1
|
Imhoff JF, Wilmotte A. International Committee on Systematics of Prokaryotes. Subcommittee on the Taxonomy of Phototrophic Bacteria: Minutes of the meetings, 4 August 2015, Tübingen, Germany. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Annick Wilmotte
- InBios-Centre for Protein Engineering, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Okamoto T, Shinjo R, Nishihara A, Uesaka K, Tanaka A, Sugiura D, Kondo M. Genotypic Variation of Endophytic Nitrogen-Fixing Activity and Bacterial Flora in Rice Stem Based on Sugar Content. FRONTIERS IN PLANT SCIENCE 2021; 12:719259. [PMID: 34447404 PMCID: PMC8383490 DOI: 10.3389/fpls.2021.719259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 05/14/2023]
Abstract
Enhancement of the nitrogen-fixing ability of endophytic bacteria in rice is expected to result in improved nitrogen use under low-nitrogen conditions. Endophytic nitrogen-fixing bacteria require a large amount of energy to fix atmospheric nitrogen. However, it is unknown which carbon source and bacteria would affect nitrogen-fixing activity in rice. Therefore, this study examined genotypic variations in the nitrogen-fixing ability of rice plant stem as affected by non-structural carbohydrates and endophytic bacterial flora in field-grown rice. In the field experiments, six varieties and 10 genotypes of rice were grown in 2017 and 2018 to compare the acetylene reduction activity (nitrogen-fixing activity) and non-structural carbohydrates (glucose, sucrose, and starch) concentration in their stems at the heading stage. For the bacterial flora analysis, two genes were amplified using a primer set of 16S rRNA and nitrogenase (NifH) gene-specific primers. Next, acetylene reduction activity was correlated with sugar concentration among genotypes in both years, suggesting that the levels of soluble sugars influenced stem nitrogen-fixing activity. Bacterial flora analysis also suggested the presence of common and genotype-specific bacterial flora in both 16S rRNA and nifH genes. Similarly, bacteria classified as rhizobia, such as Bradyrhizobium sp. (Alphaproteobacteria) and Paraburkholderia sp. (Betaproteobacteria), were highly abundant in all rice genotypes, suggesting that these bacteria make major contributions to the nitrogen fixation process in rice stems. Gammaproteobacteria were more abundant in CG14 as well, which showed the highest acetylene reduction activity and sugar concentration among genotypes and is also proposed to contribute to the higher amount of nitrogen-fixing activity.
Collapse
Affiliation(s)
- Takanori Okamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Takanori Okamoto
| | - Rina Shinjo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Arisa Nishihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Motohiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Motohiko Kondo
| |
Collapse
|
3
|
Li FL, Wang XT, Shan JJ, Li S, Zhang YX, Li XZ, Li DA, Li WJ, Wang L. Oleiliquidispirillum nitrogeniifigens gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from oil reservoir water. Int J Syst Evol Microbiol 2020; 70:3468-3474. [PMID: 32369003 DOI: 10.1099/ijsem.0.004200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative, spiral-shaped bacterium, designated strain 64-1T, was isolated from oil reservoir water collected from Liaohe oilfield, north-eastern China. Growth occurred at 15-55 °C and pH 6.0-10.0. The sole respiratory quinone was Q-10. The predominant cellular fatty acids were summed feature 8 (C18 : 1 ω7c /C18 : 1 ω6c), C16 : 0 and C19 : 0 cyclo ω8c. The polar lipids consisted of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), an unidentified aminophospholipid (UAPL), an unidentified aminolipid (UAL) and two unidentified polar lipids (UPL). The genomic DNA G+C content of strain 64-1T was 64.5 mol%. Strain 64-1T shared the highest 16S rRNA gene sequence similarities with Phaeospirillum chandramohanii JA145T (92.0 %) and Telmatospirillum siberiense 26-4b1T (91.8 %). In the phylogenetic trees, the strain constituted a sub-cluster within the family Rhodospirillaceae. Based on the results of morphological, physiological, biochemical and phylogenetic analysis, strain 64-1T represents a new species of a novel genus within the family Rhodospirillaceae, for which the name Oleiliquidispirillum nitrogeniifigens gen. nov., sp. nov. is proposed. The type strain is 64-1T (=CGMCC 1.16798T=LMG 31399T).
