking water distribution systems (DWDS) are a useful tool for studying the ecology of rare bacterial phyla. New ecophysiological aspects were described for Aquihabitans, Thermogutta and Vampirovibrio. The discrepancy between identity of HPC-derived bacteria and NGS-revealed composition of biofilm and water microbiomes point to the need of introducing new diagnostical protocols to enable proper assessment of the drinking water safety, especially in DWDSs operating without disinfection.
Collapse
Affiliation(s)
- Weronika Goraj
- Department of Biology and Biotechnology of Microorganisms, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Beata Kowalska
- Faculty of Environmental Protection Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618, Lublin, Poland
| | - Dariusz Kowalski
- Faculty of Environmental Protection Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618, Lublin, Poland
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich Street 8, 24-100, Puławy, Poland
| | - Anna Szafranek-Nakonieczna
- Department of Biology and Biotechnology of Microorganisms, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich Street 8, 24-100, Puławy, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów Street 1 I, 20-708, Lublin, Poland
| | - Witold Stępniewski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
16
|
Li ZL, Cheng R, Chen F, Lin XQ, Yao XJ, Liang B, Huang C, Sun K, Wang AJ. Selective stress of antibiotics on microbial denitrification: Inhibitory effects, dynamics of microbial community structure and function. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124366. [PMID: 33301967 DOI: 10.1016/j.jhazmat.2020.124366] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 05/28/2023]
Abstract
Antibiotics commonly exist in municipal, livestock and industrial wastewaters. However, the response of key microbiota performance in wastewater treatment plants to antibiotic exposure lacks systematic research. In this study, the short-term acute stress of four commonly used antibiotics (sulfamethoxazole, chlortetracycline, ciprofloxacin, and amoxicillin) on microbial denitrification performance was systematically investigated. All tested antibiotics exhibited the inhibitory effects in varying degrees by repeated addition for six cycles. The nitrate removal efficiencies (NrE) decreased to 7.98-26.80%, accompanied by the significant decrease of the expressed narG gene, by exposure to sulfamethoxazole, chlortetracycline or amoxicillin. Nitrite reduction was inhibited more severely than nitrate reduction, which was further verified by the low- or non-expressed nirS and nosZ genes. Furthermore, a higher antibiotic concentration made stronger inhibitory effect. Except for chlortetracycline, 2.09-6.80 times decrease of k value was commonly observed as concentration increased from 10 to 50 or 100 mg L-1. Even in a short period (24 h), antibiotics largely decreased the abundance of the dominant denitrifying bacterial genera (Thauera, Comamonas, etc.), while, some unclassified populations (Labrenzia, Longilinea, etc.) were enriched. This study provides theoretical researches on the microbial denitrification behaviors influenced by exposure to different antibiotics.
Collapse
Affiliation(s)
- Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xiao-Qiu Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Jing Yao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kai Sun
- Key Lab of Structures Dynamic Behavior and Control of China Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
17
|
A Thermophilic Bacterial Esterase for Scavenging Nerve Agents: A Kinetic, Biophysical and Structural Study. Molecules 2021; 26:molecules26030657. [PMID: 33513869 PMCID: PMC7865465 DOI: 10.3390/molecules26030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/02/2022] Open
Abstract
Organophosphorous nerve agents (OPNA) pose an actual and major threat for both military and civilians alike, as an upsurge in their use has been observed in the recent years. Currently available treatments mitigate the effect of the nerve agents, and could be vastly improved by means of scavengers of the nerve agents. Consequently, efforts have been made over the years into investigating enzymes, also known as bioscavengers, which have the potential either to trap or hydrolyze these toxic compounds. We investigated the previously described esterase 2 from Thermogutta terrifontis (TtEst2) as a potential bioscavenger of nerve agents. As such, we assessed its potential against G-agents (tabun, sarin, and cyclosarin), VX, as well as the pesticide paraoxon. We report that TtEst2 is a good bioscavenger of paraoxon and G-agents, but is rather slow at scavenging VX. X-ray crystallography studies showed that TtEst2 forms an irreversible complex with the aforementioned agents, and allowed the identification of amino-acids, whose mutagenesis could lead to better scavenging properties for VX. In conjunction with its cheap production and purification processes, as well as a robust structural backbone, further engineering of TtEst2 could lead to a stopgap bioscavenger useful for in corpo scavenging or skin decontamination.
