1
|
Purahong W, Hossen S, Nawaz A, Sadubsarn D, Tanunchai B, Dommert S, Noll M, Ampornpan LA, Werukamkul P, Wubet T. Life on the Rocks: First Insights Into the Microbiota of the Threatened Aquatic Rheophyte Hanseniella heterophylla. FRONTIERS IN PLANT SCIENCE 2021; 12:634960. [PMID: 34194446 PMCID: PMC8238419 DOI: 10.3389/fpls.2021.634960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/15/2021] [Indexed: 05/15/2023]
Abstract
Little is known about microbial communities of aquatic plants despite their crucial ecosystem function in aquatic ecosystems. Here, we analyzed the microbiota of an aquatic rheophyte, Hanseniella heterophylla, growing at three areas differing in their degree of anthropogenic disturbance in Thailand employing a metabarcoding approach. Our results show that diverse taxonomic and functional groups of microbes colonize H. heterophylla. Proteobacteria, Actinobacteria, Dothideomycetes, and Sordariomycetes form the backbone of the microbiota. Surprisingly, the beneficial microbes reported from plant microbiomes in terrestrial habitats, such as N-fixing bacteria and ectomycorrhizal fungi, were also frequently detected. We showed that biofilms for attachment of H. heterophylla plants to rocks may associate with diverse cyanobacteria (distributed in eight families, including Chroococcidiopsaceae, Coleofasciculaceae, Leptolyngbyaceae, Microcystaceae, Nostocaceae, Phormidiaceae, Synechococcaceae, and Xenococcaceae) and other rock biofilm-forming bacteria (mainly Acinetobacter, Pseudomonas, and Flavobacterium). We found distinct community compositions of both bacteria and fungi at high and low anthropogenic disturbance levels regardless of the study areas. In the highly disturbed area, we found strong enrichment of Gammaproteobacteria and Tremellomycetes coupled with significant decline of total bacterial OTU richness. Bacteria involved with sulfamethoxazole (antibiotic) degradation and human pathogenic fungi (Candida, Cryptococcus, Trichosporon, and Rhodotorula) were exclusively detected as indicator microorganisms in H. heterophylla microbiota growing in a highly disturbed area, which can pose a major threat to human health. We conclude that aquatic plant microbiota are sensitive to anthropogenic disturbance. Our results also unravel the potential use of this plant as biological indicators in remediation or treatment of such disturbed ecosystems.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- *Correspondence: Witoon Purahong, ;
| | - Shakhawat Hossen
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Institute of Ecology and Evolution, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ali Nawaz
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Garching, Germany
| | - Dolaya Sadubsarn
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Sven Dommert
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - La-aw Ampornpan
- Department of Biology, Srinakharinwirot University, Bangkok, Thailand
| | - Petcharat Werukamkul
- Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
- Petcharat Werukamkul,
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Terada A, Komatsu D, Ogawa T, Flamandita D, Sahlan M, Nishimura M, Yohda M. Isolation of cyanide-degrading bacteria and molecular characterization of its cyanide-degrading nitrilase. Biotechnol Appl Biochem 2020; 69:183-189. [PMID: 33377552 DOI: 10.1002/bab.2095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/25/2020] [Indexed: 11/07/2022]
Abstract
Hydrogen cyanide is an industrially important chemical, and its annual production is more than 1.5 million tons. Because of its toxicity, the cyanide-containing effluents from industries have caused many environmental problems. Among various methods to treat the contaminated soils or water, the biological degradation is regarded to be promising. We isolated two cyanide-degrading microorganisms, Pedobacter sp. EBE-1 and Bacillus sp. EBE-2, from soil contaminated with cyanide. Among these bacteria, Bacillus sp. EBE-2 exhibited significantly a high cyanide-degrading ability. Bacillus sp. EBE-2 might be used for the remediation of cyanide contaminated water or soil. A nitrilase gene was cloned from Bacillus sp. EBE-2. Bacillus nitrilase was expressed in Escherichia coli and purified. Bacillus nitrilase exhibited cyanide-degrading activity as a large oligomer. Since formic acid formation from cyanide was observed, Bacillus nitrilase is likely to be a cyanide hydrolase. Although there exist various homologous enzymes annotated as carbon-nitrogen family hydrolases, this is the first report on the cyanide degrading activity. The structure and catalytic site of Bacillus nitrilase were studied by homology modeling and molecular docking simulation.