Collapse
Affiliation(s)
- Fang-Ling Li
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xiao-Tong Wang
- Unovation Bio & EP Technology Company Limited, Beijing, 100029, PR China
| | - Jian-Jie Shan
- Unovation Bio & EP Technology Company Limited, Beijing, 100029, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ya-Xi Zhang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xi-Zhe Li
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Langfang, Hebei, 065007, PR China.,Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing, 10083, PR China
| | - Dong-An Li
- Unovation Bio & EP Technology Company Limited, Beijing, 100029, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lei Wang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
4
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
5
|
Noviana Z, Vieira S, Pascual J, Fobofou SAT, Rohde M, Spröer C, Bunk B, Overmann J. Hypericibacter terrae gen. nov., sp. nov. and Hypericibacter adhaerens sp. nov., two new members of the family Rhodospirillaceae isolated from the rhizosphere of Hypericum perforatum. Int J Syst Evol Microbiol 2020; 70:1850-1860. [PMID: 31958043 DOI: 10.1099/ijsem.0.003983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of the family Rhodospirillaceae were isolated from the rhizosphere of the medicinal plant Hypericum perforatum. Cells of both strains were Gram-stain-negative, motile by means of a single polar flagellum, non-spore-forming, non-capsulated, short rods that divided by binary fission. Colonies were small and white. Strains R5913T and R5959T were oxidase-positive, mesophilic, neutrophilic and grew optimally without NaCl. Both grew under aerobic and microaerophilic conditions and on a limited range of substrates with best results on yeast extract. Major fatty acids were C19 : 0 cyclo ω8c and C16 : 0; in addition, C18 : 1ω7c was also found as a predominant fatty acid in strain R5913T. The major respiratory quinone was ubiquinone 10 (Q-10). The DNA G+C contents of strains R5913T and R5959T were 66.0 and 67.4 mol%, respectively. 16S rRNA gene sequence comparison revealed that the closest relatives (<92 % similarity) of the strains are Oceanibaculum pacificum MCCC 1A02656T, Dongia mobilis CGMCC 1.7660T, Dongia soli D78T and Dongia rigui 04SU4-PT. The two novel strains shared 98.6 % sequence similarity and represent different species on the basis of low average nucleotide identity of their genomes (83.8 %). Based on the combined phenotypic, genomic and phylogenetic investigations, the two strains represent two novel species of a new genus in the family Rhodospirillaceae, for which the name Hypericibacter gen. nov. is proposed, comprising the type species Hypericibacter terrae sp. nov. (type strain R5913T=DSM 109816T=CECT 9472T) and Hypericibacter adhaerens sp. nov. (type strain R5959T=DSM 109817T=CECT 9620T).