Collapse
|
18
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Description of Polystyrenella longa gen. nov., sp. nov., isolated from polystyrene particles incubated in the Baltic Sea. Antonie Van Leeuwenhoek 2020; 113:1851-1862. [PMID: 32239304 PMCID: PMC7716846 DOI: 10.1007/s10482-020-01406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/15/2020] [Indexed: 11/28/2022]
Abstract
Planctomycetes occur in almost all aquatic ecosystems on earth. They have a remarkable cell biology, and members of the orders Planctomycetales and Pirellulales feature cell division by polar budding, perform a lifestyle switch from sessile to motile cells and have an enlarged periplasmic space. Here, we characterise a novel planctomycetal strain, Pla110T, isolated from the surface of polystyrene particles incubated in the Baltic Sea. After phylogenetic analysis, the strain could be placed in the family Planctomycetaceae. Strain Pla110T performs cell division by budding, has crateriform structures and grows in aggregates or rosettes. The strain is a chemoheterotroph, grows under mesophilic and neutrophilic conditions, and exhibited a doubling time of 21 h. Based on our phylogenetic and morphological characterisation, strain Pla110T (DSM 103387T = LMG 29693T) is concluded to represent a novel species belonging to a novel genus, for which we propose the name Polystyrenella longa gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
19
|
Wiegand S, Jogler M, Boedeker C, Heuer A, Peeters SH, Kallscheuer N, Jetten MSM, Kaster AK, Rohde M, Jogler C. Updates to the recently introduced family Lacipirellulaceae in the phylum Planctomycetes: isolation of strains belonging to the novel genera Aeoliella, Botrimarina, Pirellulimonas and Pseudobythopirellula and the novel species Bythopirellula polymerisocia and Posidoniimonas corsicana. Antonie Van Leeuwenhoek 2020; 113:1979-1997. [PMID: 33151460 PMCID: PMC7717034 DOI: 10.1007/s10482-020-01486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Eight novel strains of the phylum Planctomycetes were isolated from different aquatic habitats. Among these habitats were the hydrothermal vent system close to Panarea Island, a public beach at Mallorca Island, the shore of Costa Brava (Spain), and three sites with brackish water in the Baltic Sea. The genome sizes of the novel strains range from 4.33 to 6.29 Mb with DNA G+C contents between 52.8 and 66.7%. All strains are mesophilic (Topt 24-30 °C) and display generation times between 17 and 94 h. All eight isolates constitute novel species of either already described or novel genera within the family Lacipirellulaceae. Two of the novel species, Posidoniimonas polymericola (type strain Pla123aT = DSM 103020T = LMG 29466T) and Bythopirellula polymerisocia (type strain Pla144T = DSM 104841T = VKM B-3442T), belong to established genera, while the other strains represent the novel genera Aeoliella gen. nov., Botrimarina gen. nov., Pirellulimonas gen. nov. and Pseudobythopirellula gen. nov. Based on our polyphasic analysis, we propose the species Aeoliella mucimassa sp. nov. (type strain Pan181T = DSM 29370T = LMG 31346T = CECT 9840T = VKM B-3426T), Botrimarina colliarenosi sp. nov. (type strain Pla108T = DSM 103355T = LMG 29803T), Botrimarina hoheduenensis sp. nov. (type strain Pla111T = DSM 103485T = STH00945T, Jena Microbial Resource Collection JMRC), Botrimarina mediterranea sp. nov. (type strain Spa11T = DSM 100745T = LMG 31350T = CECT 9852T = VKM B-3431T), Pirellulimonas nuda sp. nov. (type strain Pla175T = DSM 109594T = CECT 9871T = VKM B-3448T) and Pseudobythopirellula maris sp. nov. (type strain Mal64T = DSM 100832T = LMG 29020T).
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
20
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
21
|
Elcheninov AG, Podosokorskaya OA, Kovaleva OL, Novikov AA, Toshchakov SV, Bonch-Osmolovskaya EA, Kublanov IV. Thermogemmata fonticola gen. nov., sp. nov., the first thermophilic planctomycete of the order Gemmatales from a Kamchatka hot spring. Syst Appl Microbiol 2020; 44:126157. [PMID: 33220635 DOI: 10.1016/j.syapm.2020.126157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
A novel aerobic moderately thermophilic bacterium, designated strain 2918T, was isolated from a terrestrial hot spring of Kamchatka, Russian Federation. Gram-negative, motile, spherical cells were present singly, in pairs, or aggregates, and reproduced by budding. The strain grew at 25-60°C and within a pH range of 5.0-8.0 with an optimum at 54-60°C and pH 7.5. Strain 2918T did not require sodium chloride or yeast extract for growth. It was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (starch, lichenan, galactan, arabinan, xanthan gum, beta-glucan). No growth was observed under anaerobic conditions neither in the presence of sulfur, nitrate, or thiosulfate nor without adding any electron acceptor. Major cellular fatty acids were C18:0 and C20:0. The respiratory quinone was MK-6. The size of the genome of strain 2918T was 4.81 Mb. Genomic DNA G+C content was 60.4mol%. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strain 2918T represented a distinct lineage of the order Gemmatales within Planctomycetes. Based on phylogenetic analysis and phenotypic features, the novel isolate was assigned to a novel genus in the Gemmatales for which the name Thermogemmata gen. nov. is proposed. Strain 2918T (=KCTC 72012T =VKM B-3161T) represents its first species Thermogemmata fonticola sp. nov.
Collapse
Affiliation(s)
- Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Olga L Kovaleva
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65, 119991 Moscow, Russia
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia; Lomonosov State University, Leninskie Gory 1 Bldg 12, Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
22
|
Stairs CW, Dharamshi JE, Tamarit D, Eme L, Jørgensen SL, Spang A, Ettema TJG. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. SCIENCE ADVANCES 2020; 6:eabb7258. [PMID: 32923644 PMCID: PMC7449678 DOI: 10.1126/sciadv.abb7258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H2 exchange. However, there are no strong indications that modern eukaryotic H2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.