Collapse
Affiliation(s)
- Ayane Terada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Daisuke Komatsu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
- EnBio Engineering, Chiyoda, Tokyo, Japan
| | - Takahiro Ogawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Darin Flamandita
- Department of Chemical Engineering, Universitas Indonesia, Depok, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Universitas Indonesia, Depok, Indonesia
| | | | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
3
|
Eijsackers H, Reinecke A, Reinecke S, Maboeta M. Heavy Metal Threats to Plants and Soil Life in Southern Africa: Present Knowledge and Consequences for Ecological Risk Assessment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 249:29-70. [PMID: 30806801 DOI: 10.1007/398_2019_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent times there has been remarkable development in the field of soil ecotoxicology and risk assessment (RA) models. It is, however, debatable if these RA models are robust representatives for worldwide relevance. In order to investigate this, the current overview aims to address heavy metal threats to soil life in southern Africa by investigating present knowledge and consequences for RA using research in southern Africa as a case. To this end, the focus is on southern African soils, soil life and living conditions. To critically discuss these issues, we report on extensive research conducted in the southern African context and looked how comparable these findings are to RA models employed in the western world. This is done by providing an inventory of selected studies focused on the ecotoxicity of metals towards soil life. It is concluded that there is a dearth of information on southern African soil life, most of which are laboratory-based studies carried out by a handful of researchers. Future research incorporating the available information into a soil ecosystem assessment procedure is paramount. It is recommended that a starting point to tackle this might be the development of holistic sight-specific guidelines for ecological risk assessment at larger spatial scales (km2) which takes into cognizance landscapes, vegetation and faunal characteristics.
Collapse
Affiliation(s)
- Herman Eijsackers
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Wageningen University & Research, Wageningen, The Netherlands
| | - Adriaan Reinecke
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Sophié Reinecke
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Mark Maboeta
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
4
|
Recognition and delineation of yeast genera based on genomic data: Lessons from Trichosporonales. Fungal Genet Biol 2019; 130:31-42. [DOI: 10.1016/j.fgb.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/19/2019] [Accepted: 04/20/2019] [Indexed: 02/03/2023]
|
5
|
Péter G, Mounier J, Garnier L, Soós D, Dlauchy D. Cutaneotrichosporon suis sp. nov., a lipolytic yeast species from food and food-related environment. Int J Syst Evol Microbiol 2019; 69:2367-2371. [PMID: 31145674 DOI: 10.1099/ijsem.0.003485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two conspecific yeast strains, which based on DNA sequence comparisons represented an undescribed species in the order Trichosporonales were isolated during two independent studies in Hungary and France. One of them (NCAIM Y.02224) was recovered from minced pork in Hungary while the other one (UBOCC-A-218003) was isolated from the air of a dairy plant in France. The two strains shared identical nucleotide sequences in the D1/D2 domain of the nuclear large subunit (LSU) rRNA gene and in the internal transcribed spacer (ITS) region. Analysis of the concatenated DNA sequences for the ITS region and D1/D2 domain of the LSU rRNA gene indicated that the novel species belongs to the recently erected genus Cutaneotrichosporon. According to sequence comparisons and phylogenetic analysis, the novel species is most closely related to Cutaneotrichosporon curvatum (formerly Cryptococcus curvatus), which is often associated with humans and warm-blooded animals. The physiological characteristics of this novel species are also very similar to that of Cutaneotrichosporon curvatum. The only clear-cut difference is that, unlike C. curvatum, the novel species does not utilize imidazole as a nitrogen-source. The species name Cutaneotrichosporon suis sp. nov. is proposed to accommodate the above-noted two strains.
Collapse
Affiliation(s)
- Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16., H-1118 Budapest, Hungary
| | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | - Lucille Garnier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | - Dorottya Soós
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16., H-1118 Budapest, Hungary.,Present address: National Food Chain Safety Office/ Food Chain Safety Center, Nonprofit Ltd., Keleti Károly utca 24., H-1024 Budapest, Hungary
| | - Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16., H-1118 Budapest, Hungary
| |
Collapse
|
6
|
van der Bruggen T, Kolecka A, Theelen B, Kwakkel-van Erp JM, Arets B, Boekhout T. Cutaneotrichosporon ( Cryptococcus) cyanovorans, a basidiomycetous yeast, isolated from the airways of cystic fibrosis patients. Med Mycol Case Rep 2018; 22:18-20. [PMID: 30094133 PMCID: PMC6073082 DOI: 10.1016/j.mmcr.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) patients are colonized with a multitude of bacteria and fungi. From respiratory samples of two CF patients in our institute, a difficult to identify yeast was isolated repeatedly. This yeast was eventually identified as Cutaneotrichosporon (Cryptococcus) cyanovorans by internal transcribed spacer (ITS) and ribosomal large subunit (LSU) sequencing. C. cyanovorans is a basidiomycetous yeast originally reported as environmental isolate from South African soil and has not been described before as clinical isolate from CF patients.