Collapse
Affiliation(s)
- Zahra Noviana
- Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Selma Vieira
- Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Javier Pascual
- Present address: Darwin Bioprospecting Excellence, S.L., Paterna, Valencia, Spain.,Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Serge Alain Tanemossu Fobofou
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle Saale, Germany.,Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jorg Overmann
- Braunschweig University of Technology, Universitätsplatz 2, 38106, Braunschweig, Germany.,Leibniz-Institut DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Kim J, Jeong SE, Khan SA, Jeon CO. Hwanghaeella grinnelliae gen. nov., sp. nov., isolated from a marine red alga. Int J Syst Evol Microbiol 2019; 69:3544-3550. [DOI: 10.1099/ijsem.0.003656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jungeun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Shehzad Abid Khan
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Wang Y, Casaburi G, Lin W, Li Y, Wang F, Pan Y. Genomic evidence of the illumination response mechanism and evolutionary history of magnetotactic bacteria within the Rhodospirillaceae family. BMC Genomics 2019; 20:407. [PMID: 31117953 PMCID: PMC6532209 DOI: 10.1186/s12864-019-5751-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetotactic bacteria (MTB) are ubiquitous in natural aquatic environments. MTB can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light. However, the potential mechanism by which MTB respond to illumination and their evolutionary relationship with photosynthetic bacteria remain elusive. RESULTS We utilized genomes of the well-sequenced genus Magnetospirillum, including the newly sequenced MTB strain Magnetospirillum sp. XM-1 to perform a comprehensive genomic comparison with phototrophic bacteria within the family Rhodospirillaceae regarding the illumination response mechanism. First, photoreceptor genes were identified in the genomes of both MTB and phototrophic bacteria in the Rhodospirillaceae family, but no photosynthesis genes were found in the MTB genomes. Most of the photoreceptor genes in the MTB genomes from this family encode phytochrome-domain photoreceptors that likely induce red/far-red light phototaxis. Second, illumination also causes damage within the cell, and in Rhodospirillaceae, both MTB and phototrophic bacteria possess complex but similar sets of response and repair genes, such as oxidative stress response, iron homeostasis and DNA repair system genes. Lastly, phylogenomic analysis showed that MTB cluster closely with phototrophic bacteria in this family. One photoheterotrophic genus, Phaeospirillum, clustered within and displays high genomic similarity with Magnetospirillum. Moreover, the phylogenetic tree topologies of magnetosome synthesis genes in MTB and photosynthesis genes in phototrophic bacteria from the Rhodospirillaceae family were reasonably congruent with the phylogenomic tree, suggesting that these two traits were most likely vertically transferred during the evolution of their lineages. CONCLUSION Our new genomic data indicate that MTB and phototrophic bacteria within the family Rhodospirillaceae possess diversified photoreceptors that may be responsible for phototaxis. Their genomes also contain comprehensive stress response genes to mediate the negative effects caused by illumination. Based on phylogenetic studies, most of MTB and phototrophic bacteria in the Rhodospirillaceae family evolved vertically with magnetosome synthesis and photosynthesis genes. The ancestor of Rhodospirillaceae was likely a magnetotactic phototrophic bacteria, however, gain or loss of magnetotaxis and phototrophic abilities might have occurred during the evolution of ancestral Rhodospirillaceae lineages.
Collapse
Affiliation(s)
- Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Giorgio Casaburi
- Departments of Microbiology and Cell Science, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL 32953 USA
| | - Wei Lin
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxin Pan
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
8
|
Raju K, Sekar J, Vaiyapuri Ramalingam P. Salinicola rhizosphaerae sp. nov., isolated from the rhizosphere of the mangrove Avicennia marina L. Int J Syst Evol Microbiol 2016; 66:1074-1079. [DOI: 10.1099/ijsem.0.000837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kathiravan Raju
- Microbiology Department, M.S. Swaminathan Research Foundation, 3rd Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Jegan Sekar
- Microbiology Department, M.S. Swaminathan Research Foundation, 3rd Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Department, M.S. Swaminathan Research Foundation, 3rd Cross Street, Taramani Institutional Area, Chennai 600113, India
| |
Collapse
|
9
|
Sheu SY, Chen YL, Young CC, Chen WM. Lacibacterium aquatile gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a freshwater lake. Int J Syst Evol Microbiol 2013; 63:4797-4804. [DOI: 10.1099/ijs.0.055145-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated LTC-2T was isolated from a freshwater lake in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain LTC-2T were Gram-reaction-negative, facultatively anaerobic, poly-β-hydroxybutyrate-accumulating, motile by means of a monopolar flagellum, non-spore-forming, slightly curved rods surrounded by a thick capsule and formed creamy white colonies. Growth occurred at 10–37 °C (optimum, 20–30 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0) and with 0–1.0 % NaCl (optimum, 0 %). The predominant fatty acids were C18 : 1ω7c, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The major isoprenoid quinone was Q-10 and the DNA G+C content was 58.5 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, two uncharacterized phospholipids and two uncharacterized aminophospholipids. The major polyamines were putrescine, homospermidine and spermidine. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain LTC-2T forms a distinct lineage with respect to closely related genera in the family
Rhodospirillaceae
, most closely related to the genera
Elstera
and
Dongia
, and the levels of 16S rRNA gene sequence similarity with respect to the type species of related genera were less than 94 %. On the basis of the genotypic and phenotypic data, strain LTC-2T represents a novel genus and species of the family
Rhodospirillaceae
, for which the name Lacibacterium aquatile gen. nov., sp. nov. is proposed. The type strain is LTC-2T ( = BCRC 80445T = LMG 26999T = KCTC 32017T).
