1
|
Min H, O'Loughlin EJ, Kwon MJ. Anaerobic microbial metabolism in soil columns affected by highly alkaline pH: Implication for biogeochemistry near construction and demolition waste disposal sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122127. [PMID: 39128342 DOI: 10.1016/j.jenvman.2024.122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/29/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Construction and demolition wastes (CDWs) have become a significant environmental concern due to urbanization. CDWs in landfill sites can generate high-pH leachate and various constituents (e.g., acetate and sulfate) following the dissolution of cement material, which may affect subsurface biogeochemical properties. However, the impact of CDW leachate on microbial reactions and community compositions in subsurface environments remains unclear. Therefore, we created columns composed of layers of concrete debris containing-soil (CDS) and underlying CDW-free soil, and fed them artificial groundwater with or without acetate and/or sulfate. In all columns, the initial pH 5.6 of the underlying soil layer rapidly increased to 10.8 (without acetate and sulfate), 10.1 (with sulfate), 10.1 (with acetate), and 8.3 (with acetate and sulfate) within 35 days. Alkaliphilic or alkaline-resistant microbes including Hydrogenophaga, Silanimonas, Algoriphagus, and/or Dethiobacter were dominant throughout the incubation in all columns, and their relative abundance was highest in the column without acetate and sulfate (50.7-86.6%). Fe(III) and sulfate reduction did not occur in the underlying soil layer without acetate. However, in the column with acetate alone, pH was decreased to 9.9 after day 85 and Fe(II) was produced with an increase in the relative abundance of Fe(III)-reducing bacteria up to 9.1%, followed by an increase in the methanogenic archaea Methanosarcina, suggestive of methanogenesis. In the column with both acetate and sulfate, Fe(III) and sulfate reduction occurred along with an increase in both Fe(III)- and sulfate-reducing bacteria (19.1 and 17.7%, respectively), while Methanosarcina appeared later. The results demonstrate that microbial Fe(III)- and sulfate-reduction and acetoclastic methanogenesis can occur even in soils with highly alkaline pH resulting from the dissolution of concrete debris.
Collapse
Affiliation(s)
- Haeun Min
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Meng L, Tomita R, Yoshida T, Yoshida N. Soil organic matter and nutrient availability affect the applicability of low-carbon energy source in Dehalococcoides-augmented soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132251. [PMID: 37591166 DOI: 10.1016/j.jhazmat.2023.132251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
Dehalococcoides is a functional microorganism that completely dechlorinates trichloroethene (TCE). Augmentation with pure Dehalococcoides is important for reducing environmental disturbances that accompany bioaugmentation. However, the applicability of Dehalococcoides-bioaugmentation to contaminated soils is unclear. In this study, seven low-carbon energy sources (methanol, formate, acetate, ethanol, lactate, citrate, and benzoate) were used as electron donors for Dehalococcides to evaluate its applicability in remediating TCE-contaminated soils. Soil microcosms supplemented with ethanol, formate, or lactate showed relatively high dechlorination activity within 111-180 days. The functional gene profiles predicted by PICRUSt2 from 16 S rRNA gene sequences were similar in the proportions of dehydrogenases, which initiate electron donor oxidation, in all soils and did not seem to reflect Dehalococcoides-bioaugmentation applicability. Soils with higher organic matter content (>3.2%; dry weight base) and protein concentration (>1.6 µg/mL) supported complete dechlorination. These results suggest that organic matter and nutrient availability mainly affect successful TCE dechlorination in Dehalococcoides-augmented soils. The study offers significant experimental support for comprehending the suitability of low-carbon energy sources in successful bioaugmentation, aiming to mitigate environmental disturbances associated with the process.
Collapse
Affiliation(s)
- Lingyu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan.
| | - Ryuya Tomita
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan.
| | - Tomoki Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan.