Collapse
Affiliation(s)
- Courtney W. Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jennah E. Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay, France
| | - Steffen L. Jørgensen
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, Netherlands
| | - Thijs J. G. Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
| |
Collapse
|
23
|
Diversity of sediment associated Planctomycetes and its related phyla with special reference to anammox bacterial community in a high Arctic fjord. World J Microbiol Biotechnol 2020; 36:107. [PMID: 32638161 DOI: 10.1007/s11274-020-02886-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
The fjords of west Spitsbergen Svalbard, Arctic Norway, are undergoing a transformation as the impact of nutrient rich warmer Atlantic water is significantly altering the primary production and subsequently the carbon pool. Members of the phylum Planctomycetes are ubiquitous in marine systems and are important in the mineralization of organic matter. Hence, the phylogenetic diversity and distribution pattern of Planctomycetes in the surface sediments of a high Arctic fjord, the Kongsfjorden were studied. Further, considering the release of ammonium as a part of mineralization, the diversity of bacterial community involved in anaerobic ammonium oxidation (anammox) was also evaluated. The highly diverse Planctomycetes community, which consisted mainly of uncultivated and uncharacterized Planctomycetes, was observed in the study area with a total of 162 OTUs. The major genera observed were Blastopirellula (13.3%), Gimesia (13%), Rhodopirellula (10%), Planctomicrobium (2%) and Thermogutta (1.6%). Functional prediction revealed the dominance of carbohydrate metabolism genes and the presence of gene clusters for production of secondary metabolites and xenobiotic degradation. Anammox bacterial sequences were detected from all the samples with a total of 52 OTUs. Most of the OTUs belonged to the genus Candidatus Scalindua and three distinct clusters were observed in the phylogenetic tree, (a) Ca. Scalindua brodae (49%), (b) Ca. Scalindua wagneri (31%) and (c) Ca. Scalindua marina (12%) based on their phylogenic distance. Our findings suggest the existence of highly diverse Planctomycetes and anammox bacterial community with regional variants in the sediments of Kongsfjorden.
Collapse
|
24
|
van Vliet DM, Lin Y, Bale NJ, Koenen M, Villanueva L, Stams AJM, Sánchez-Andrea I. Pontiella desulfatans gen. nov., sp. nov., and Pontiella sulfatireligans sp. nov., Two Marine Anaerobes of the Pontiellaceae fam. nov. Producing Sulfated Glycosaminoglycan-like Exopolymers. Microorganisms 2020; 8:microorganisms8060920. [PMID: 32570748 PMCID: PMC7356697 DOI: 10.3390/microorganisms8060920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, we isolated two marine strains, F1T and F21T, which together with Kiritimatiella glycovorans L21-Fru-ABT are the only pure cultures of the class Kiritimatiellae within the phylum Verrucomicrobiota. Here, we present an in-depth genome-guided characterization of both isolates with emphasis on their exopolysaccharide synthesis. The strains only grew fermentatively on simple carbohydrates and sulfated polysaccharides. Strains F1T, F21T and K. glycovorans reduced elemental sulfur, ferric citrate and anthraquinone-2,6-disulfonate during anaerobic growth on sugars. Both strains produced exopolysaccharides during stationary phase, probably with intracellularly stored glycogen as energy and carbon source. Exopolysaccharides included N-sulfated polysaccharides probably containing hexosamines and thus resembling glycosaminoglycans. This implies that the isolates can both degrade and produce sulfated polysaccharides. Both strains encoded an unprecedently high number of glycoside hydrolase genes (422 and 388, respectively), including prevalent alpha-L-fucosidase genes, which may be necessary for degrading complex sulfated polysaccharides such as fucoidan. Strain F21T encoded three putative glycosaminoglycan sulfotransferases and a putative sulfate glycosaminoglycan biosynthesis gene cluster. Based on phylogenetic and chemotaxonomic analyses, we propose the taxa Pontiella desulfatans F1T gen. nov., sp. nov. and Pontiella sulfatireligans F21T sp. nov. as representatives of the Pontiellaceae fam. nov. within the class Kiritimatiellae.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands;
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Landsdiep 4, 1797 SZ ’t Horntje (Texel), The Netherlands; (N.J.B.); (M.K.); (L.V.)
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (D.M.v.V.); (A.J.M.S.)
- Correspondence: ; Tel.: +31-317-483486
| |
Collapse
|
25
|
Guo J, Cheng J, Wang J, Zhang Z, Xie X, Chu P. Effects of temporary external voltage on the performance and community of microbial fuel cells. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1972-1982. [PMID: 32666950 DOI: 10.2166/wst.2020.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study evaluated the effects of temporary external voltage on the performance of two-chambered microbial fuel cells (MFC) that use nitrate wastewater as a substrate. Results indicate that the external voltage affected the performance of the MFC during their operation, and this effect remained even after the voltage was removed. The degradation efficiency of the chemical oxygen demand increased in the MFC under external voltages of 0.5, 0.8, and 1.1 V, and the optimal applied voltage was 1.1 V. Compared with the control group without external voltages, the MFC under a voltage of 1.1 V achieved higher current densities and efficiency of nitrate removal during their operation. The MFC with an applied voltage of 1.1 V also achieved the highest maximum power density of 2,035.08 mW/m3. The applied voltages of 0.5 and 0.8 V exerted a positive effect on the performance of the MFC. High-throughput sequencing was used to explore the anode and cathode biofilms. Results showed that the influence was highly associated with microbial community in bio-anode. The predominant functional family changed from Methanotrichaceae during start-up to Flavobacteriaceae in a steady phase.
