1
|
Awala SI, Gwak JH, Kim Y, Seo C, Strazzulli A, Kim SG, Rhee SK. Methylacidiphilum caldifontis gen. nov., sp. nov., a thermoacidophilic methane-oxidizing bacterium from an acidic geothermal environment, and descriptions of the family Methylacidiphilaceae fam. nov. and order Methylacidiphilales ord. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37791995 DOI: 10.1099/ijsem.0.006085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Strain IT6T, a thermoacidophilic and facultative methane-oxidizing bacterium, was isolated from a mud-water mixture collected from Pisciarelli hot spring in Pozzuoli, Italy. The novel strain is white when grown in liquid or solid media and forms Gram-negative rod-shaped, non-flagellated, non-motile cells. It conserves energy by aerobically oxidizing methane and hydrogen while deriving carbon from carbon dioxide fixation. Strain IT6T had three complete pmoCAB operons encoding particulate methane monooxygenase and genes encoding group 1d and 3b [NiFe] hydrogenases. Simple carbon-carbon substrates such as ethanol, 2-propanol, acetone, acetol and propane-1,2-diol were used as alternative electron donors and carbon sources. Optimal growth occurred at 50-55°C and between pH 2.0-3.0. The major fatty acids were C18 : 0, C15 : 0 anteiso, C14 : 0 iso, C16 : 0 and C14 : 0, and the main polar lipids were phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol, diphosphatidylglycerol, some unidentified phospholipids and glycolipids, and other unknown polar lipids. Strain IT6T has a genome size of 2.19 Mbp and a G+C content of 40.70 mol%. Relative evolutionary divergence using 120 conserved single-copy marker genes (bac120) and phylogenetic analyses based on bac120 and 16S rRNA gene sequences showed that strain IT6T is affiliated with members of the proposed order 'Methylacidiphilales' of the class Verrucomicrobiia in the phylum Verrucomicrobiota. It shared a 16S rRNA gene sequence identity of >96 % with cultivated isolates in the genus 'Methylacidiphilum' of the family 'Methylacidiphilaceae', which are thermoacidophilic methane-oxidizing bacteria. 'Methylacidiphilum sp.' Phi (100 %), 'Methylacidiphilum infernorum' V4 (99.02 %) and 'Methylacidiphilum sp.' RTK17.1 (99.02 %) were its closest relatives. Its physiological and genomic properties were consistent with those of other isolated 'Methylacidiphilum' species. Based on these results, we propose the name Methylacidiphilum caldifontis gen. nov., sp. nov. to accommodate strain IT6T (=KCTC 92103T=JCM 39288T). We also formally propose that the names Methylacidiphilaceae fam. nov. and Methylacidiphilales ord. nov. to accommodate the genus Methylacidiphilum gen. nov.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Yongman Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Chanmee Seo
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Song-Gun Kim
- University of Science and Technology, Yuseong-gu, Daejeon 305-850, Republic of Korea
- Biological Resource Center/ Korean Collection for Type Culture (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
2
|
Podosokorskaya OA, Elcheninov AG, Novikov AA, Merkel AY, Kublanov IV. Fontisphaera persica gen. nov., sp. nov., a thermophilic hydrolytic bacterium from a hot spring of Baikal lake region, and proposal of Fontisphaeraceae fam. nov., and Limisphaeraceae fam. nov. within the Limisphaerales ord. nov. (Verrucomicrobiota). Syst Appl Microbiol 2023; 46:126438. [PMID: 37263084 DOI: 10.1016/j.syapm.2023.126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
A novel facultatively anaerobic moderately thermophilic bacterium, strain B-154 T, was isolated from a terrestrial hot spring in the Baikal lake region (Russian Federation). Gram-negative, motile, spherical cells were present singly, in pairs, or aggregates, and reproduced by binary fission. The strain grew at 30-57 °C and within a pH range of 5.1-8.4 with the optimum at 50 °C and pH 6.8-7.1. Strain B-154 T was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (xylan, starch, galactan, galactomannan, glucomannan, xyloglucan, pullulan, arabinan, lichenan, beta-glucan, pachyman, locust bean gum, xanthan gum). It did not require sodium chloride or yeast extract for growth. Major cellular fatty acids were anteiso-C15:0, iso-C16:0 and iso-C14:0. The respiratory quinone was MK-7. The complete genome of strain B-154 T was 4.73 Mbp in size; its G + C content was 61%. According to the phylogenomic analysis strain B-154 T forms a separate family-level phylogenetic lineage. Moreover, together with Limisphaera ngatamarikiensis and "Pedosphaera parvula" this strain forms a separate order-level phylogenetic lineage within Verrucomicrobiae class. Hence, we propose a novel order, Limisphaerales ord. nov., with two families Limisphaeraceae fam. nov. and Fontisphaeraceae fam. nov., and a novel genus and species Fontisphaera persica gen. nov., sp. nov. with type strain B-154 T. Ecogenomic analysis showed that representatives of the Limisphaerales are widespread in various environments. Although some of them were detected in hot springs the majority of Limisphaerales (54% of the studied metagenome-assembled genomes) were found in marine habitats. This study allowed a better understanding of physiology and ecology of Verrucomicrobiota - a rather understudied bacterial phylum.