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan.
| |
Collapse
|
3
|
Santos AMD, Costa JM, Sancinetti GP, Rodriguez RP. Impacts of phosphorus and nitrogen absence on microbial diversity and sulfate removal in anaerobic batch reactors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:563-569. [PMID: 37085964 DOI: 10.1080/10934529.2023.2203638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfate-rich effluents have been successfully treated in anaerobic reactors using sulfate-reducing bacteria (SRB). Many authors have demonstrated that these systems require nitrogen and phosphorous supplementation to achieve high sulfate removal rates. However, the resource ratio theory assumes that some species can be dominant according to the nutritional relations used or even without external nutrient supplementation. Thus, this study evaluated the SRB communities in batch reactors without external nitrogen and phosphorus sources based on most probable number (MPN) quantification, denaturing gradient gel electrophoresis (DGGE) analyses and sequencing. The sulfate and chemical oxygen demand (COD) removal and kinetic parameters were also determined. After 100 days of operation, the sulfate and COD removal achieved 71.8 ± 10% and 86.5 ± 10%, respectively. The SRB population increased from 8.106 to 4 × 1012 MPN 100 mL-1, and the richness of SRB bands was much higher at the end of the experiment compared to the inoculum. In addition, the sequenced bands from SRB-DGGE showed similarities to Desulfacinum infernum, Desulfobulbus sp, Syntrophobacter and Desulfomicrobium aestuarii-related sequences. Therefore, biological treatment of acid mine drainage wastewater was effective in the absence of nutrients, lowering costs and providing high sulfate removal efficiency.
Collapse
Affiliation(s)
- Angélica Marcia Dos Santos
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Giselle Patrícia Sancinetti
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| | - Renata Piacentini Rodriguez
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| |
Collapse
|
4
|
Chakraborty A, Suchy M, Hubert CRJ, Ryan MC. Vertical stratification of microbial communities and isotope geochemistry tie groundwater denitrification to sampling location within a nitrate-contaminated aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153092. [PMID: 35038526 DOI: 10.1016/j.scitotenv.2022.153092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Nitrate pollution is a major threat to groundwater quality in agricultural areas. Natural attenuation of nitrate in contaminated aquifers is mediated by denitrifying microbial populations in anoxic environments. Vertical distribution of denitrifying microbial communities in aquifers is greatly influenced by groundwater redox conditions, local hydrogeological parameters, and seasonal variability in groundwater flow and recharge. In this study, we investigated groundwater geochemistry and the composition of bacterial and archaeal communities with increasing depth in a shallow nitrate-contaminated aquifer in British Columbia, Canada. High-resolution passive diffusion sampling was conducted to collect groundwater at 10-cm intervals from 4 to 20 m below ground surface (mbgs) in the aquifer. Geochemical analyses of major ions indicated a general shift in the groundwater chemistry below 16 mbgs including decreasing chloride concentrations that suggest two-end member mixing of shallow and deep groundwater with different chemistries. A redoxcline was further observed within a 2 m transition zone at 18-20 mbgs characterized by sharp declines in nitrate concentrations and increases in sulfate and total inorganic carbon. Excursions in δ15N-NO3- and δ18O-NO3- in the same depth interval are consistent with denitrification, and a concomitant decrease in δ34S-SO42- suggested that denitrification was coupled to sulfide or sulfur oxidation. Microbial communities within this depth interval were significantly dissimilar to those above and below, featuring putative lithotrophic denitrifying bacteria belonging to the genera Sulfurifustis, Sulfuritalea and Sulfuricella. These lineages were detected in greatest abundance at 19 mbgs while the abundances of putative heterotrophic sulfate-reducing bacteria belonging to the genus Desulfosporosinus were greatest at 20 mbgs. In addition to help distinguish denitrification from mixing-induced changes in groundwater chemistry, the above observed vertical stratification of the microbial key players connects nitrate removal to the locations of the aquifer sampled.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Martin Suchy
- Environment and Climate Change Canada, Vancouver, British Columbia, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - M Cathryn Ryan