Collapse
Affiliation(s)
- Jing Guo
- School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China E-mail:
| | - Jianping Cheng
- School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China E-mail:
| | - Jiaquan Wang
- School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China E-mail: ; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zerui Zhang
- School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China E-mail:
| | - Xiaoyun Xie
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Pengpeng Chu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| |
Collapse
|
26
|
Pradel N, Fardeau ML, Tindall BJ, Spring S. Anaerohalosphaera lusitana gen. nov., sp. nov., and Limihaloglobus sulfuriphilus gen. nov., sp. nov., isolated from solar saltern sediments, and proposal of Anaerohalosphaeraceae fam. nov. within the order Sedimentisphaerales. Int J Syst Evol Microbiol 2020; 70:1321-1330. [DOI: 10.1099/ijsem.0.003919] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nathalie Pradel
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Marie-Laure Fardeau
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Brian J. Tindall
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
27
|
Song W, Lee LY, You H, Shi X, Ng HY. Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater. BIORESOURCE TECHNOLOGY 2020; 295:122284. [PMID: 31669869 DOI: 10.1016/j.biortech.2019.122284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The application of MBR in high saline wastewater treatment is mainly constrained by poor nitrogen removal and severe membrane fouling caused by high salinity stress. A novel carriers-enhanced MBR system was successfully developed for treating saline mariculture wastewater, which showed efficient TN removal (93.2%) and fouling control. High-throughput sequencing revealed the enhancement mechanism of bio-carriers under high saline condition. Bio-carriers substantially improved the community structure, representatively, nitrifiers abundance (Nitrosomonas, Nitrospira) increased from 2.18% to 9.57%, abundance of denitrifiers (Sulfurimonas, Thermogutta, etc.) also rose from 3.81% to 14.82%. Thereby, the nitrogen removal process was enhanced. Noteworthy, ammonia oxidizer (Nitrosomonas, 8.26%) was the absolute dominant nitrifiers compared with nitrite oxidizer (Nitrospira, 1.13%). This supported the finding of shortcut nitrification-denitrification process in hybrid system. Moreover, a series of biomacromolecule degraders (Lutibacterium, Cycloclasticus, etc.) were detected in bio-carriers, which could account for the mitigation of membrane fouling as result of EPS and SMP degradation.
Collapse
Affiliation(s)
- Weilong Song
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqing Shi
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
28
|
Panter F, Garcia R, Thewes A, Zaburannyi N, Bunk B, Overmann J, Gutierrez MV, Krug D, Müller R. Production of a Dibrominated Aromatic Secondary Metabolite by a Planctomycete Implies Complex Interaction with a Macroalgal Host. ACS Chem Biol 2019; 14:2713-2719. [PMID: 31644258 DOI: 10.1021/acschembio.9b00641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The roles of the majority of bacterial secondary metabolites, especially those from uncommon sources, are still elusive even though many of these compounds show striking biological activities. To further investigate the secondary metabolite repertoire of underexploited bacterial families, we chose to analyze a novel representative of the yet untapped bacterial phylum Planctomycetes for the production of secondary metabolites under laboratory culture conditions. Development of a planctomycetal high density cultivation technique in combination with high resolution mass spectrometric analysis revealed Planctomycetales strain 10988 to produce the plant toxin 3,5-dibromo-p-anisic acid. This molecule represents the first secondary metabolite reported from any planctomycete. Genome mining revealed the biosynthetic origin of this doubly brominated secondary metabolite, and a biosynthesis model for the compound was devised. Comparison of the biosynthetic route to biosynthetic gene clusters responsible for formation of polybrominated small aromatic compounds reveals evidence of an evolutionary link, while the compound's herbicidal activity points toward a complex interaction of planctomycetes with their macroalgal host.
Collapse
Affiliation(s)
- Fabian Panter
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF),
Partner Site Hannover−Braunschweig, Braunschweig, Germany
| | - Ronald Garcia
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF),
Partner Site Hannover−Braunschweig, Braunschweig, Germany
| | - Angela Thewes
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF),
Partner Site Hannover−Braunschweig, Braunschweig, Germany
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF),
Partner Site Hannover−Braunschweig, Braunschweig, Germany
| | - Boyke Bunk
- German Centre for Infection Research (DZIF),
Partner Site Hannover−Braunschweig, Braunschweig, Germany
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Jörg Overmann
- German Centre for Infection Research (DZIF),
Partner Site Hannover−Braunschweig, Braunschweig, Germany
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Mary V. Gutierrez
- Biology Department, Far Eastern University, Nicanor Reyes Street, Sampaloc, Manila, 1008 Metro Manila, Philippines
| | - Daniel Krug
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF),
Partner Site Hannover−Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF),
Partner Site Hannover−Braunschweig, Braunschweig, Germany
| |
Collapse
|
29
|
Dedysh SN, Kulichevskaya IS, Beletsky AV, Ivanova AA, Rijpstra WIC, Damsté JSS, Mardanov AV, Ravin NV. Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov. Syst Appl Microbiol 2019; 43:126050. [PMID: 31882205 PMCID: PMC6995999 DOI: 10.1016/j.syapm.2019.126050] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/07/2022]
Abstract
Pirellula-like planctomycetes are ubiquitous aquatic bacteria, which are often detected in anoxic or micro-oxic habitats. By contrast, the taxonomically described representatives of these bacteria, with very few exceptions, are strict aerobes. Here, we report the isolation and characterization of the facultatively anaerobic planctomycete, strain PX69T, which was isolated from a boreal lake. Its 16S rRNA gene sequence is affiliated with the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a variety of low-oxygen habitats. Strain PX69T was represented by ellipsoidal cells that multiplied by budding and grew on sugars, some polysaccharides and glycerol. Anaerobic growth occurred by means of fermentation. Strain PX69T grew at pH 5.5–7.5 and at temperatures between 10 and 30 °C. The major fatty acids were C18:1ω9c, C16:0 and C16:1ω7c; the major intact polar lipid was dimethylphosphatidylethanolamine. The complete genome of strain PX69T was 6.92 Mb in size; DNA G + C content was 61.7 mol%. Among characterized planctomycetes, the highest 16S rRNA gene similarity (90.4%) was observed with ‘Bythopirellula goksoyri’ Pr1d, a planctomycete from deep-sea sediments. We propose to classify PX69T as a novel genus and species, Lacipirellula parvula gen. nov., sp. nov.; the type strain is strain PX69T (=KCTC 72398T = CECT 9826T = VKM B-3335T). This genus is placed in a novel family, Lacipirellulaceae fam. nov., which belongs to the order Pirellulales ord. nov. Based on the results of comparative genome analysis, we also suggest establishment of the orders Gemmatales ord. nov. and Isosphaerales ord. nov. as well as an emendation of the order Planctomycetales.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Irina S Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anastasia A Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - W Irene C Rijpstra
