1
|
Caffrey BJ, Pedrazo‐Tardajos A, Liberti E, Gaunt B, Kim JS, Kirkland AI. Liquid Phase Electron Microscopy of Bacterial Ultrastructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402871. [PMID: 39239997 PMCID: PMC11636060 DOI: 10.1002/smll.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Indexed: 09/07/2024]
Abstract
Recent advances in liquid phase scanning transmission electron microscopy (LP-STEM) have enabled the study of dynamic biological processes at nanometer resolutions, paving the way for live-cell imaging using electron microscopy. However, this technique is often hampered by the inherent thickness of whole cell samples and damage from electron beam irradiation. These restrictions degrade image quality and resolution, impeding biological interpretation. Using graphene encapsulation, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) spectroscopy to mitigate these issues provides unprecedented levels of intracellular detail in aqueous specimens. This study demonstrates the potential of LP-STEM to examine and identify internal cellular structures in thick biological samples. Specifically, it highlights the use of LP-STEM to investigate the radiation resistant, gram-positive bacterium, Deinococcus radiodurans using various imaging techniques.
Collapse
Affiliation(s)
- Brian J. Caffrey
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
| | | | - Emanuela Liberti
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
| | - Benjamin Gaunt
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordJohn Radcliffe HospitalOxfordOX3 9DUUK
| | - Judy S. Kim
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Angus I. Kirkland
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| |
Collapse
|
2
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
3
|
Modi M, Thambiraja M, Cherukat A, Yennamalli RM, Priyadarshini R. Structure predictions and functional insights into Amidase_3 domain containing N-acetylmuramyl-L-alanine amidases from Deinococcus indicus DR1. BMC Microbiol 2024; 24:101. [PMID: 38532329 DOI: 10.1186/s12866-024-03225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND N-acetylmuramyl-L-alanine amidases are cell wall modifying enzymes that cleave the amide bond between the sugar residues and stem peptide in peptidoglycan. Amidases play a vital role in septal cell wall cleavage and help separate daughter cells during cell division. Most amidases are zinc metalloenzymes, and E. coli cells lacking amidases grow as chains with daughter cells attached to each other. In this study, we have characterized two amidase enzymes from Deinococcus indicus DR1. D. indicus DR1 is known for its high arsenic tolerance and unique cell envelope. However, details of their cell wall biogenesis remain largely unexplored. RESULTS We have characterized two amidases Ami1Di and Ami2Di from D. indicus DR1. Both Ami1Di and Ami2Di suppress cell separation defects in E. coli amidase mutants, suggesting that these enzymes are able to cleave septal cell wall. Ami1Di and Ami2Di proteins possess the Amidase_3 catalytic domain with conserved -GHGG- motif and Zn2+ binding sites. Zn2+- binding in Ami1Di is crucial for amidase activity. AlphaFold2 structures of both Ami1Di and Ami2Di were predicted, and Ami1Di was a closer homolog to AmiA of E. coli. CONCLUSION Our results indicate that Ami1Di and Ami2Di enzymes can cleave peptidoglycan, and structural prediction studies revealed insights into the activity and regulation of these enzymes in D. indicus DR1.
Collapse
Affiliation(s)
- Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Menaka Thambiraja
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Archana Cherukat
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
- Department of Biology, Graduate School of Arts and Sciences, Wake Forest University, 1834 Wake Forest Rd, Winston-Salem, USA
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
4
|
Gouveia AG, Salgueiro BA, Ranmar DO, Antunes WDT, Kirchweger P, Golani O, Wolf SG, Elbaum M, Matias PM, Romão CV. Unraveling the multifaceted resilience of arsenic resistant bacterium Deinococcus indicus. Front Microbiol 2023; 14:1240798. [PMID: 37692390 PMCID: PMC10483234 DOI: 10.3389/fmicb.2023.1240798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Arsenic (As) is a toxic heavy metal widely found in the environment that severely undermines the integrity of water resources. Bioremediation of toxic compounds is an appellative sustainable technology with a balanced cost-effective setup. To pave the way for the potential use of Deinococcus indicus, an arsenic resistant bacterium, as a platform for arsenic bioremediation, an extensive characterization of its resistance to cellular insults is paramount. A comparative analysis of D. indicus cells grown in two rich nutrient media conditions (M53 and TGY) revealed distinct resistance patterns when cells are subjected to stress via UV-C and methyl viologen (MV). Cells grown in M53 demonstrated higher resistance to both UV-C and MV. Moreover, cells grow to higher density upon exposure to 25 mM As(V) in M53 in comparison with TGY. This analysis is pivotal for the culture of microbial species in batch culture bioreactors for bioremediation purposes. We also demonstrate for the first time the presence of polyphosphate granules in D. indicus which are also found in a few Deinococcus species. To extend our analysis, we also characterized DiArsC2 (arsenate reductase) involved in arsenic detoxification and structurally determined different states, revealing the structural evidence for a catalytic cysteine triple redox system. These results contribute for our understanding into the D. indicus resistance mechanism against stress conditions.
Collapse
Affiliation(s)
- André G. Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno A. Salgueiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dean O. Ranmar
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Wilson D. T. Antunes
- Instituto Universitário Militar, Centro de Investigação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Lisbon, Portugal
| | - Peter Kirchweger
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Pedro M. Matias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Mohsin H, Shafique M, Zaid M, Rehman Y. Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01068-6. [PMID: 37326815 DOI: 10.1007/s12223-023-01068-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.
Collapse
Affiliation(s)
- Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maria Shafique
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Yasir Rehman
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
6
|
Zhang M, Lu G, Xiao T, Xiao E, Sun X, Yan W, Liu G, Wang Q, Yan G, Liu H, Sun W. Characterization of arsenic-metabolizing bacteria in an alkaline soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120040. [PMID: 36030950 DOI: 10.1016/j.envpol.2022.120040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Arsenite (As(III)) is more toxic, mobilizable and bioavailable than arsenate (As(V)). Hence, the transformations between As(III) and As(V) are crucial for the toxicity and mobility of arsenic (As). However, As transformation and microbial communities involved in alkaline soils are largely unknown. Here we investigate two major pathways of As transformation, i.e., As(III) oxidation and As(V) reduction, and identify the bacteria involved in the alkaline soil by combining stable isotope probing with shotgun metagenomic sequencing. As(III) oxidation and significant increase of the aioA genes copies were observed in the treatments amended with As(III) and NO3-, suggesting that As(III) oxidation can couple with nitrate reduction and was mainly catalyzed by the microorganisms containing aioA genes. As(V) reduction was detected in the treatments amended with As(V) and acetate where the abundance of arrA gene significantly increased, indicating that microorganisms with arrA genes were the key As(V) reducers. Acidovorax, Hydrogenophaga, and Ramlibacter were the putative nitrate-dependent As(III) oxidizers, and Deinococcus and Serratia were the putative respiratory As(V) reducers. These findings will improve our understanding of As metabolism and are meaningful for mapping out bioremediation strategies of As contamination in alkaline environment.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guimei Lu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, Guangzhou 518107, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Geng Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
7
|
Basu B. The radiophiles of Deinococcaceae family: Resourceful microbes for innovative biotechnological applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100153. [PMID: 35909625 PMCID: PMC9325910 DOI: 10.1016/j.crmicr.2022.100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author.
| |
Collapse
|
8
|
Dhanapal AR, Venkidasamy B, Solai Ramatchandirane P. Molecular characterization of stress tolerance genes associated with D. indicus strain under extreme environment conditions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4905-4917. [PMID: 33486627 DOI: 10.1007/s10653-020-00788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Deinococcus indicus is a novel bacteria isolated from West Bengal, India known for its UV radiation and heavy metal tolerance. Since, this organism is reported from a region known for heavy metal contamination and earlier investigations demonstrated its radiation resistance, our study focused on the multiple stress responsive and DNA repair mechanisms. Though, most of the members of the genus Deinococcus are Gram positive cocci, D. indicus postures Gram negative rod shaped cells. Hence, the objectives were framed precisely to understand DNA repair pathway and stress responsive genes expression with a broader perspective. Based on available whole genome sequence of D. indicus, quantitative real time PCR (qPCR) was done to determine the expression pattern of multiple stress responsive genes upon various environmental extremities. Among them, UV responsive genes like UvrD and UvsE showed elevated expression when subjected to UV-C radiation at different time intervals. Similarly, when supplemented with arsenic and chromium, ArsR and ArsB exhibited considerably higher level of expression. While all the genes were subsequently analyzed in-silico, depicted that most of them were with N-glycosylation site, GPI anchor sites, N-terminal trans-membrane helix region besides putative signal peptides. Overall, this study opined the functional information on stress tolerance genes that aid to understand the DNA damage recovery mechanism towards elucidation of DNA repair pathways.