Collapse
Affiliation(s)
- Tjomme van der Bruggen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Corresponding author.
| | - Anna Kolecka
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | | | - Bert Arets
- Department of Paediatric Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
- Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai 200003, China
| |
Collapse
|
7
|
Murugesan T, Durairaj N, Ramasamy M, Jayaraman K, Palaniswamy M, Jayaraman A. Analeptic agent from microbes upon cyanide degradation. Appl Microbiol Biotechnol 2017; 102:1557-1565. [PMID: 29285551 DOI: 10.1007/s00253-017-8674-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/15/2023]
Abstract
Microbes being the initial form of life and ubiquitous in occurrence, they adapt to the environment quickly. The microbial metabolism undergoes alteration to ensure conducive environment either by degrading the toxic substances or producing toxins to protect themselves. The presence of cyanide waste triggers the cyanide degrading enzymes in the microbes which facilitate the microbes to utilize the cyanide for its growth. To enable the degradation of cyanide, the microbes also produce the necessary cofactors and enhancers catalyzing the degradation pathways. Pterin, a cofactor of the enzyme cyanide monooxygenase catalyzing the oxidation of cyanide, is considered to be a potentially bioactive compound. Besides that, the pterins also act as cofactor for the enzymes involved in neurotransmitter metabolism. The therapeutic values of pterin as neuromodulating agent validate the necessity to pursue the commercial production of pterin. Even though chemical synthesis is possible, the non-toxic methods of pterin production need to be given greater attention in future.
Collapse
Affiliation(s)
- Thandeeswaran Murugesan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Nisshanthini Durairaj
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahendran Ramasamy
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Karunya Jayaraman
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Muthusamy Palaniswamy
- Department of Microbiology, Karpagam University, Coimbatore, Tamil Nadu, 641021, India
| | - Angayarkanni Jayaraman
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
8
|
Mirizadeh S, Yaghmaei S, Ghobadi Nejad Z. Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM). JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:85. [PMID: 24921051 PMCID: PMC4036835 DOI: 10.1186/2052-336x-12-85] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 05/05/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Biodegradation of free cyanide from industrial wastewaters has been proven as a viable and robust method for treatment of wastewaters containing cyanide. RESULTS Cyanide degrading bacteria were isolated from a wastewater treatment plant for coke-oven-gas condensate by enrichment culture technique. Five strains were able to use cyanide as the sole nitrogen source under alkaline conditions and among them; one strain (C2) was selected for further studies on the basis of the higher efficiency of cyanide degradation. The bacterium was able to tolerate free cyanide at concentrations of up to 500 ppm which makes it a good potentially candidate for the biological treatment of cyanide contaminated residues. Cyanide degradation corresponded with growth and reached a maximum level 96% during the exponential phase. The highest growth rate (1.23 × 10(8)) was obtained on day 4 of the incubation time. Both glucose and fructose were suitable carbon sources for cyanotrophic growth. No growth was detected in media with cyanide as the sole carbon source. Four control factors including, pH, temperature, agitation speed and glucose concentration were optimized according to central composite design in response surface method. Cyanide degradation was optimum at 34.2°C, pH 10.3 and glucose concentration 0.44 (g/l). CONCLUSIONS Bacterial species degrade cyanide into less toxic products as they are able to use the cyanide as a nitrogen source, forming ammonia and carbon dioxide as end products. Alkaliphilic bacterial strains screened in this study evidentially showed the potential to possess degradative activities that can be harnessed to remediate cyanide wastes.
Collapse
Affiliation(s)
- Shabnam Mirizadeh
- Department of Chemical and Petroleum Engineering, Biotechnology Research Center, Sharif University of Technology, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Biotechnology Research Center, Sharif University of Technology, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Department of Chemical and Petroleum Engineering, Biotechnology Research Center, Sharif University of Technology, Tehran, Iran
| |
Collapse
|