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Geochemistry, Utrecht, The Netherlands
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
30
|
Zhang L, Long B, Wu J, Cheng Y, Zhang B, Zeng Y, Huang S, Zeng M. Evolution of microbial community during dry storage and recovery of aerobic granular sludge. Heliyon 2019; 5:e03023. [PMID: 31890963 PMCID: PMC6926229 DOI: 10.1016/j.heliyon.2019.e03023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/18/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Aerobic granular sludge (AGS) was imbedded in agar and stored at 4 °C for 30 days, and then the stored granules were recovered in a sequencing batch reactor fed real wastewater within 11 days. Variations in microbial community compositions were investigated during dry storage and recovery of AGS, aiming to elucidate the mechanism of granular stability loss and recovery. The storage and recovery of AGS involved microbial community evolution. The dominant bacterial genera of the mature AGS were Zoogloea (relative abundance of 22.39%), Thauera (16.03%) and Clostridium_sensu_stricto (11.17%), and those of the stored granules were Acidovorax (26.79%), Macellibacteroides (12.83%) and Pseudoxanthomonas (5.69%), respectively. However, the dominant genera were Streptococcus (43.64%), Clostridium_sensu_stricto (12.3.6%) and Lactococcus (11.47%) in the recovered AGS. Methanogens were always the dominant archaeal species in mature AGS (93.01%), stored granules (99.99%) and the recovered AGS (94.84%). Facultative anaerobes and anaerobes proliferated and dominated in the stored granules, and their metabolic activities gradually led to granular structure destruction and property deterioration. However, the stored granules served as carriers for the microbes originated from the real septic tank wastewater during recovery. They proliferated rapidly and secreted a large number of extracellular polymeric substances which helped to recover the granular structure in 11 days.
Collapse
Affiliation(s)
- Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Bei Long
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Junfeng Wu
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Mingyue Road, Pingdingshan, 467036, Henan, China
| | - Yuanyuan Cheng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Binchao Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Yu Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Sinong Huang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Mingjing Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
31
|
Kovaleva OL, Elcheninov AG, Toshchakov SV, Novikov AA, Bonch-Osmolovskaya EA, Kublanov IV. Tautonia sociabilis gen. nov., sp. nov., a novel thermotolerant planctomycete, isolated from a 4000 m deep subterranean habitat. Int J Syst Evol Microbiol 2019; 69:2299-2304. [DOI: 10.1099/ijsem.0.003467] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Olga L. Kovaleva
- 1Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia
| | - Alexander G. Elcheninov
- 1Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia
| | - Stepan V. Toshchakov
- 1Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia
| | - Andrei A. Novikov
- 2Department of Physical Chemistry, Gubkin University, Moscow, Russia
| | | | - Ilya V. Kublanov
- 1Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
32
|
Gao Y, Wang G, Zhou A, Yue X, Duan Y, Kong X, Zhang X. Effect of nitrate on indole degradation characteristics and methanogenesis under mixed denitrification and methanogenesis culture. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|
34
|
Discovering novel hydrolases from hot environments. Biotechnol Adv 2018; 36:2077-2100. [PMID: 30266344 DOI: 10.1016/j.biotechadv.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Novel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.
Collapse
|
35
|
Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 2018; 42:739-760. [DOI: 10.1093/femsre/fuy029] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Treu L, Campanaro S, Kougias PG, Sartori C, Bassani I, Angelidaki I. Hydrogen-Fueled Microbial Pathways in Biogas Upgrading Systems Revealed by Genome-Centric Metagenomics. Front Microbiol 2018; 9:1079. [PMID: 29892275 PMCID: PMC5985405 DOI: 10.3389/fmicb.2018.01079] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 01/16/2023] Open
Abstract
Biogas upgrading via carbon dioxide hydrogenation is an emerging technology for electrofuel production. The biomethanation efficiency is strongly dependent on a balanced microbial consortium, whose high- resolution characterization along with their functional potential and interactions are pivotal for process optimization. The present work is the first genome-centric metagenomic study on mesophilic and thermophilic biogas upgrading reactors aiming to define the metabolic profile of more than 200 uncultivated microbes involved in hydrogen assisted methanogenesis. The outcomes from predictive functional analyses were correlated with microbial abundance variations to clarify the effect of process parameters on the community. The operational temperature significantly influenced the microbial richness of the reactors, while the H2 addition distinctively alternated the abundance of the taxa. Two different Methanoculleus species (one mesophilic and one thermophilic) were identified as the main responsible ones for methane metabolism. Finally, it was demonstrated that the addition of H2 exerted a selective pressure on the concerted or syntrophic interactions of specific microbes functionally related to carbon fixation, propionate and butanoate metabolisms. Novel bacteria were identified as candidate syntrophic acetate oxidizers (e.g., Tepidanaerobacter sp. DTU063), while the addition of H2 favored the proliferation of potential homoacetogens (e.g., Clostridia sp. DTU183). Population genomes encoding genes of Wood-Ljungdahl pathway were mainly thermophilic, while propionate degraders were mostly identified at mesophilic conditions. Finally, putative syntrophic interactions were identified between microbes that have either versatile metabolic abilities or are obligate/facultative syntrophs.