Collapse
Affiliation(s)
- Anand Raj Dhanapal
- Department of Biotechnology, Bharathiar University, Tamil Nadu, Coimbatore, 641046, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Sri Shakthi Nagar, L&T By-Pass, Chinniyampalayam, Coimbatore, 641062, India
| | | |
Collapse
|
9
|
Saha A, Mohapatra B, Kazy SK, Sar P. Variable response of arsenic contaminated groundwater microbial community to electron acceptor regime revealed by microcosm based high-throughput sequencing approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:804-817. [PMID: 34284694 DOI: 10.1080/10934529.2021.1930448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) mobilization in alluvial aquifers is facilitated by microbially catalyzed redox transformations that depend on the availability of electron acceptors (EAs). In this study, the response of an As-contaminated groundwater microbial community from West Bengal, India towards varied EAs was elucidated through microcosm based 16S rRNA gene amplicon sequencing. Acinetobacter, Deinococcus, Nocardioides, etc., and several unclassified bacteria (Ignavibacteria) and archaea (Bathyarchaeia, Micrarchaeia) previously not reported from As-contaminated groundwater of West Bengal, characterized the groundwater community. Distinct shifts in community composition were observed in response to various EAs. Enrichment of operational taxonomic units (OTUs) affiliated to Denitratisoma (NO3-), Spirochaetaceae (Mn4+), Deinococcus (As5+), Ruminiclostridium (Fe3+), Macellibacteroides (SO42-), Holophagae-Subgroup 7 (HCO3-), Dechloromonas and Geobacter (EA mixture) was noted. Alternatively, As3+ amendment as electron donor allowed predominance of Rhizobium. Taxonomy based functional profiling highlighted the role of chemoorganoheterotrophs capable of concurrent reduction of NO3-, Fe3+, SO42-, and As biotransformation in As-contaminated groundwater of West Bengal. Our analysis revealed two major aspects of the community, (a) taxa selective toward responding to the EAs, and (b) multifaceted nature of taxa appearing in abundance in response to multiple substrates. Thus, the results emphasized the potential of microbial community members to influence the biogeochemical cycling of As and other dominant anions/cations.
Collapse
Affiliation(s)
- Anumeha Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sufia Khannam Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
10
|
Microorganisms employed in the removal of contaminants from wastewater of iron and steel industries. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00982-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Herrera C, Moraga R, Bustamante B, Vilo C, Aguayo P, Valenzuela C, Smith CT, Yáñez J, Guzmán-Fierro V, Roeckel M, Campos VL. Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile. Microorganisms 2021; 9:microorganisms9030483. [PMID: 33668956 PMCID: PMC7996500 DOI: 10.3390/microorganisms9030483] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As), a semimetal toxic for humans, is commonly associated with serious health problems. The most common form of massive and chronic exposure to As is through consumption of contaminated drinking water. This study aimed to isolate an As resistant bacterial strain to characterize its ability to oxidize As (III) when immobilized in an activated carbon batch bioreactor and to evaluate its potential to be used in biological treatments to remediate As contaminated waters. The diversity of bacterial communities from sediments of the As-rich Camarones River, Atacama Desert, Chile, was evaluated by Illumina sequencing. Dominant taxonomic groups (>1%) isolated were affiliated with Proteobacteria and Firmicutes. A high As-resistant bacterium was selected (Pseudomonas migulae VC-19 strain) and the presence of aio gene in it was investigated. Arsenite detoxification activity by this bacterial strain was determined by HPLC/HG/AAS. Particularly when immobilized on activated carbon, P. migulae VC-19 showed high rates of As(III) conversion (100% oxidized after 36 h of incubation). To the best of our knowledge, this is the first report of a P. migulae arsenite oxidizing strain that is promising for biotechnological application in the treatment of arsenic contaminated waters.
Collapse
Affiliation(s)
- Constanza Herrera
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Ruben Moraga
- Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile
- Correspondence: (R.M.); (V.L.C.)
| | - Brian Bustamante
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Claudia Vilo
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Paulina Aguayo
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
- Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile
- Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Campus El Boldal, Av. Alessandri N°1160, Concepcion 4090940, Chile
| | - Cristian Valenzuela
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Carlos T. Smith
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Jorge Yáñez
- Faculty of Chemical Sciences, Department of Analytical and Inorganic Chemistry, University of Concepción, Concepción 4070386, Chile;
| | - Victor Guzmán-Fierro
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; (V.G.-F.); (M.R.)
| | - Marlene Roeckel
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; (V.G.-F.); (M.R.)
| | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
- Correspondence: (R.M.); (V.L.C.)
| |
Collapse
|
12
|
Functional Microbial Pigments Isolated from Chryseobacterium and Deinococcus species for Bio-paint Application. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0372-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Princy S, Sathish SS, Cibichakravarthy B, Prabagaran SR. Hexavalent chromium reduction by Morganella morganii (1Ab1) isolated from tannery effluent contaminated sites of Tamil Nadu, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Kepel B, Bodhi W, Tallei TE. Isolation and Identification of Arsenic-resistant Bacteria for Possible Application in Arsenic Bioremediation. Pak J Biol Sci 2020; 23:63-67. [PMID: 31930884 DOI: 10.3923/pjbs.2020.63.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE North Sulawesi is rich in minerals, among them gold is also present. The gold mining in the Buyat area produces heavy metal waste which can pollute the environment, among others is arsenic. Arsenic is a heavy metal that is very toxic to humans, so an agent is needed for the remediation process. The aim of this study was to isolate and identify arsenic-resistant bacteria from the Buyat estuary and beach to analyze the isolates' ability to detoxify arsenic. MATERIALS AND METHODS Soil sediment samples were obtained from Buyat estuary and beach in North Sulawesi. Isolation of arsenic-resistant bacteria was carried out by growing the samples in LB broth media containing 100, 500 and 1000 ppm arsenite. Indentification of arsenic-resistant bacteria was carried out by microbiological, biochemical and biomolecular analysis. The ability to detoxify arsenite was analyzed by CVAFS. RESULTS The study showed that there were 4 isolates of arsenic-resistant bacteria isolated from the soil samples. All isolates are rod-shaped, Gram-negative and non-motile bacteria. BLAST results showed that isolates A was Stenotrophomonas sp., isolate B was Stenotrophomonas maltophilia, isolate C was Pseudomonas sp. and isolate D was Pseudomonas putida. All isolates reduced the levels of arsenic in media by almost 100% within 72 h. CONCLUSION The study suggested that Stenotrophomonas sp., S. maltophilia, Pseudomonas sp. and P. putida had the potentials to be used in the bioremediation of arsenic.