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Lee S, O'Loughlin EJ, Kwon MJ. Impact of organic acids and sulfate on the biogeochemical properties of soil from urban subsurface environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112756. [PMID: 33984641 DOI: 10.1016/j.jenvman.2021.112756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/03/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Urban subsurface environments are often different from undisturbed subsurface environments due to the impacts of human activities. For example, deterioration of underground infrastructure can introduce elevated levels of Ca, Fe, and heavy metals into subsurface soils and groundwater. Likewise, leakage from sewer systems can lead to contamination by organic C, N, S, and P. However, the impact of these organic and inorganic compounds on biogeochemical processes including microbial redox reactions, mineral transformations, and microbial community transitions in urban subsurface environments is poorly understood. Here we conducted a microcosm experiment with soil samples from an urban construction site to investigate the possible biotic and abiotic processes impacted when sulfate and acetate or lactate were introduced into an urban subsurface environment. In the top-layer soil (0-0.3 m) microcosms, which were highly alkaline (pH > 10), the major impact was on abiotic processes such as secondary mineral precipitation. In the mid-layer (2-3 m) soil microcosms, the rate of Fe(III)-reduction and the amount of Fe(II) produced were greatly impacted by the specific organic acid added, and sulfate-reduction was not observed until after Fe(III)-reduction was complete. Near the end of the incubation, some genera related to syntrophic acetate oxidation and methanogenesis were observed in the lactate-amended microcosms. In the bottom-layer (7-8 m) soil microcosms, the rate of Fe(III)-reduction and the amount of Fe(II) produced were affected by the concentration of amended sulfate. Sulfate-reduction was concurrent with Fe(III)-reduction, suggesting that Fe(II) production was likely due to abiotic reduction of Fe(III) by sulfide produced by microbial sulfate reduction. The slightly acidic initial pH (~5.8) of the mid-soil system was a major factor controlling sequential microbial Fe(III) and sulfate reduction versus parallel Fe(III) and sulfate reduction in the bottom soil system, which had a neutral initial pH (~7.2). 16S rRNA gene-based community analysis revealed a variety of indigenous microbial groups including alkaliphiles, dissimilatory iron and sulfate reducers, syntrophes, and methanogens tightly coupled with, and impacted by, these complex abiotic and biogeochemical processes occurring in urban subsurface environments.
Collapse
Affiliation(s)
- Sunhui Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
Flynn TM, Antonopoulos DA, Skinner KA, Brulc JM, Johnston E, Boyanov MI, Kwon MJ, Kemner KM, O’Loughlin EJ. Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment. PLoS One 2021; 16:e0251883. [PMID: 34014980 PMCID: PMC8136678 DOI: 10.1371/journal.pone.0251883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly “sulfate-reducing” phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.
Collapse
Affiliation(s)
- Theodore M. Flynn
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | | | - Kelly A. Skinner
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Jennifer M. Brulc
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Eric Johnston
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Maxim I. Boyanov
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Man Jae Kwon
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | - Kenneth M. Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Edward J. O’Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Aoyagi T, Mori Y, Nanao M, Matsuyama Y, Sato Y, Inaba T, Aizawa H, Hayakawa T, Moriya M, Higo Y, Habe H, Hori T. Effective Se reduction by lactate-stimulated indigenous microbial communities in excavated waste rocks. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123908. [PMID: 33264961 DOI: 10.1016/j.jhazmat.2020.123908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 06/12/2023]
Abstract
Waste rocks generated from tunnel excavation contain the metalloid selenium (Se) and its concentration sometimes exceeds the environmental standards. The possibility and effectiveness of dissolved Se removal by the indigenous microorganisms are unknown. Chemical analyses and high-throughput 16S rRNA gene sequencing were implemented to investigate the functional and structural responses of the rock microbial communities to the Se and lactate amendment. During anaerobic incubation of the amended rock slurries from two distinct sites, dissolved Se concentrations decreased significantly, which coincided with lactate degradation to acetate and/or propionate. Sequencing indicated that relative abundances of Desulfosporosinus burensis increased drastically from 0.025 % and 0.022% to 67.584% and 63.716 %, respectively, in the sites. In addition, various Desulfosporosinus spp., Symbiobacterium-related species and Brevibacillus ginsengisoli, as well as the Se(VI)-reducing Desulfitobacterium hafniense, proliferated remarkably. They are capable of incomplete lactate oxidation to acetate as only organic metabolite, strongly suggesting their involvement in dissimilatory Se reduction. Furthermore, predominance of Pelosinus fermentans that ferments lactate to propionate and acetate implied that Se served as the electron sink for its fermentative lactate degradation. These results demonstrated that the indigenous microorganisms played vital roles in the lactate-stimulated Se reduction, leading to the biological Se immobilization treatment of waste rocks.