Collapse
Affiliation(s)
- Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Panagiotis G. Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cristina Sartori
- Department of Agronomy, Food Natural Resources Animals and Environment, University of Padova, Padova, Italy
| | - Ilaria Bassani
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
37
|
Stewart LC, Stucker VK, Stott MB, de Ronde CEJ. Marine-influenced microbial communities inhabit terrestrial hot springs on a remote island volcano. Extremophiles 2018; 22:687-698. [PMID: 29713821 DOI: 10.1007/s00792-018-1029-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/19/2018] [Indexed: 11/25/2022]
Abstract
Raoul Island is a subaerial island volcano approximately 1000 km northeast of New Zealand. Its caldera contains a circumneutral closed-basin volcanic lake and several associated pools, as well as intertidal coastal hot springs, all fed by a hydrothermal system sourced from both meteoric water and seawater. Here, we report on the geochemistry, prokaryotic community diversity, and cultivatable abundance of thermophilic microorganisms of four terrestrial features and one coastal feature on Raoul. Hydrothermal fluid contributions to the volcanic lake and pools make them brackish, and consequently support unusual microbial communities dominated by Planctomycetes, Chloroflexi, Alphaproteobacteria, and Thaumarchaeota, as well as up to 3% of the rare sister phylum to Cyanobacteria, Candidatus Melainabacteria. The dominant taxa are mesophilic to moderately thermophilic, phototrophic, and heterotrophic marine groups related to marine Planctomycetaceae. The coastal hot spring/shallow hydrothermal vent community is similar to other shallow systems in the Western Pacific Ocean, potentially due to proximity and similarities of geochemistry. Although rare in community sequence data, thermophilic methanogens, sulfur-reducers, and iron-reducers are present in culture-based assays.
Collapse
Affiliation(s)
- Lucy C Stewart
- Marine Geosciences, GNS Science, PO Box 30368, Lower Hutt, 5040, New Zealand.
| | - Valerie K Stucker
- Marine Geosciences, GNS Science, PO Box 30368, Lower Hutt, 5040, New Zealand
| | - Matthew B Stott
- Marine Geosciences, GNS Science, PO Box 30368, Lower Hutt, 5040, New Zealand
- University of Canterbury, Christchurch, 8140, New Zealand
| | - Cornel E J de Ronde
- Marine Geosciences, GNS Science, PO Box 30368, Lower Hutt, 5040, New Zealand
| |
Collapse
|
38
|
Bonch-Osmolovskaya E, Elcheninov A, Zayulina K, Kublanov I. New thermophilic prokaryotes with hydrolytic activities. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Thermophilic microorganisms are capable of growing on polymeric substrates and have been intensively studied for their enzymes, thermostable hydrolases (glycosidases, proteinases, lipases), which have important applications in many fields of bioindustry: production of detergents, food processing, paper and textile industry, biofuel formation from organic wastes, etc.1. The advantages of thermostable enzymes application are in their higher stability not only against temperature, but also against high or low pH, presence of detergents, etc. High temperature increases solubility of substrates2, thus making them more available, and significantly decreases the contamination risks. Many highly stable hydrolases, produced by thermophilic bacteria and archaea have been discovered3–6; however, due to continuous industrial demand and our knowledge that natural environments are a significant reservoir of genetic and hence functional diversity7, new thermophilic organisms producing hydrolytic enzymes are still of high interest. Here we present our achievements in isolation of novel thermophilic bacteria and archaea with various hydrolytic activities.
Collapse
|
39
|
Zhou J, Li H, Chen X, Wan D, Mai W, Sun C. Cometabolic degradation of low-strength coking wastewater and the bacterial community revealed by high-throughput sequencing. BIORESOURCE TECHNOLOGY 2017; 245:379-385. [PMID: 28898834 DOI: 10.1016/j.biortech.2017.08.119] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Cometabolism technology was employed to degrade low-strength coking wastewater (CWW) in Sequencing Batch Reactor (SBR). The bacterial community compositions were monitored by high-throughput sequencing. Cometabolic substrate effectively improved the chemical oxygen demand (COD) removal efficiency in glucose-added system (A1) compared to glucose-free system (A0). Meanwhile, A1 exhibited larger biomass, better settlement performance, and higher dehydrogenase activity (DHA). More importantly, high-throughput sequencing revealed that dominant populations in A1 were quite different with A0. Thauera (9.27%), Thermogutta (7.58%), and Defluviimonas (4.6%) began to enrich in A1 after cometabolic substrate supplement. Especially, Thauera, as the most dominant populations in Al, could degrade a wide spectrum of aromatic compounds, which may contribute to the better system performance. This work would provide a novel option to treat low-strength CWW, discern the relationship between bacterial community and CWW quality, and further explore the cometabolic degradation through bacterial community structures.