Collapse
|
15
|
Tian J, Wang L, Liu P, Geng Y, Zhu G, Zheng R, Liu Z, Zhao Y, Yang J, Peng F. Deinococcus psychrotolerans sp. nov., isolated from soil on the South Shetland Islands, Antarctica. Int J Syst Evol Microbiol 2019; 69:3696-3701. [PMID: 31647398 DOI: 10.1099/ijsem.0.003484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, strictly aerobic, coccus-shaped bacterium, designated S14-83T, was isolated from a soil sample collected from the South Shetland Islands of Antarctica. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain is a novel member of the genus Deinococcus, with Deinococcus alpinitundrae as its closest relative (96.1 % similarity). The DNA G+C content of the strain was 61.1 mol% and the major respiratory quinone was MK-8. Major cellular fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and C16 : 0. As well as containing glycophospholipid, aminophospholipids and glycolipid as major polar lipids, there were also some unknown polar lipids. The diagnostic diamino acid in the cell-wall peptidoglycan was ornithine, corroborating the assignment of the strain to the genus Deinococcus. Strain S14-83T was shown to be extremely resistant to gamma radiation (>10 kGy) and UV light (460 Jm-2). On the basis of phylogenetic, chemotaxonomic and phenotypic data presented here, strain S14-83T represents a novel species of the genus Deinococcus, for which the name Deinococcus psychrotolerans sp. nov. is proposed. The type strain is S14-83T (=CCTCC AB 2015449T= DSM 105285 T).
Collapse
Affiliation(s)
- Jin Tian
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Liqiu Wang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ping Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yingchao Geng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Guoxin Zhu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ruichen Zheng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zuobing Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yiming Zhao
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jian Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
16
|
Chauhan D, Srivastava PA, Ritzl B, Yennamalli RM, Cava F, Priyadarshini R. Amino Acid-Dependent Alterations in Cell Wall and Cell Morphology of Deinococcus indicus DR1. Front Microbiol 2019; 10:1449. [PMID: 31333600 PMCID: PMC6618347 DOI: 10.3389/fmicb.2019.01449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Deinococcus radiodurans exhibits growth medium-dependent morphological variation in cell shape, but there is no evidence whether this phenomenon is observed in other members of the Deinococcaceae family. In this study, we isolated a red-pigmented, aerobic, Deinococcus indicus strain DR1 from Dadri wetland, India. This D. indicus strain exhibited cell–morphology transition from rod-shaped cells to multi-cell chains in a growth-medium-dependent fashion. In response to addition of 1% casamino acids in the minimal growth medium, rod-shaped cells formed multi-cell chains. Addition of all 20 amino acids to the minimal medium was able to recapitulate the phenotype. Specifically, a combination of L-methionine, L-lysine, L-aspartate, and L-threonine caused morphological alterations. The transition from rod shape to multi-cell chains is due to delay in daughter cell separation after cell division. Minimal medium supplemented with L-ornithine alone was able to cause cell morphology changes. Furthermore, a comparative UPLC analysis of PG fragments isolated from D. indicus cells propagated in different growth media revealed alterations in the PG composition. An increase in the overall cross-linkage of PG was observed in muropeptides from nutrient-rich TSB and NB media versus PYE medium. Overall our study highlights that environmental conditions influence PG composition and cell morphology in D. indicus.
Collapse
Affiliation(s)
- Deepika Chauhan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Pulkit Anupam Srivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Barbara Ritzl
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ragothaman M Yennamalli
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
17
|
Nanda M, Kumar V, Sharma DK. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to 'clean-up' heavy metal contaminants from water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:1-10. [PMID: 31022608 DOI: 10.1016/j.aquatox.2019.04.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 05/27/2023]
Abstract
Heavy metal pollution is one of the major environmental concerns worldwide. Toxic heavy metals when untreated get accumulated in environment and can pose severe threats to living organisms. It is well known that metals play a major role either directly or indirectly in different metabolic processes of bacteria. This allows bacterial cells to grow even in the presence of some toxic heavy metals. Microbial biotechnology has thus emerged as an effective and eco friendly solution in recent years for bioremediation of heavy metals. Therefore, this review is focused on summarising bacterial adaptation mechanisms for various heavy metals. It also shares some applications of have metal tolerant bacteria in bioremediation. Bacteria have evolved a number of processes for heavy metal tolerance viz., transportation across cell membrane, accumulation on cell wall, intra as well as extracellular entrapment, formation of complexes and redox reactions which form the basis of different bioremediation strategies. The genetic determinants for most of these resistances are located on plasmids however some may be chromosomal as well. Bacterial cells can uptake heavy by both ATP dependent and ATP independent processes. Bacterial cell wall also plays a very important role in accumulating heavy metals by bacterial cells. Gram-positive bacteria accumulate much higher concentrations of heavy metals on their cell walls than that of metals gram -ve bacteria. The role of bacterial metallothioneins (MTs) in heavy metal has also been reported. Thus, heavy metal tolerant bacteria are important for bioremediation of heavy metal pollutants from areas containing high concentrations of particular heavy metals.
Collapse
Affiliation(s)
- Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun, 248007, India.
| | - Vinod Kumar
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India.
| | - D K Sharma
- Department of Zoology and Biotechnology, H.N.B. Garhwal Central University, SRT Campus, Badshahi Thaul, Tehri, Uttarakhand, India
| |
Collapse
|
18
|
Makk J, Enyedi NT, Tóth E, Anda D, Szabó A, Felföldi T, Schumann P, Mádl-Szőnyi J, Borsodi AK. Deinococcus fonticola sp. nov., isolated from a radioactive thermal spring in Hungary. Int J Syst Evol Microbiol 2019; 69:1724-1730. [PMID: 31038452 DOI: 10.1099/ijsem.0.003383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-motile and coccus-shaped bacterium, designated strain FeSDHB5-19T, was isolated from a biofilm sample collected from a radioactive thermal spring (Budapest, Hungary), after exposure to 5 kGy gamma radiation. A polyphasic approach was used to study the taxonomic properties of strain FeSDHB5-19T, which had highest 16S rRNA gene sequence similarity to Deinococcus antarcticus G3-6-20T (96.5 %). The 16S rRNA gene sequence similarity to type strains of other Deinococcus species were 93.0 % or lower. The DNA G+C content of the draft genome sequence, consisting of 3.9 Mb, was 63.9 mol%. Strain FeSHDB5-19T was found to grow at temperatures of 10-32 °C (optimum, 28 °C) and pH 5-10 (pH 6.5-7.5) and tolerated up to 1.5 % NaCl (w/v) with optimum growth at 0-0.5 % NaCl. The predominant fatty acids (>10 %) were C16 : 0 and C16 : 1ω7c. The cell-wall peptidoglycan type was A3β l-Orn-Gly1-2. The whole-cell sugars were glucose and low amounts of galactose. Strain FeSDHB5-19T possessed MK-8 as the predominant respiratory quinone, typical of the genus Deinococcus. The polar lipid profile contained unidentified phosphoglycolipids and unidentified glycolipids. The isolate was found to be highly resistant to gamma (D10<8 kGy) and UV (D10~800 J m-2) radiation. According to its genotypic, phenotypic and chemotaxonomic characteristics, strain FeSDHB5-19T represents a novel species in the genus Deinococcus, for which the name Deinococcusfonticola sp. nov. is proposed. The type strain is FeSDHB5-19T (=NCAIM B.02639T=DSM 106917T).