Collapse
Affiliation(s)
- Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 395-8569, Japan
| | - Yoshihiko Mori
- Central Research Laboratory, Taiheiyo Cement Co., Ltd., 2-4-2 Osaku, Sakura, Chiba 285-8655, Japan
| | - Mai Nanao
- Central Research Laboratory, Taiheiyo Cement Co., Ltd., 2-4-2 Osaku, Sakura, Chiba 285-8655, Japan
| | - Yusuke Matsuyama
- Taiheiyo Cement Co., Ltd., BUNKYO GARDEN GATE TOWER, 1-1-1 Koishikawa, Bunkyo, Tokyo 112-8503, Japan
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 395-8569, Japan
| | - Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 395-8569, Japan
| | - Hidenobu Aizawa
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 395-8569, Japan
| | - Takayuki Hayakawa
- Central Research Laboratory, Taiheiyo Cement Co., Ltd., 2-4-2 Osaku, Sakura, Chiba 285-8655, Japan
| | - Masahiko Moriya
- Taiheiyo Cement Co., Ltd., BUNKYO GARDEN GATE TOWER, 1-1-1 Koishikawa, Bunkyo, Tokyo 112-8503, Japan
| | - Yasuhide Higo
- Taiheiyo Cement Co., Ltd., BUNKYO GARDEN GATE TOWER, 1-1-1 Koishikawa, Bunkyo, Tokyo 112-8503, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 395-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 395-8569, Japan.
| |
Collapse
|
8
|
Sim MS, Skennerton CT, Orphan VJ. Physiological, genomic, and sulfur isotopic characterization of methanol metabolism by Desulfovibrio carbinolicus. PLoS One 2021; 16:e0245069. [PMID: 33444327 PMCID: PMC7808614 DOI: 10.1371/journal.pone.0245069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
Methanol is often considered as a non-competitive substrate for methanogenic archaea, but an increasing number of sulfate-reducing microorganisms (SRMs) have been reported to be capable of respiring with methanol as an electron donor. A better understanding of the fate of methanol in natural or artificial anaerobic systems thus requires knowledge of the methanol dissimilation by SRMs. In this study, we describe the growth kinetics and sulfur isotope effects of Desulfovibrio carbinolicus, a methanol-oxidizing sulfate-reducing deltaproteobacterium, together with its genome sequence and annotation. D. carbinolicus can grow with a series of alcohols from methanol to butanol. Compared to longer-chain alcohols, however, specific growth and respiration rates decrease by several fold with methanol as an electron donor. Larger sulfur isotope fractionation accompanies slowed growth kinetics, indicating low chemical potential at terminal reductive steps of respiration. In a medium containing both ethanol and methanol, D. carbinolicus does not consume methanol even after the cessation of growth on ethanol. Among the two known methanol dissimilatory systems, the genome of D. carbinolicus contains the genes coding for alcohol dehydrogenase but lacks enzymes analogous to methanol methyltransferase. We analyzed the genomes of 52 additional species of sulfate-reducing bacteria that have been tested for methanol oxidation. There is no apparent relationship between phylogeny and methanol metabolizing capacity, but most gram-negative methanol oxidizers grow poorly, and none carry homologs for methyltransferase (mtaB). Although the amount of available data is limited, it is notable that more than half of the known gram-positive methanol oxidizers have both enzymatic systems, showing enhanced growth relative to the SRMs containing only alcohol dehydrogenase genes. Thus, physiological, genomic, and sulfur isotopic results suggest that D. carbinolicus and close relatives have the ability to metabolize methanol but likely play a limited role in methanol degradation in most natural environments.
Collapse
Affiliation(s)
- Min Sub Sim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
9
|
Hausmann B, Vandieken V, Pjevac P, Schreck K, Herbold CW, Loy A. Draft Genome Sequence of Desulfosporosinus fructosivorans Strain 63.6F T, Isolated from Marine Sediment in the Baltic Sea. Microbiol Resour Announc 2019; 8:e00427-19. [PMID: 31371535 PMCID: PMC6675983 DOI: 10.1128/mra.00427-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
Desulfosporosinus fructosivorans strain 63.6FT is a strictly anaerobic, spore-forming, sulfate-reducing bacterium isolated from marine sediment in the Baltic Sea. Here, we report the draft genome sequence of D. fructosivorans 63.6FT.