Collapse
Affiliation(s)
- Jia Zhou
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haisong Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Dongjin Wan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenning Mai
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Changqing Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
40
|
Elcheninov AG, Menzel P, Gudbergsdottir SR, Slesarev AI, Kadnikov VV, Krogh A, Bonch-Osmolovskaya EA, Peng X, Kublanov IV. Sugar Metabolism of the First Thermophilic Planctomycete Thermogutta terrifontis: Comparative Genomic and Transcriptomic Approaches. Front Microbiol 2017; 8:2140. [PMID: 29163426 PMCID: PMC5673643 DOI: 10.3389/fmicb.2017.02140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/19/2017] [Indexed: 02/01/2023] Open
Abstract
Xanthan gum, a complex polysaccharide comprising glucose, mannose and glucuronic acid residues, is involved in numerous biotechnological applications in cosmetics, agriculture, pharmaceuticals, food and petroleum industries. Additionally, its oligosaccharides were shown to possess antimicrobial, antioxidant, and few other properties. Yet, despite its extensive usage, little is known about xanthan gum degradation pathways and mechanisms. Thermogutta terrifontis, isolated from a sample of microbial mat developed in a terrestrial hot spring of Kunashir island (Far-East of Russia), was described as the first thermophilic representative of the Planctomycetes phylum. It grows well on xanthan gum either at aerobic or anaerobic conditions. Genomic analysis unraveled the pathways of oligo- and polysaccharides utilization, as well as the mechanisms of aerobic and anaerobic respiration. The combination of genomic and transcriptomic approaches suggested a novel xanthan gum degradation pathway which involves novel glycosidase(s) of DUF1080 family, hydrolyzing xanthan gum backbone beta-glucosidic linkages and beta-mannosidases instead of xanthan lyases, catalyzing cleavage of terminal beta-mannosidic linkages. Surprisingly, the genes coding DUF1080 proteins were abundant in T. terrifontis and in many other Planctomycetes genomes, which, together with our observation that xanthan gum being a selective substrate for many planctomycetes, suggest crucial role of DUF1080 in xanthan gum degradation. Our findings shed light on the metabolism of the first thermophilic planctomycete, capable to degrade a number of polysaccharides, either aerobically or anaerobically, including the biotechnologically important bacterial polysaccharide xanthan gum.
Collapse
Affiliation(s)
- Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Peter Menzel
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anders Krogh
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
41
|
Seeger C, Butler MK, Yee B, Mahajan M, Fuerst JA, Andersson SGE. Tuwongella immobilis gen. nov., sp. nov., a novel non-motile bacterium within the phylum Planctomycetes. Int J Syst Evol Microbiol 2017; 67:4923-4929. [PMID: 29087267 PMCID: PMC5845749 DOI: 10.1099/ijsem.0.002271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A gram-negative, budding, catalase negative, oxidase positive and non-motile bacterium (MBLW1T) with a complex endomembrane system has been isolated from a freshwater lake in southeast Queensland, Australia. Phylogeny based on 16S rRNA gene sequence analysis places the strain within the family Planctomycetaceae, related to Zavarzinella formosa (93.3 %), Telmatocola sphagniphila (93.3 %) and Gemmata obscuriglobus (91.9 %). Phenotypic and chemotaxonomic analysis demonstrates considerable differences to the type strains of the related genera. MBLW1T displays modest salt tolerance and grows optimally at pH values of 7.5–8.0 and at temperatures of 32–36 °C. Transmission electron microscopy analysis demonstrates the presence of a complex endomembrane system, however, without the typically condensed nucleoid structure found in related genera. The major fatty acids are 16 : 1 ω5c, 16 : 0 and 18 : 0. Based on discriminatory results from 16S rRNA gene sequence analysis, phenotypic, biochemical and chemotaxonomic analysis, MBLW1T should be considered as a new genus and species, for which the name Tuwongella immobilis gen. nov., sp. nov. is proposed. The type strain is MBLW1T (=CCUG 69661T=DSM 105045T).
Collapse
Affiliation(s)
- Christian Seeger
- Department of Cell and Molecular Biology, Molecular Evolution, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - Margaret K Butler
- Australian Center for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Yee
- Department of Cell and Molecular Biology, Molecular Evolution, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - Mayank Mahajan
- Department of Cell and Molecular Biology, Molecular Evolution, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siv G E Andersson
- Department of Cell and Molecular Biology, Molecular Evolution, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| |
Collapse
|
42
|
Littlechild JA. Improving the 'tool box' for robust industrial enzymes. J Ind Microbiol Biotechnol 2017; 44:711-720. [PMID: 28401315 PMCID: PMC5408032 DOI: 10.1007/s10295-017-1920-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/05/2017] [Indexed: 01/31/2023]
Abstract
The speed of sequencing of microbial genomes and metagenomes is providing an ever increasing resource for the identification of new robust biocatalysts with industrial applications for many different aspects of industrial biotechnology. Using 'natures catalysts' provides a sustainable approach to chemical synthesis of fine chemicals, general chemicals such as surfactants and new consumer-based materials such as biodegradable plastics. This provides a sustainable and 'green chemistry' route to chemical synthesis which generates no toxic waste and is environmentally friendly. In addition, enzymes can play important roles in other applications such as carbon dioxide capture, breakdown of food and other waste streams to provide a route to the concept of a 'circular economy' where nothing is wasted. The use of improved bioinformatic approaches and the development of new rapid enzyme activity screening methodology can provide an endless resource for new robust industrial biocatalysts.This mini-review will discuss several recent case studies where industrial enzymes of 'high priority' have been identified and characterised. It will highlight specific hydrolase enzymes and recent case studies which have been carried out within our group in Exeter.