Collapse
Affiliation(s)
- Judit Makk
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Nóra Tünde Enyedi
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Erika Tóth
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Dóra Anda
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary.,2MTA Centre for Ecological Research, Danube Research Institute, Karolina út 29, H-1113, Budapest, Hungary
| | - Attila Szabó
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Tamás Felföldi
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Peter Schumann
- 3DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D38124 Braunschweig, Germany
| | - Judit Mádl-Szőnyi
- 4Department of Physical and Applied Geology, ELTE Eötvös Loránd University, Pázmány Psétány 1/C, H-1117 Budapest, Hungary
| | - Andrea K Borsodi
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary.,2MTA Centre for Ecological Research, Danube Research Institute, Karolina út 29, H-1113, Budapest, Hungary
| |
Collapse
|
19
|
Chauhan D, Srivastava PA, Agnihotri V, Yennamalli RM, Priyadarshini R. Structure and function prediction of arsenate reductase from Deinococcus indicus DR1. J Mol Model 2019; 25:15. [PMID: 30610463 DOI: 10.1007/s00894-018-3885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/28/2018] [Indexed: 12/01/2022]
Abstract
Arsenic prevalence in the environment impelled many organisms to develop resistance over the course of evolution. Tolerance to arsenic, either as the pentavalent [As(V)] form or the trivalent form [As(III)], by bacteria has been well studied in prokaryotes, and the mechanism of action is well defined. However, in the rod-shaped arsenic tolerant Deinococcus indicus DR1, the key enzyme, arsenate reductase (ArsC) has not been well studied. ArsC of D. indicus belongs to the Grx-linked prokaryotic arsenate reductase family. While it shares homology with the well-studied ArsC of Escherichia coli having a catalytic cysteine (Cys 12) and arginine triad (Arg 60, 94, and 107), the active site of D.indicus ArsC contains four residues Glu 9, Asp 53, Arg 86, and Glu 100, and with complete absence of structurally equivalent residue for crucial Cys 12. Here, we report that the mechanism of action of ArsC of D. indicus is different as a result of convergent evolution and most likely able to detoxify As(V) using a mix of positively- and negatively-charged residues in its active site, unlike the residues of E. coli. This suggests toward the possibility of an alternative mechanism of As (V) degradation in bacteria.
Collapse
Affiliation(s)
- Deepika Chauhan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Pulkit A Srivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Vidushi Agnihotri
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Ragothaman M Yennamalli
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India.
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India.
| |
Collapse
|
20
|
Tuohy JM, Mueller-Spitz SR, Albert CM, Scholz-Ng SE, Wall ME, Noutsios GT, Gutierrez AJ, Sandrin TR. MALDI-TOF MS Affords Discrimination of Deinococcus aquaticus Isolates Obtained From Diverse Biofilm Habitats. Front Microbiol 2018; 9:2442. [PMID: 30374340 PMCID: PMC6196315 DOI: 10.3389/fmicb.2018.02442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectroscopy (MALDI-TOF MS) has been used routinely over the past decade in clinical microbiology laboratories to rapidly characterize diverse microorganisms of medical importance both at the genus and species levels. Currently, there is keen interest in applying MALDI-TOF MS at taxonomic levels beyond species and to characterize environmental isolates. We constructed a model system consisting of 19 isolates of Deinococcus aquaticus obtained from biofilm communities indigenous to diverse substrates (concrete, leaf tissue, metal, and wood) in the Fox River - Lake Winnebago system of Wisconsin to: (1) develop rapid sample preparation methods that produce high quality, reproducible MALDI-TOF spectra and (2) compare the performance of MALDI-TOF MS-based profiling to common DNA-based approaches including 16S rRNA sequencing and genomic diversity by BOX-A1R fingerprinting. Our results suggest that MALDI-TOF MS can be used to rapidly and reproducibly characterize environmental isolates of D. aquaticus at the subpopulation level. MALDI-TOF MS provided higher taxonomic resolution than either 16S rRNA gene sequence analysis or BOX-A1R fingerprinting. Spectra contained features that appeared to permit characterization of isolates into two co-occurring subpopulations. However, reliable strain-level performance required rigorous and systematic standardization of culture conditions and sample preparation. Our work suggests that MALDI-TOF MS offers promise as a rapid, reproducible, and high-resolution approach to characterize environmental isolates of members of the genus Deinococcus. Future work will focus upon application of methods described here to additional members of this ecologically diverse and ubiquitous genus.
Collapse
Affiliation(s)
- James M Tuohy
- Biology Department, Glendale Community College, Glendale, AZ, United States
| | - Sabrina R Mueller-Spitz
- Biology Department, University of Wisconsin Oshkosh, Oshkosh, WI, United States.,Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, WI, United States
| | - Chad M Albert
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - Stacy E Scholz-Ng
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - Melinda E Wall
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - George T Noutsios
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Anthony J Gutierrez
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States.,Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
21
|
Draft Genome Sequence of Deinococcus indicus DR1, a Novel Strain Isolated from a Freshwater Wetland. GENOME ANNOUNCEMENTS 2017; 5:5/31/e00754-17. [PMID: 28774987 PMCID: PMC5543649 DOI: 10.1128/genomea.00754-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Deinococcus indicus strain DR1, a red-pigmented, arsenic- and radiation-resistant bacterium, was isolated from a water sample of the Dadri wetland, Uttar Pradesh, India. Here, we report a draft genome sequence of this strain, which may provide useful information regarding the genes and pathways involved in heavy-metal bioremediation.
Collapse
|
22
|
Ranawat P, Rawat S. Radiation resistance in thermophiles: mechanisms and applications. World J Microbiol Biotechnol 2017; 33:112. [DOI: 10.1007/s11274-017-2279-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
23
|
Hussain F, Khan IU, Habib N, Xian WD, Hozzein WN, Zhang ZD, Zhi XY, Li WJ. Deinococcus saudiensis sp. nov., isolated from desert. Int J Syst Evol Microbiol 2016; 66:5106-5111. [PMID: 27600000 DOI: 10.1099/ijsem.0.001479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two gamma- and UV-radiation-resistant, pink-coloured bacterial strains, designated YIM F302T and YIM F235, were isolated from the desert of Yanbu' al Bahr located in west of Saudi Arabia. Taxonomic positions of the two isolates were investigated by polyphasic taxonomic approaches. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They were able to grow at 15-45 °C and pH 6.0-8.0 and had a NaCl tolerance limit of 1 % (w/v). Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains YIM F302T and YIM F235 represent members of the genus Deinococcus, sharing highest sequence similarities of 98.3 and 98.4 %, respectively, with Deinococcus grandis DSM 3963T. The strains were found to contain MK-8 as the respiratory menaquinone. Major fatty acids (>10 %) of the two strains were C15 : 1ω6c, C16 : 0 and C16 : 1ω7c. DNA-DNA hybridization values of the two isolates against the closely related type strains were significantly below the 70 % limit for species delineation. Genomic DNA G+C contents of strains YIM F302T and YIM F235 were 69.3 and 69.0 mol%, respectively. Based on the phenotypic and genotypic characteristics recorded, it is determined that the two isolates represent a novel species of the genus Deinococcus, for which the name Deinococcus saudiensis sp. nov. is proposed. The type strain is YIM F302T (=CGMCC 1.15089T=DSM 29933T).
Collapse
Affiliation(s)
- Firasat Hussain
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming 650091, PR China
| | - Inam Ullah Khan
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming 650091, PR China
| | - Neeli Habib
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming 650091, PR China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhi-Dong Zhang
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming 650091, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming 650091, PR China
| |
Collapse
|
24
|
Description of Deinococcus oregonensis sp. nov., from biological soil crusts in the Southwestern arid lands of the United States of America. Arch Microbiol 2016; 199:69-76. [PMID: 27515516 DOI: 10.1007/s00203-016-1273-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Biological soil crusts are distinct habitats, harbor unique prokaryotic diversity and gave an impetus to isolate novel species. In the present study, a pink-pigmented bacterium, (OR316-6T), was isolated from biological soil crusts using oligotrophic BG11-PGY medium. Strain OR316-6T was Gram-positive, short rods, non-motile and non-spore forming. Cells were positive for catalase, oxidase and β-galactosidase and negative for most of the enzymatic activities. The major fatty acids present were C16:0, C17:0, and C16:1ω7c and contained MK-8 and MK-10 as the predominant menaquinones. The cell wall peptidoglycan was of A3β variant with L-ornithine as the diamino acid. Based on the above characteristics, strain OR316-6T was assigned to the genus Deinococcus. The phylogenetic analysis indicated that strain OR316-6T was closely related to D. aquatilis DSM 23025T with a 16S rRNA gene similarity of 99.3 % and clustered with a bootstrap value of 100 %. DNA-DNA similarity between strain OR316-6T and D. aquatilis DSM 23025T was 37.0 % indicating that strain OR316-6T was a novel species. Further, DNA fingerprinting of stains OR316-6T and D. aquatilis DSM 23035T demonstrated that both strains were related to each other with a similarity coefficient of only 0.32 and supported the species status to strain OR316-6T. In addition, phenotypic characteristics distinguished strain OR316-6T from D. aquatilis DSM 23025T. Based on the cumulative differences, strain OR316-16T exhibited with its closely related species, it was identified as a novel species and proposed the name Deinococcus oregonensis sp. nov. The type strain is D. oregonensis sp. nov. (OR316-6T = JCM 13503T = DSM 17762T).