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Andrei A Novikov
- Gubkin University, 65/1 Leninsky Prospect, 119991 Moscow, Russia
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
3
|
Clerissi C, Chaïb S, Raviglione D, Espiau B, Bertrand C, Meyer JY. Metabarcoding and Metabolomics Reveal the Effect of the Invasive Alien Tree Miconia calvescens DC. on Soil Diversity on the Tropical Island of Mo'orea (French Polynesia). Microorganisms 2023; 11:microorganisms11040832. [PMID: 37110253 PMCID: PMC10144827 DOI: 10.3390/microorganisms11040832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Miconia calvescens is a dominant invasive alien tree species that threatens several endemic plants in French Polynesia (South Pacific). While most analyses have been performed at the scale of plant communities, the effects on the rhizosphere have not been described so far. However, this compartment can be involved in plant fitness through inhibitory activities, nutritive exchanges, and communication with other organisms. In particular, it was not known whether M. calvescens forms specific associations with soil organisms or has a specific chemical composition of secondary metabolites. To tackle these issues, the rhizosphere of six plant species was sampled on the tropical island of Mo'orea in French Polynesia at both the seedling and tree stages. The diversity of soil organisms (bacteria, microeukaryotes, and metazoa) and of secondary metabolites was studied using high-throughput technologies (metabarcoding and metabolomics, respectively). We found that trees had higher effects on soil diversity than seedlings. Moreover, M. calvescens showed a specific association with microeukaryotes of the Cryptomycota family at the tree stage. This family was positively correlated with the terpenoids found in the soil. Many terpenoids were also found within the roots of M. calvescens, suggesting that these molecules were probably produced by the plant and favored the presence of Cryptomycota. Both terpenoids and Cryptomycota were thus specific chemicals and biomarkers of M. calvescens. Additional studies must be performed in the future to better understand if they contribute to the success of this invasive tree.
Collapse
Affiliation(s)
- Camille Clerissi
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, Cedex, 66860 Perpignan, France
| | - Slimane Chaïb
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, Cedex, 66860 Perpignan, France
| | - Delphine Raviglione
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, Cedex, 66860 Perpignan, France
| | - Benoit Espiau
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, B.P. 1013, 98729 Papetoai, Mo'orea, France
| | - Cédric Bertrand
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, Cedex, 66860 Perpignan, France
| | - Jean-Yves Meyer
- Délégation à la Recherche, B.P. 20981, 98713 Papeete, Tahiti, France
| |
Collapse
|
4
|
Zhao Z, Xia L, Qin Z, Cao J, Omer Mohammed AA, Toland H. The environmental fate of phenanthrene in paddy field system and microbial responses in rhizosphere interface: Effect of water-saving patterns. CHEMOSPHERE 2021; 269:128774. [PMID: 33143890 DOI: 10.1016/j.chemosphere.2020.128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The effects of water-saving patterns (Semi-dry water-saving, B; Shallow-wet control irrigation, Q; Traditional flooding irrigation, C; and Moistening irrigation, S) on the environmental fate of phenanthrene (Phe) and microbial responses in rhizosphere were investigated in paddy field system. Results showed the rice grain in Q treatment was more high production and safety with less Phe residue (up to 18%-49%) than other treatments, and the residual Phe in soil declined in the order: C (14.17%) > S (13.36%) > B (5.86%)>Q (2.70%), which proves the existence of optimal water conditions for PAHs degradation and rhizosphere effect during rice cultivation. Laccase (LAC) and dioxygenase (C23O) played important roles in Phe degradation, which were significantly positively correlated with Phe dissipation rate in soil (p < 0.01). Moreover, their activities in Q treatment, rhizosphere and subsoil were higher than those in C treatment, non-rhizoshere and upper layer soil. The introduction of Phe and rice into paddy field system decreased the microorganism diversity, and promoted the activities of enzymes and some PAHs degrading bacteria, such as Delftia, Serratia, Enterobacter, Pseudomonas, norank_f_Rhodospirillaceae, norank_f_Nitrosomonadaceae and so on. According to the cluster analysis, redundancy analysis and correlation analysis between bacterial community composition and environmental factors, water-saving patterns markedly impacted the relative abundance and bacterial community structure by the regulating and controlling on environmental conditions of paddy field. The dioxygenase activity, laccase activity, oxidation-reduction potential and conductivity were the main affecting factors on Phe dissipation during growth stage of rice.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- School of Computer & Software, Nanjing Institute of Industry Technology, Nanjing, 210016, PR China.