Collapse
Affiliation(s)
- Bela Hausmann
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Verona Vandieken
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Katharina Schreck
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Alexander Loy
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
10
|
Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-Term Transcriptional Activity at Zero Growth of a Cosmopolitan Rare Biosphere Member. mBio 2019; 10:e02189-18. [PMID: 30755506 PMCID: PMC6372793 DOI: 10.1128/mbio.02189-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023] Open
Abstract
Microbial diversity in the environment is mainly concealed within the rare biosphere (all species with <0.1% relative abundance). While dormancy explains a low-abundance state very well, the mechanisms leading to rare but active microorganisms remain elusive. We used environmental systems biology to genomically and transcriptionally characterize "Candidatus Desulfosporosinus infrequens," a low-abundance sulfate-reducing microorganism cosmopolitan to freshwater wetlands, where it contributes to cryptic sulfur cycling. We obtained its near-complete genome by metagenomics of acidic peat soil. In addition, we analyzed anoxic peat soil incubated under in situ-like conditions for 50 days by Desulfosporosinus-targeted qPCR and metatranscriptomics. The Desulfosporosinus population stayed at a constant low abundance under all incubation conditions, averaging 1.2 × 106 16S rRNA gene copies per cm³ soil. In contrast, transcriptional activity of "Ca. Desulfosporosinus infrequens" increased at day 36 by 56- to 188-fold when minor amendments of acetate, propionate, lactate, or butyrate were provided with sulfate, compared to the no-substrate-control. Overall transcriptional activity was driven by expression of genes encoding ribosomal proteins, energy metabolism, and stress response but not by expression of genes encoding cell growth-associated processes. Since our results did not support growth of these highly active microorganisms in terms of biomass increase or cell division, they had to invest their sole energy for maintenance, most likely counterbalancing acidic pH conditions. This finding explains how a rare biosphere member can contribute to a biogeochemically relevant process while remaining in a zero-growth state over a period of 50 days.IMPORTANCE The microbial rare biosphere represents the largest pool of biodiversity on Earth and constitutes, in sum of all its members, a considerable part of a habitat's biomass. Dormancy or starvation is typically used to explain the persistence of low-abundance microorganisms in the environment. We show that a low-abundance microorganism can be highly transcriptionally active while remaining in a zero-growth state for at least 7 weeks. Our results provide evidence that this zero growth at a high cellular activity state is driven by maintenance requirements. We show that this is true for a microbial keystone species, in particular a cosmopolitan but permanently low-abundance sulfate-reducing microorganism in wetlands that is involved in counterbalancing greenhouse gas emissions. In summary, our results provide an important step forward in understanding time-resolved activities of rare biosphere members relevant for ecosystem functions.
Collapse
Affiliation(s)
- Bela Hausmann
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claus Pelikan
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Alexander Loy
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Michael Pester
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Microorganisms, Leibniz Institute DSMZ, Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Sánchez-Andrea I, Florentino AP, Semerel J, Strepis N, Sousa DZ, Stams AJM. Co-culture of a Novel Fermentative Bacterium, Lucifera butyrica gen. nov. sp. nov., With the Sulfur Reducer Desulfurella amilsii for Enhanced Sulfidogenesis. Front Microbiol 2018; 9:3108. [PMID: 30631314 PMCID: PMC6315149 DOI: 10.3389/fmicb.2018.03108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022] Open
Abstract
Biosulfidogenesis can be used to remediate low pH and high metal content waters such as acid mine drainage and recover the present metals. The selection of a cheap electron donor for the process is important for the economic viability. In this work we isolated a novel versatile acidotolerant fermentative bacterium (strain ALET) that is able to use a great variety of substrates including glycerol. Strain ALET is an obligate anaerobe, and cells are motile, rod-shaped, spore-forming, and stain Gram-positive. Growth occurred in a pH range from 3.5 to 7 (optimum 5.5), and temperature range from 25 to 40°C (optimum 37°C). It grows by fermentation of sugars, organic acids and glycerol. It has the ability to use thiosulfate, iron and DMSO as electron acceptors. Its genome is 4.7 Mb with 5122 protein-coding sequences, and a G+C content of 46.9 mol%. Based on 16S rRNA gene sequence analysis, the closest cultured species is Propionispora hippei (91.4% 16S rRNA gene identity) from the Sporomusaceae family (Selenomonadales order, Negativicutes class, Firmicutes phylum). Based on the distinctive physiological and phylogenetic characteristics of strain ALET, a new genus and species Lucifera butyrica gen. nov., sp. nov., is proposed. The type strain is ALET (=JCM 19373T = DSM 27520T). Strain ALET is an incomplete oxidizer and acetate, among other products, accumulates during glycerol conversion. Strain ALET was used to extend the substrate range for sulfur reduction by constructing co-cultures with the acetate oxidizer and sulfur reducer Desulfurella amilsii. The co-culture was tested with glycerol as substrate in batch and chemostat experiments. Acetate formed by fermentation of glycerol by strain ALET resulted in sulfur reduction by D. amilsii. The co-culture strategy offers good perspectives to use a wide range of cost-efficient substrates, including glycerol, to produce sulfide by specialized sulfur reducers. The recovery of heavy metals from metalliferous streams may become economically feasible by this approach. Note: The locus tag for the genes encoded in Lucifera butyrica is LUCI_∗. To avoid repetition of the prefix along the text, the locus tags are represented by the specific identifier.