Collapse
Affiliation(s)
- Shih-Yi Sheu
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142 Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Yi-Ling Chen
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142 Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Chiu-Chung Young
- College of Agriculture and Natural Resources, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Wen-Ming Chen
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142 Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
10
|
Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L, Sasikala C, Ramana CV. Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 2013; 63:4484-4488. [PMID: 23907221 DOI: 10.1099/ijs.0.049726-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of strain MSSRFBL1(T), isolated from chickpea rhizosphere soil from Kannivadi, India, was determined. Strain MSSRFBL1(T) formed bluish black colonies, stained Gram-negative and was motile, aerobic, capable of fixing dinitrogen, oxidase-negative and catalase-positive. Q-10 was the major respiratory quinone. Major fatty acids of strain MSSRFBL1(T) were C18 : 1ω7c and C19 : 0cycloω8c. Minor amounts of C18 : 0, C12 : 0, C14 : 0 3-OH, C18 : 0 3-OH, C16 : 0, C16 : 1ω6c/C16 : 1ω7c, C17 : 0 3-OH and C20 : 1ω7c were also present. Polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine and two unidentified glycolipids. Bacteriohopane derivatives (BHD1 and 2), diplopterol, diploptene, bishomohopanediol, adenosylhopane and 2β-methyl bacteriohopanetetrol were the major hopanoids of strain MSSRFBL1(T). The genomic DNA G+C content was 71 mol%. EzTaxon-e-based blast analysis of the 16S rRNA gene indicated the highest similarity of strain MSSRFBL1(T) to Ensifer adhaerens LMG 20216(T) (97.3 %) and other members of the genus Ensifer (<96.9 %) in the family Rhizobiaceae of the class Alphaproteobacteria. However, phylogenetic analysis based on 16S rRNA, recA, thrC and dnaK gene sequences showed distinct out-grouping from the recognized genera of the family Rhizobiaceae. Based on phenotypic, genotypic and chemotaxonomic characters, strain MSSRFBL1(T) represents a novel species in a new genus in the family Rhizobiaceae for which the name Ciceribacter lividus gen. nov., sp. nov. is proposed. The type strain of Ciceribacter lividus is MSSRFBL1(T) ( = DSM 25528(T) = KCTC 32403(T)).
Collapse
Affiliation(s)
- R Kathiravan
- Microbiology Department, M. S. Swaminathan Research Foundation, 3rd Cross street, Taramani institutional area, Chennai 600113, India
| | - S Jegan
- Microbiology Department, M. S. Swaminathan Research Foundation, 3rd Cross street, Taramani institutional area, Chennai 600113, India
| | - V Ganga
- Microbiology Department, M. S. Swaminathan Research Foundation, 3rd Cross street, Taramani institutional area, Chennai 600113, India
| | - V R Prabavathy
- Microbiology Department, M. S. Swaminathan Research Foundation, 3rd Cross street, Taramani institutional area, Chennai 600113, India
| | - L Tushar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, PO Central University, Gachibowli, Hyderabad 500046, India
| | - Ch Sasikala
- Bacterial Discovery laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, PO Central University, Gachibowli, Hyderabad 500046, India
| |
Collapse
|