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jingjing Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Abduelrahman Adam Omer Mohammed
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Water Harvesting Center, Nyala University, Nyala, Sudan
| | - Harry Toland
- Department of Geography and Earth Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DB, UK
| |
Collapse
|
5
|
Draft Genome Sequence of Limisphaera ngatamarikiensis NGM72.4
T
, a Moderately Alkaliphilic Thermophile Belonging to the Class
Verrucomicrobiae. Microbiol Resour Announc 2020; 9:9/18/e00225-20. [PMID: 32354975 PMCID: PMC7193930 DOI: 10.1128/mra.00225-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Limisphaera ngatamarikiensis NGM72.4T is a thermophilic representative of the class Verrucomicrobiae. Isolated from geothermally heated subaqueous clay sediments from a Ngatamariki hotspring in Aotearoa New Zealand, the 3,908,748-bp genome was sequenced using the Illumina HiSeq 2500 platform. Annotation revealed 3,083 coding sequences, including 3,031 proteins, 3 rRNA genes, and 46 tRNA genes. Limisphaera ngatamarikiensis NGM72.4T is a thermophilic representative of the class Verrucomicrobiae. Isolated from geothermally heated subaqueous clay sediments from a Ngatamariki hotspring in Aotearoa New Zealand, the 3,908,748-bp genome was sequenced using the Illumina HiSeq 2500 platform. Annotation revealed 3,083 coding sequences, including 3,031 proteins, 3 rRNA genes, and 46 tRNA genes.
Collapse
|
6
|
Genome-Resolved Metagenomics Extends the Environmental Distribution of the Verrucomicrobia Phylum to the Deep Terrestrial Subsurface. mSphere 2019; 4:4/6/e00613-19. [PMID: 31852806 PMCID: PMC6920513 DOI: 10.1128/msphere.00613-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought. Bacteria of the phylum Verrucomicrobia are prevalent and are particularly common in soil and freshwater environments. Their cosmopolitan distribution and reported capacity for polysaccharide degradation suggests members of Verrucomicrobia are important contributors to carbon cycling across Earth’s ecosystems. Despite their prevalence, the Verrucomicrobia are underrepresented in isolate collections and genome databases; consequently, their ecophysiological roles may not be fully realized. Here, we expand genomic sampling of the Verrucomicrobia phylum by describing a novel genus, “Candidatus Marcellius,” belonging to the order Opitutales. “Ca. Marcellius” was recovered from a shale-derived produced fluid metagenome collected 313 days after hydraulic fracturing, the deepest environment from which a member of the Verrucomicrobia has been recovered to date. We uncover genomic attributes that may explain the capacity of this organism to inhabit a shale gas well, including the potential for utilization of organic polymers common in hydraulic fracturing fluids, nitrogen fixation, adaptation to high salinities, and adaptive immunity via CRISPR-Cas. To illuminate the phylogenetic and environmental distribution of these metabolic and adaptive traits across the Verrucomicrobia phylum, we performed a comparative genomic analysis of 31 publicly available, nearly complete Verrucomicrobia genomes. Our genomic findings extend the environmental distribution of the Verrucomicrobia 2.3 kilometers into the terrestrial subsurface. Moreover, we reveal traits widely encoded across members of the Verrucomicrobia, including the capacity to degrade hemicellulose and to adapt to physical and biological environmental perturbations, thereby contributing to the expansive habitat range reported for this phylum. IMPORTANCE The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought.
Collapse
|
7
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|
8
|
Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M, White D, Climo MD, Hinze AM, Morgan XC, McDonald IR, Cary SC, Stott MB. Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun 2018; 9:2876. [PMID: 30038374 PMCID: PMC6056493 DOI: 10.1038/s41467-018-05020-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/08/2018] [Indexed: 01/19/2023] Open
Abstract
Geothermal springs are model ecosystems to investigate microbial biogeography as they represent discrete, relatively homogenous habitats, are distributed across multiple geographical scales, span broad geochemical gradients, and have reduced metazoan interactions. Here, we report the largest known consolidated study of geothermal ecosystems to determine factors that influence biogeographical patterns. We measured bacterial and archaeal community composition, 46 physicochemical parameters, and metadata from 925 geothermal springs across New Zealand (13.9–100.6 °C and pH < 1–9.7). We determined that diversity is primarily influenced by pH at temperatures <70 °C; with temperature only having a significant effect for values >70 °C. Further, community dissimilarity increases with geographic distance, with niche selection driving assembly at a localised scale. Surprisingly, two genera (Venenivibrio and Acidithiobacillus) dominated in both average relative abundance (11.2% and 11.1%, respectively) and prevalence (74.2% and 62.9%, respectively). These findings provide an unprecedented insight into ecological behaviour in geothermal springs, and a foundation to improve the characterisation of microbial biogeographical processes. Power et al. catalogue the microbial biodiversity and physicochemistry of around 1000 hotsprings across New Zealand, providing insights into the ecological conditions that drive community assembly in these ecosystems.