Collapse
|
25
|
Lee JJ, Lee YH, Park SJ, Lim S, Jeong SW, Lee SY, Cho YJ, Kim MK, Jung HY. Deinococcus seoulensis sp. nov., a bacterium isolated from sediment at Han River in Seoul, Republic of Korea. J Microbiol 2016; 54:537-42. [PMID: 27480633 DOI: 10.1007/s12275-016-6253-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
Abstract
Strain 16F1E(T) was isolated from a 3-kGy-irradiated sediment sample collected at Han River in Seoul, Republic of Korea. Cells of this strain were observed to be Gram-positive, pililike structure, and short rod shape, and colonies were red in color. The strain showed the highest degree of 16S rRNA gene sequence similarity to Deinococcus aquaticus PB314(T) (98.8%), Deinococcus depolymerans TDMA-24(T) (98.1%), Deinococcus caeni Ho-08(T) (98.0%), and Deinococcus grandis DSM 3963(T) (97.0%). 16S rRNA gene sequence analysis identified this strain as a member of the genus Deinococcus (Family: Deinococcaceae). The genomic DNA G+C content of strain 16F1ET was 66.9 mol%. The low levels of DNA-DNA hybridization (< 56.2%) with the species mentioned above identified strain 16F1E(T) as a novel Deinococcus species. Its oxidase and catalase activities as well as the production of acid from glucose were positive. Growth of the strain was observed at 10-37°C (optimum: 20-30°C) and pH 4-10 (optimum: pH 7-8). The cells tolerated less than 5% NaCl and had low resistance to gamma radiation (D10 < 4 kGy). Strain 16F1ET possessed the following chemotaxonomic characteristics: C16:0, C15:1 ω6c, and C16:1 ω7c as the major fatty acids; phosphoglycolipid as the predominant polar lipid; and menaquinone-8 as the predominant respiratory isoprenoid quinone. Based on the polyphasic evidence, as well as the phylogenetic, genotypic, phenotypic, and chemotaxonomic characterization results, strain 16F1E(T) (=KCTC 33793(T) =JCM 31404(T)) is proposed to represent the type strain of a novel species, Deinococcus seoulensis sp. nov.
Collapse
Affiliation(s)
- Jae-Jin Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yeon-Hee Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Jin Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sun-Wook Jeong
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Seung-Yeol Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Je Cho
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Hee-Young Jung
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Institute of Plant Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
26
|
Rao S, Chan OW, Lacap-Bugler DC, Pointing SB. Radiation-Tolerant Bacteria Isolated from High Altitude Soil in Tibet. Indian J Microbiol 2016; 56:508-512. [PMID: 27784950 DOI: 10.1007/s12088-016-0604-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/27/2016] [Indexed: 12/24/2022] Open
Abstract
This study reports the identification of ionising radiation tolerant bacteria from a high elevation arid region of central Tibet. Nineteen isolates were isolated from soil exposed to ionising radiation at doses from 0 to 15 kGy. Isolates were phylogenetically characterised using 16S rRNA gene sequences. Most isolates comprised taxa from the Actinobacteria, Cyanobacteria, Firmicutes and proteobacteria and these survived doses up to 5 kGy. The Firmicutes and Deinococci also survived doses up to 10 kGy, and the highest dose of 15 kGy was survived only by the Deinococci. No altitude-related pattern was discernible within the range 4638-5240 m, instead culturable bacterial estimates for irradiated soil were strongly influenced by the abundance of Deinococci. We conclude that the relatively high UV exposure in Tibet has contributed to the high diversity of radiation tolerant soil bacteria. In addition, the strong association between desiccation-tolerance and radiation tolerance pathways suggests the arid environment may also have selected in favour of radiation tolerant taxa.
Collapse
Affiliation(s)
- Subramanya Rao
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China ; Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Auckland, 1010 New Zealand
| | - Olivia W Chan
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Auckland, 1010 New Zealand
| | - Donnabella C Lacap-Bugler
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Auckland, 1010 New Zealand
| | - Stephen B Pointing
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Auckland, 1010 New Zealand ; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| |
Collapse
|
27
|
Lee JJ, Joo ES, Lee DH, Jung HY, Kim MK. Phylogenetic diversity and UV resistance analysis of radiation-resistant bacteria isolated from the water in Han River. ACTA ACUST UNITED AC 2016. [DOI: 10.7845/kjm.2016.6015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0031-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Feng GD, Wang YH, Li YX, Zhu HH. Deinococcus metalli sp. nov., isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2015; 65:3457-3461. [DOI: 10.1099/ijsem.0.000439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, non-motile and Gram-staining-positive bacterial strain (1PNM-19T) was isolated from a lead-zinc ore in an abandoned mine and was investigated in a taxonomic study using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 1PNM-19T was affiliated to the genus Deinococcus and most closely related to Deinococcus aquatilis DSM 23025T and Deinococcus ficus DSM 19119T. The major respiratory quinone was determined to be menaquinone 8 (MK-8) and the major fatty acids contained summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. A complex polar lipid profile consisted of different unidentified glycolipids and polar lipids, two unidentified aminolipids, an unidentified phosphoglycolipid, phospholipid and aminophospholipid. The genomic DNA G+C content of strain 1PNM-19T was 71.7 ± 0.1 mol%. Based on data from this taxonomic study, strain 1PNM-19T represents a novel species of the genus Deinococcus, for which the name Deinococcus metalli sp. nov. is proposed. The type strain is 1PNM-19T ( = GIMCC 1.654T = CCTCC AB 2014198T = DSM 27521T).
Collapse
Affiliation(s)
- Guang-Da Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Yong-Hong Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Yan-Xuan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
30
|
Gerber E, Bernard R, Castang S, Chabot N, Coze F, Dreux-Zigha A, Hauser E, Hivin P, Joseph P, Lazarelli C, Letellier G, Olive J, Leonetti JP. Deinococcus as new chassis for industrial biotechnology: biology, physiology and tools. J Appl Microbiol 2015; 119:1-10. [PMID: 25809882 PMCID: PMC4682472 DOI: 10.1111/jam.12808] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
Abstract
Deinococcus spp are among the most radiation-resistant micro-organisms that have been discovered. They show remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation and oxidizing agents. Traditionally, Escherichia coli and Saccharomyces cerevisiae have been the two platforms of choice for engineering micro-organisms for biotechnological applications, because they are well understood and easy to work with. However, in recent years, researchers have begun using Deinococcus spp in biotechnologies and bioremediation due to their specific ability to grow and express novel engineered functions. More recently, the sequencing of several Deinococcus spp and comparative genomic analysis have provided new insight into the potential of this genus. Features such as the accumulation of genes encoding cell cleaning systems that eliminate organic and inorganic cell toxic components are widespread among Deinococcus spp. Other features such as the ability to degrade and metabolize sugars and polymeric sugars make Deinococcus spp. an attractive alternative for use in industrial biotechnology.