Collapse
Affiliation(s)
- J A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
43
|
Ivanova AA, Kulichevskaya IS, Merkel AY, Toshchakov SV, Dedysh SN. High Diversity of Planctomycetes in Soils of Two Lichen-Dominated Sub-Arctic Ecosystems of Northwestern Siberia. Front Microbiol 2016; 7:2065. [PMID: 28066382 PMCID: PMC5177623 DOI: 10.3389/fmicb.2016.02065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/07/2016] [Indexed: 11/13/2022] Open
Abstract
A wide variety of terrestrial ecosystems in tundra have a ground vegetation cover composed of reindeer lichens (genera Cladonia and Cetraria). The microbial communities of two lichen-dominated ecosystems typical of the sub-arctic zone of northwestern Siberia, that is a forested tundra soil and a shallow acidic peatland, were examined in our study. As revealed by molecular analyses, soil and peat layers just beneath the lichen cover were abundantly colonized by bacteria from the phylum Planctomycetes. Highest abundance of planctomycetes detected by fluorescence in situ hybridization was in the range 2.2-2.7 × 107 cells per gram of wet weight. 16S rRNA gene fragments from the Planctomycetes comprised 8-13% of total 16S rRNA gene reads retrieved using Illumina pair-end sequencing from the soil and peat samples. Lichen-associated assemblages of planctomycetes displayed unexpectedly high diversity, with a total of 89,662 reads representing 1723 operational taxonomic units determined at 97% sequence identity. The soil of forested tundra was dominated by uncultivated members of the family Planctomycetaceae (53-71% of total Planctomycetes-like reads), while sequences affiliated with the Phycisphaera-related group WD2101 (recently assigned to the order Tepidisphaerales) were most abundant in peat (28-51% of total reads). Representatives of the Isosphaera-Singulisphaera group (14-28% of total reads) and the lineages defined by the genera Gemmata (1-4%) and Planctopirus-Rubinisphaera (1-3%) were present in both habitats. Two strains of Singulisphaera-like bacteria were isolated from studied soil and peat samples. These planctomycetes displayed good tolerance of low temperatures (4-15°C) and were capable of growth on a number of polysaccharides, including lichenan, a characteristic component of lichen-derived phytomass.
Collapse
Affiliation(s)
- Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
| | - Irina S. Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
| | | | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
44
|
Thiel V, Wood JM, Olsen MT, Tank M, Klatt CG, Ward DM, Bryant DA. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing. Front Microbiol 2016; 7:919. [PMID: 27379049 PMCID: PMC4911352 DOI: 10.3389/fmicb.2016.00919] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Thermodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arminicenantes (OP8) represented ≥1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. This study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus spp.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
| | - Jason M Wood
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Millie T Olsen
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
| | - Christian G Klatt
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Agricultural Research Service, United States Department of Agriculture, University of MinnesotaSaint Paul, MN, USA
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA; Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, USA
| |
Collapse
|
45
|
Thermostilla marina gen. nov., sp. nov., a thermophilic, facultatively anaerobic planctomycete isolated from a shallow submarine hydrothermal vent. Int J Syst Evol Microbiol 2016; 66:633-638. [DOI: 10.1099/ijsem.0.000767] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Sayer C, Szabo Z, Isupov MN, Ingham C, Littlechild JA. The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal 'Cap' Domain. Front Microbiol 2015; 6:1294. [PMID: 26635762 PMCID: PMC4655241 DOI: 10.3389/fmicb.2015.01294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/06/2015] [Indexed: 11/29/2022] Open
Abstract
A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/β-hydrolase family 3 as it lacks the majority of the ‘cap’ domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets.
Collapse
Affiliation(s)
- Christopher Sayer
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | | | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | | | - Jennifer A Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
47
|
Sayer C, Isupov MN, Bonch-Osmolovskaya E, Littlechild JA. Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis. FEBS J 2015; 282:2846-57. [PMID: 26011036 DOI: 10.1111/febs.13326] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 11/28/2022]
Abstract
Thermogutta terrifontis esterase (TtEst), a carboxyl esterase identified in the novel thermophilic bacterium T. terrifontis from the phylum Planctomycetes, has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity towards small p-nitrophenyl (pNP) carboxylic esters, with optimal activity for pNP-propionate. The enzyme retained 95% activity after incubation for 1 h at 80 °C. The crystal structures of the native TtEst and its complexes with the substrate analogue D-malate and the product acetate have been determined to high resolution. The bound ligands have allowed the identification of the carboxyl and alcohol binding pockets in the enzyme active site. Comparison of TtEst with structurally related enzymes provides insight into how differences in their catalytic activity can be rationalized based upon the properties of the amino acid residues in their active site pockets. The mutant enzymes L37A and L251A have been constructed to extend the substrate range of TtEst towards the larger butyrate and valerate pNP-esters. These mutant enzymes have also shown a significant increase in activity towards acetate and propionate pNP esters. A crystal structure of the L37A mutant was determined with the butyrate product bound in the carboxyl pocket of the active site. The mutant structure shows an expansion of the pocket that binds the substrate carboxyl group, which is consistent with the observed increase in activity towards pNP-butyrate.
Collapse
Affiliation(s)
- Christopher Sayer
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | - Jennifer A Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|