Collapse
Affiliation(s)
- Jean F Power
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, 3384, New Zealand.,Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Carlo R Carere
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, 3384, New Zealand.,Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| | - Charles K Lee
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Georgia L J Wakerley
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - David W Evans
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, 3384, New Zealand
| | - Mathew Button
- Department of Computer Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Duncan White
- Wairakei Research Centre, GNS Science, Taupō, 3384, New Zealand
| | - Melissa D Climo
- Wairakei Research Centre, GNS Science, Taupō, 3384, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Annika M Hinze
- Department of Computer Science, University of Waikato, Hamilton, 3240, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Ian R McDonald
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand
| | - S Craig Cary
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, 3240, New Zealand.
| | - Matthew B Stott
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, 3384, New Zealand. .,School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand.
| |
Collapse
|
9
|
Xu L, Wu YH, Zhou P, Cheng H, Liu Q, Xu XW. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. BMC Genomics 2018; 19:385. [PMID: 29792177 PMCID: PMC5966882 DOI: 10.1186/s12864-018-4789-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
Background Type strains of the genus Porphyrobacter belonging to the family Erythrobacteraceae and the class Alphaproteobacteria have been isolated from various environments, such as swimming pools, lake water and hot springs. P. cryptus DSM 12079T and P. tepidarius DSM 10594T out of all Erythrobacteraceae type strains, are two type strains that have been isolated from geothermal environments. Next-generation sequencing (NGS) technology offers a convenient approach for detecting situational types based on protein sequence differences between thermophiles and mesophiles; amino acid substitutions can lead to protein structural changes, improving the thermal stabilities of proteins. Comparative genomic studies have revealed that different thermal types exist in different taxa, and few studies have been focused on the class Alphaproteobacteria, especially the family Erythrobacteraceae. In this study, eight genomes of Porphyrobacter strains were compared to elucidate how Porphyrobacter thermophiles developed mechanisms to adapt to thermal environments. Results P. cryptus DSM 12079T grew optimally at 50 °C, which was higher than the optimal growth temperature of other Porphyrobacter type strains. Phylogenomic analysis of the genus Porphyrobacter revealed that P. cryptus DSM 12079T formed a distinct and independent clade. Comparative genomic studies uncovered that 1405 single-copy genes were shared by Porphyrobacter type strains. Alignments of single-copy proteins showed that various types of amino acid substitutions existed between P. cryptus DSM 12079T and the other Porphyrobacter strains. The primary substitution types were changes from glycine/serine to alanine. Conclusions P. cryptus DSM 12079T was the sole thermophile within the genus Porphyrobacter. Phylogenomic analysis and amino acid frequencies indicated that amino acid substitutions might play an important role in the thermophily of P. cryptus DSM 12079T. Bioinformatic analysis revealed that major amino acid substitutional types, such as changes from glycine/serine to alanine, increase the frequency of α-helices in proteins, promoting protein thermostability in P. cryptus DSM 12079T. Hence, comparative genomic analysis broadens our understanding of thermophilic mechanisms in the genus Porphyrobacter and may provide a useful insight in the design of thermophilic enzymes for agricultural, industrial and medical applications. Electronic supplementary material The online version of this article (10.1186/s12864-018-4789-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, 310012, Hangzhou, People's Republic of China.,College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, People's Republic of China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, 310012, Hangzhou, People's Republic of China
| | - Peng Zhou
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, 310012, Hangzhou, People's Republic of China
| | - Hong Cheng
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, 310012, Hangzhou, People's Republic of China
| | - Qian Liu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, 310012, Hangzhou, People's Republic of China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, 310012, Hangzhou, People's Republic of China. .,Ocean College, Zhejiang University, 316021, Zhoushan, People's Republic of China.
| |
Collapse
|
10
|
Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios. Appl Environ Microbiol 2017; 83:AEM.02533-16. [PMID: 27913414 DOI: 10.1128/aem.02533-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2 The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic degradation produces the precursors of CH4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH4 production, while novel and unconventional degraders could be identified in a site where CO2 production greatly exceeds CH4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH4 production and reveal bacteria potentially producing the excess CO2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH4 emission from peatlands.
Collapse
|