Collapse
Affiliation(s)
- E Gerber
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - R Bernard
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - S Castang
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - N Chabot
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - F Coze
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - A Dreux-Zigha
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - E Hauser
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - P Hivin
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - P Joseph
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - C Lazarelli
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - G Letellier
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - J Olive
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - J-P Leonetti
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| |
Collapse
|
31
|
Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 2015; 13:1925-65. [PMID: 25854643 PMCID: PMC4413194 DOI: 10.3390/md13041925] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/26/2022] Open
Abstract
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.
Collapse
|
32
|
Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M. Isolation and characterization of arsenic resistant bacteria from wastewater. Braz J Microbiol 2015; 45:1309-15. [PMID: 25763035 PMCID: PMC4323304 DOI: 10.1590/s1517-83822014000400022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Division of Environmental Technology School of Industrial Technology Universiti Sains MalaysiaPenang Malaysia Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia. ; Department of Zoology Government College University Lahore Pakistan Department of Zoology, Government College University, Lahore, Pakistan
| | - Mehwish Riaz
- Department of Zoology Government College University Lahore Pakistan Department of Zoology, Government College University, Lahore, Pakistan
| | - Naseem Ramzan
- Department of Zoology Government College University Lahore Pakistan Department of Zoology, Government College University, Lahore, Pakistan
| | - M Tariq Zahid
- Department of Zoology Government College University Lahore Pakistan Department of Zoology, Government College University, Lahore, Pakistan
| | - Farah R Shakoori
- Department of Microbiology and Molecular Genetics School of Biological Sciences University of the Punjab Lahore Pakistan Department of Microbiology and Molecular Genetics, School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohd Rafatullah
- Division of Environmental Technology School of Industrial Technology Universiti Sains MalaysiaPenang Malaysia Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
33
|
Dong N, Li HR, Yuan M, Zhang XH, Yu Y. Deinococcus antarcticus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:331-335. [DOI: 10.1099/ijs.0.066324-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A pink-pigmented, non-motile, coccoid bacterial strain, designated G3-6-20T, was isolated from a soil sample collected in the Grove Mountains, East Antarctica. This strain was resistant to UV irradiation (810 J m−2) and slightly more sensitive to desiccation as compared with
Deinococcus radiodurans
. Phylogenetic analyses based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus
Deinococcus
. Highest sequence similarities were with
Deinococcus ficus
CC-FR2-10T (93.5 %),
Deinococcus xinjiangensis
X-82T (92.8 %),
Deinococcus indicus
Wt/1aT (92.5 %),
Deinococcus daejeonensis
MJ27T (92.3 %),
Deinococcus wulumuqiensis
R-12T (92.3 %),
Deinococcus aquaticus
PB314T (92.2 %) and
Deinococcus radiodurans
DSM 20539T (92.2 %). Major fatty acids were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), anteiso-C15 : 0 and C16 : 0. The G+C content of the genomic DNA of strain G3-6-20T was 63.1 mol%. Menaquinone 8 (MK-8) was the predominant respiratory quinone. Based on its phylogenetic position, and chemotaxonomic and phenotypic characteristics, strain G3-6-20T represents a novel species of the genus
Deinococcus
, for which the name Deinococcus antarcticus sp. nov. is proposed. The type strain is G3-6-20T ( = DSM 27864T = CCTCC AB 2013263T).
Collapse
Affiliation(s)
- Ning Dong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China
| | - Hui-Rong Li
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China
| | - Meng Yuan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, PR China
| |
Collapse
|
34
|
Deinococcus puniceus sp. nov., a Bacterium Isolated from Soil-Irradiated Gamma Radiation. Curr Microbiol 2014; 70:464-9. [DOI: 10.1007/s00284-014-0748-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
35
|
Misra CS, Appukuttan D, Kantamreddi VSS, Rao AS, Apte SK. RecombinantD. radioduranscells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioengineered 2014; 3:44-8. [DOI: 10.4161/bbug.3.1.18878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Deinococcus enclensis sp. nov., isolated from a marine sediment sample. Antonie van Leeuwenhoek 2014; 107:141-8. [DOI: 10.1007/s10482-014-0311-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
|
37
|
Vaishampayan P, Roberts AH, Augustus A, Pukall R, Schumann P, Schwendner P, Mayilraj S, Salmassi T, Venkateswaran K. Deinococcus phoenicis sp. nov., an extreme ionizing-radiation-resistant bacterium isolated from the Phoenix Lander assembly facility. Int J Syst Evol Microbiol 2014; 64:3441-3446. [PMID: 25030518 DOI: 10.1099/ijs.0.063107-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated 1P10ME(T), which was resistant to extreme doses of ionizing radiation, pale-pink, non-motile, and a tetrad-forming coccoid was isolated from a cleanroom at the Kennedy Space Center, where the Phoenix spacecraft was assembled. Strain 1P10ME(T) showed optimum growth at 30 °C, with a pH range for growth of 6.5-9.0 and was highly sensitive to sodium chloride, growing only in medium with no added NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1P10ME(T) represents a novel member of the genus Deinococcus, with low sequence similarities (<93.5%) to recognized species of the genus Deinococcus. The predominant cellular fatty acid was C15:1ω6c. This novel strain exhibits extreme resistance to gamma radiation (D10 >8 kGy) and UV (D10 >1000 Jm(-2)). The results of our polyphasic taxonomic analyses suggest that strain 1P10ME(T) represents a novel species of the genus Deinococcus, for which the name Deinococcus phoenicis sp. nov. is proposed. The type strain is 1P10ME(T) ( = NRRL B-59546(T) = DSM 27173(T)).
Collapse
Affiliation(s)
- Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California, Institute of Technology, Pasadena, CA 91109, USA
| | - Anne Hayden Roberts
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Angela Augustus
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Rüdiger Pukall
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Petra Schwendner
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology, Chandigarh 160 036, India
| | - Tina Salmassi
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California, Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
38
|
Theodorakopoulos N, Bachar D, Christen R, Alain K, Chapon V. Exploration of Deinococcus-Thermus molecular diversity by novel group-specific PCR primers. Microbiologyopen 2013; 2:862-72. [PMID: 23996915 PMCID: PMC3831646 DOI: 10.1002/mbo3.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 11/07/2022] Open
Abstract
The deeply branching Deinococcus-Thermus lineage is recognized as one of the most extremophilic phylum of bacteria. In previous studies, the presence of Deinococcus-related bacteria in the hot arid Tunisian desert of Tataouine was demonstrated through combined molecular and culture-based approaches. Similarly, Thermus-related bacteria have been detected in Tunisian geothermal springs. The present work was conducted to explore the molecular diversity within the Deinococcus-Thermus phylum in these extreme environments. A set of specific primers was designed in silico on the basis of 16S rRNA gene sequences, validated for the specific detection of reference strains, and used for the polymerase chain reaction (PCR) amplification of metagenomic DNA retrieved from the Tataouine desert sand and Tunisian hot spring water samples. These analyses have revealed the presence of previously undescribed Deinococcus-Thermus bacterial sequences within these extreme environments. The primers designed in this study thus represent a powerful tool for the rapid detection of Deinococcus-Thermus in environmental samples and could also be applicable to clarify the biogeography of the Deinococcus-Thermus phylum.
Collapse
Affiliation(s)
- Nicolas Theodorakopoulos
- CEA, DSV, IBEB, SBVME, LIPM, F-13108, Saint-Paul-lez-Durance, France; CNRS, UMR 7265, F-13108, Saint-Paul-lez-Durance, France; Université d'Aix-Marseille, F-13108, Saint-Paul-lez-Durance, France; IRSN, PRP-ENV, SERIS, L2BT, F-13115, Saint Paul-lez-Durance, France
| | | | | | | | | |
Collapse
|
39
|
Shakya S, Pradhan B, Smith L, Shrestha J, Tuladhar S. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S250-S255. [PMID: 21868146 DOI: 10.1016/j.jenvman.2011.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 06/29/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation.
Collapse
Affiliation(s)
- S Shakya
- Department of Biotechnology, Kathmandu University, Dhulikhel, Kavre, P.O. Box 6250, Kathmandu, Nepal.
| | | | | | | | | |
Collapse
|
40
|
Achal V, Pan X, Fu Q, Zhang D. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. JOURNAL OF HAZARDOUS MATERIALS 2012; 201-202:178-184. [PMID: 22154871 DOI: 10.1016/j.jhazmat.2011.11.067] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 11/11/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
Arsenic is a highly toxic metalloid and has posed high risk to the environment. As(III) is highly mobile in soil and leached easily into groundwater. The current remediation techniques are not sufficient to immobilize this toxic element. In the present study, an As(III) tolerant bacterium Sporosarcina ginsengisoli CR5 was isolated from As contaminated soil of Urumqi, China. We investigated the role of microbial calcite precipitated by this bacterium to remediate soil contaminated with As(III). The bacterium was able to grow at high As(III) concentration of 50mM. In order to obtain arsenic distribution pattern, five stage soil sequential extraction was carried out. Arsenic mobility was found to significantly decrease in the exchangeable fraction of soil and subsequently the arsenic concentration was markedly increased in carbonated fraction after bioremediation. Microbially induced calcite precipitation (MICP) process in bioremediation was further confirmed by ATR-FTIR and XRD analyses. XRD spectra showed presence of various biomineralization products such as calcite, gwihabaite, aragonite and vaterite in bioremediated soil samples. The results from this study have implications that MICP based bioremediation by S. ginsengisoli is a viable, environmental friendly technology for remediation of the arsenic contaminated sites.
Collapse
Affiliation(s)
- Varenyam Achal
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | | | | | | |
Collapse
|
41
|
Bouraoui H, Aissa MB, Abbassi F, Touzel JP, O'donohue M, Manai M. Characterization of Deinococcus sahariens sp. nov., a radiation-resistant bacterium isolated from a Saharan hot spring. Arch Microbiol 2011; 194:315-22. [PMID: 22012026 DOI: 10.1007/s00203-011-0762-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 11/27/2022]
Abstract
An ultraviolet-radiation-resistant, Gram-positive, orange-pigmented, thermophilic and strictly aerobic cocci was isolated from Saharan water hot spring in Tunisia. The newly isolated bacterium, designated HAN-23(T), was identified based on polyphasic taxonomy including genotypic, phenotypic and chemotaxonomic characterization. Phylogenetic analysis based on 16S rRNA gene sequences placed this strain within Deinococcus genus. However, strain HAN-23(T) is different from recognized species of the genus Deinococcus, showing less than 94.0% similarity values to its closest relatives. The predominant cellular fatty acids determined by gas chromatography were iso-C(15:0), iso-C(17:0) and iso C(17:1) ω9c. The major respiratory quinone was MK-8. The DNA G + C content was 66.9 mol%. DNA-DNA hybridization measurements revealed low DNA relatedness (6%) between the novel isolate and its closest neighbor, the type strain Deinococcus geothermalis DSM 11300. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain HAN-23(T) represents a novel species of the genus Deinococcus, for which the name Deinococcus sahariens sp. nov. is proposed, the type strain being HAN-23(T) (=DSM 18496(T); LMG 23756(T)).
Collapse
Affiliation(s)
- Hanene Bouraoui
- Unité de Biochimie et Biologie Moléculaire, Université de Tunis El Manar, Campus Universitaire, Tunis, Tunisia.
| | | | | | | | | | | |
Collapse
|
42
|
White C, Tancos M, Lytle DA. Microbial community profile of a lead service line removed from a drinking water distribution system. Appl Environ Microbiol 2011; 77:5557-61. [PMID: 21652741 PMCID: PMC3147460 DOI: 10.1128/aem.02446-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/27/2011] [Indexed: 11/20/2022] Open
Abstract
A corroded lead service line was removed from a drinking water distribution system, and the microbial community was profiled using 16S rRNA gene techniques. This is the first report of the characterization of a biofilm on the surface of a corroded lead drinking water service line. The majority of phylotypes have been linked to heavy-metal-contaminated environments.
Collapse
Affiliation(s)
- Colin White
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| | | | | |
Collapse
|
43
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
44
|
Asker D, Awad TS, McLandsborough L, Beppu T, Ueda K. Deinococcus depolymerans sp. nov., a gamma- and UV-radiation-resistant bacterium, isolated from a naturally radioactive site. Int J Syst Evol Microbiol 2011; 61:1448-1453. [DOI: 10.1099/ijs.0.013482-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four gamma- and UV-radiation-resistant bacterial strains, designated TDMA-24T, TDMA-24-2, TDMA-24-3 and TDMA-24-4, were isolated from a fresh-water sample collected at Misasa, Tottori, Japan. Cells of these strains were Gram-reaction-positive, non-motile, non-spore-forming, rod-shaped and formed red colonies. The genomic DNA G+C contents ranged from 70.5 to 70.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolates belong to the genus Deinococcus, the highest sequence similarities being with Deinococcus aquaticus PB314T (98 %) and Deinococcus caeni Ho-08T (97 %). The polar lipid profile of strain TDMA-24T comprised three unidentified phosphoglycolipids, five unidentified glycolipids and seven unidentified polar lipids. MK-8 was the predominant respiratory quinone. Major fatty acids were iso-C15 : 0, C15 : 1ω6c, C15 : 0, C16 : 0 and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c). On the basis of their phylogenetic positions and chemotaxonomic and phenotypic characteristics, the novel isolates represent a novel species of the genus Deinococcus, for which the name Deinococcus depolymerans sp. nov. is proposed. The type strain is TDMA-24T ( = JCM 14369T = NBRC 102115T = CCUG 53609T).
Collapse
Affiliation(s)
- Dalal Asker
- Department of Food Science, University of Massachusetts, 100 Holdsworth Way, Amherst, MA 01003, USA
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, 21545 – El-Shatby, Alexandria, Egypt
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan
| | - Tarek S. Awad
- Department of Food Science, University of Massachusetts, 100 Holdsworth Way, Amherst, MA 01003, USA
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, 100 Holdsworth Way, Amherst, MA 01003, USA
| | - Teruhiko Beppu
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan
| |
Collapse
|
45
|
Pukall R, Zeytun A, Lucas S, Lapidus A, Hammon N, Deshpande S, Nolan M, Cheng JF, Pitluck S, Liolios K, Pagani I, Mikhailova N, Ivanova N, Mavromatis K, Pati A, Tapia R, Han C, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brambilla EM, Rohde M, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Deinococcus maricopensis type strain (LB-34). Stand Genomic Sci 2011; 4:163-72. [PMID: 21677853 PMCID: PMC3111983 DOI: 10.4056/sigs.1633949] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Deinococcus maricopensis (Rainey and da Costa 2005) is a member of the genus Deinococcus, which is comprised of 44 validly named species and is located within the deeply branching bacterial phylum Deinococcus-Thermus. Strain LB-34(T) was isolated from a soil sample from the Sonoran Desert in Arizona. Various species of the genus Deinococcus are characterized by extreme radiation resistance, with D. maricopensis being resistant in excess of 10 kGy. Even though the genomes of three Deinococcus species, D. radiodurans, D. geothermalis and D. deserti, have already been published, no special physiological characteristic is currently known that is unique to this group. It is therefore of special interest to analyze the genomes of additional species of the genus Deinococcus to better understand how these species adapted to gamma- or UV ionizing-radiation. The 3,498,530 bp long genome of D. maricopensis with its 3,301 protein-coding and 66 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
46
|
Freikowski D, Winter J, Gallert C. Hydrogen formation by an arsenate-reducing Pseudomonas putida, isolated from arsenic-contaminated groundwater in West Bengal, India. Appl Microbiol Biotechnol 2010; 88:1363-71. [PMID: 20821202 DOI: 10.1007/s00253-010-2856-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
Anaerobic growth of a newly isolated Pseudomonas putida strain WB from an arsenic-contaminated soil in West Bengal, India on glucose, L: -lactate, and acetate required the presence of arsenate, which was reduced to arsenite. During aerobic growth in the presence of arsenite arsenate was formed. Anaerobic growth of P. putida WB on glucose was made possible presumably by the non-energy-conserving arsenate reductase ArsC with energy derived only from substrate level phosphorylation. Two moles of acetate were generated intermediarily and the reducing equivalents of glycolysis and pyruvate decarboxylation served for arsenate reduction or were released as H(2). Anaerobic growth on acetate and lactate was apparently made possible by arsenate reductase ArrA coupled to respiratory electron chain energy conservation. In the presence of arsenate, both substrates were totally oxidized to CO(2) and H(2) with part of the H(2) serving for respiratory arsenate reduction to deliver energy for growth. The growth yield for anaerobic glucose degradation to acetate was Y (Glucose) = 20 g/mol, leading to an energy coefficient of Y (ATP) = 10 g/mol adenosine-5'-triphosphate (ATP), if the Emden-Meyerhof-Parnas pathway with generation of 2 mol ATP/mol glucose was used. During growth on lactate and acetate no substrate chain phosphorylation was possible. The energy gain by reduction of arsenate was Y (Arsenate) = 6.9 g/mol, which would be little less than one ATP/mol of arsenate.
Collapse
Affiliation(s)
- Dominik Freikowski
- Institut für Ingenieurbiologie und Biotechnologie des Abwassers, Karlsruher Institut für Technologie, Am Fasanengarten, 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
47
|
Shashidhar R, Kumar SA, Misra HS, Bandekar JR. Evaluation of the role of enzymatic and nonenzymatic antioxidant systems in the radiation resistance of Deinococcus. Can J Microbiol 2010; 56:195-201. [PMID: 20453905 DOI: 10.1139/w09-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antioxidant enzymes and antioxidant metabolites appear to have different roles in the oxidative stress resistance responses of radiation-resistant bacteria belonging to the Deinococcus-Thermus group. Twelve distinct strains belonging to 7 Deinococcus species were characterized for their responses to hydrogen peroxide, ciprofloxacin, and ionizing radiation. The levels of catalase and peroxidase activities in these strains showed a positive correlation with resistance to hydrogen peroxide and ciprofloxacin. However, the levels of these enzymes and carotenoids did not appear to contribute significantly to radiation resistance. Our findings support the idea that enzymatic defense systems are not sufficient to account for the extreme radiation resistance of Deinococcus species. Consistent with previously published reports, the Deinococcus strains had high intracellular manganese/iron ratios. No significant correlation was found between intracellular manganese/iron ratios and radiation resistance within different Deinococcus species, suggesting that other components are involved in conferring radiation resistance.
Collapse
|
48
|
Reddy GSN, Pradhan S, Manorama R, Shivaji S. Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. Int J Syst Evol Microbiol 2010; 60:866-870. [DOI: 10.1099/ijs.0.011775-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain RuGl7T was isolated from a soil sample collected at the periphery of the glacial Lake Roopkund in the Himalayan mountain range, India. Cells of RuGl7T were Gram-positive, aerobic, rod-shaped, motile and grew optimally between 15 and 18 °C. Cells of RuGl7T contained 2,4-diaminobutyric acid in the cell-wall peptidoglycan and the major menaquinones were MK-10, MK-11 and MK-12. The polar lipids present were diphosphatidylglycerol and phosphatidylglycerol and an unknown lipid and the major fatty acid was anteiso-C15 : 0. Based on the above characteristics, strain RuGl7T was assigned to the genus Cryobacterium. Strain RuGl7T shared a 16S rRNA gene sequence similarity of 97.0 and 99.0 % with Cryobacterium psychrotolerans JCM 13925T and Cryobacterium psychrophilum JCM 1463T, respectively. However, DNA–DNA relatedness values between strain RuGl7T and C. psychrotolerans and C. psychrophilum were 28 and 23 %, respectively. Furthermore, strain RuGl7T exhibited several phenotypic and genotypic differences when compared with C. psychrotolerans, C. psychrophilum and Cryobacterium mesophilum. Based on these differentiating characteristics, strain RuGl7T was identified as a novel species of the genus Cryobacterium for which the name Cryobacterium roopkundense sp. nov. is proposed. The type strain is RuGl7T (=DSM 21065T=JCM 15131T).
Collapse
Affiliation(s)
- G. S. N. Reddy
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Suman Pradhan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Ruth Manorama
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - S. Shivaji
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
49
|
Balcázar JL, Pintado J, Planas M. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus). Int J Syst Evol Microbiol 2009; 60:892-895. [PMID: 19661512 DOI: 10.1099/ijs.0.011817-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive-staining, motile, rod-shaped, endospore-forming bacterium (BFLP-1( T)) was isolated from faeces of wild long-snouted seahorses ( Hippocampus guttulatus) captured in north-west Spain (Toralla, Galicia). Strain BFLP-1(T) grew at 10-30 degrees C and pH 5.5-9 (optimally at 20 degrees C and pH 7.2) and with 0-7 % (w/v) NaCl (optimally with 2 % NaCl). The G+C content of the DNA was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BFLP-1(T) was a member of the genus Bacillus and was most closely related to Bacillus herbersteinensis D-1,5a(T) (96.6 %), B. shackletonii LMG 18435(T) (96.0 %) and B. isabeliae CVS-8(T) (95.9 %). Chemotaxonomic data (peptidoglycan type, meso-diaminopimelic acid; major menaquinone, MK-7; predominant fatty acids, anteiso-C(15 : 0 ), anteiso-C(17 : 0) and C(16 : 1 )omega11c; major polar lipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown aminoglycophospholipid) supported the affiliation of strain BFLP-1(T) to the genus Bacillus . Comparative analysis of 16S rRNA gene sequences and chemotaxonomic and phenotypic features indicated that strain BFLP-1(T) represents a novel species within the genus Bacillus, for which the name Bacillus galliciensis sp. nov. is proposed. The type strain is BFLP-1( T) (=DSM 21539(T) =LMG 24668(T)).
Collapse
Affiliation(s)
- José Luis Balcázar
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), c/. Eduardo Cabello 6, 36208 Vigo, Spain
| | - José Pintado
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), c/. Eduardo Cabello 6, 36208 Vigo, Spain
| | - Miquel Planas
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), c/. Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
50
|
Yuan M, Zhang W, Dai S, Wu J, Wang Y, Tao T, Chen M, Lin M. Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol 2009; 59:1513-7. [PMID: 19502345 DOI: 10.1099/ijs.0.004523-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive, non-motile, spherical, red-pigmented and facultatively anaerobic bacterium, designated strain I-0(T), was isolated from a sand sample of the Gobi desert in Xinjiang Autonomous Region, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this isolate represents a novel member of the genus Deinococcus, with low sequence similarities (<94 %) to recognized Deinococcus species. The major cellular fatty acids were C(16 : 1)omega7c and C(16 : 0). Its polar lipid profile contained several unidentified glycolipids, phosphoglycolipids, phospholipids, pigments and an aminophospholipid. The peptidoglycan type was Orn-Gly(2) (A3beta) and the predominant respiratory quinone was MK-8. The DNA G+C content was 65.4 mol%. DNA-DNA relatedness between strain I-0(T) and Deinococcus radiodurans ACCC 10492(T) was 37 %. The strain was shown to be extremely resistant to gamma radiation (>15 kGy) and UV light (>600 J m(-2)). On the basis of the phylogenetic, chemotaxonomic and phenotypic data presented, strain I-0(T) represents a novel species of the genus Deinococcus, for which the name Deinococcus gobiensis sp. nov. is proposed. The type strain is I-0(T) (=DSM 21396(T) =CGMCC 1.7299(T)).
Collapse
Affiliation(s)
- Menglong Yuan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | | | |
Collapse
|