Collapse
Affiliation(s)
| | | | - Jeltzlin Semerel
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nikolaos Strepis
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
12
|
A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie van Leeuwenhoek 2018; 111:1403-1419. [PMID: 29748902 DOI: 10.1007/s10482-018-1087-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/12/2018] [Indexed: 10/16/2022]
Abstract
The endorheic basins of the Northern Chilean Altiplano contain saline lakes and salt flats. Two of the salt flats, Gorbea and Ignorado, have high acidic brines. The causes of the local acidity have been attributed to the occurrence of volcanic native sulfur, the release of sulfuric acid by oxidation, and the low buffering capacity of the rocks in the area. Understanding the microbial community composition and available energy in this pristine ecosystem is relevant in determining the origin of the acidity and in supporting the rationale of conservation policies. Besides, a comparison between similar systems in Australia highlights key microbial components and specific ones associated with geological settings and environmental conditions. Sediment and water samples from the Salar de Gorbea were collected, physicochemical parameters measured and geochemical and molecular biological analyses performed. A low diversity microbial community was observed in brines and sediments dominated by Actinobacteria, Algae, Firmicutes and Proteobacteria. Most of the constituent genera have been reported to be either sulfur oxidizing microorganisms or ones having the potential for sulfur oxidation given available genomic data and information drawn from the literature on cultured relatives. In addition, a link between sulfur oxidation and carbon fixation was observed. In contrast, to acid mine drainage communities, Gorbea microbial diversity is mainly supported by chemolithoheterotrophic, facultative chemolithoautotrophic and oligotrophic sulfur oxidizing populations indicating that microbial activity should also be considered as a causative agent of local acidity.
Collapse
|
13
|
Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, Grigoriev MN, Knoblauch C, Mangelsdorf K, Wagner D, Liebner S. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep 2018; 8:1291. [PMID: 29358665 PMCID: PMC5778128 DOI: 10.1038/s41598-018-19505-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022] Open
Abstract
Thawing submarine permafrost is a source of methane to the subsurface biosphere. Methane oxidation in submarine permafrost sediments has been proposed, but the responsible microorganisms remain uncharacterized. We analyzed archaeal communities and identified distinct anaerobic methanotrophic assemblages of marine and terrestrial origin (ANME-2a/b, ANME-2d) both in frozen and completely thawed submarine permafrost sediments. Besides archaea potentially involved in anaerobic oxidation of methane (AOM) we found a large diversity of archaea mainly belonging to Bathyarchaeota, Thaumarchaeota, and Euryarchaeota. Methane concentrations and δ13C-methane signatures distinguish horizons of potential AOM coupled either to sulfate reduction in a sulfate-methane transition zone (SMTZ) or to the reduction of other electron acceptors, such as iron, manganese or nitrate. Analysis of functional marker genes (mcrA) and fluorescence in situ hybridization (FISH) corroborate potential activity of AOM communities in submarine permafrost sediments at low temperatures. Modeled potential AOM consumes 72-100% of submarine permafrost methane and up to 1.2 Tg of carbon per year for the total expected area of submarine permafrost. This is comparable with AOM habitats such as cold seeps. We thus propose that AOM is active where submarine permafrost thaws, which should be included in global methane budgets.
Collapse
Affiliation(s)
- Matthias Winkel
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany.
| | - Julia Mitzscherling
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| | - Pier P Overduin
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Periglacial Research, 14473, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| | - Maria Winterfeld
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Geochemistry, 27570, Bremerhaven, Germany
| | - Ruud Rijkers
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| | | | | | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 3.2 Organic Geochemistry, 14473, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| |
Collapse
|
14
|
Vandieken V, Niemann H, Engelen B, Cypionka H. Marinisporobacter balticus gen. nov., sp. nov., Desulfosporosinus nitroreducens sp. nov. and Desulfosporosinus fructosivorans sp. nov., new spore-forming bacteria isolated from subsurface sediments of the Baltic Sea. Int J Syst Evol Microbiol 2017. [PMID: 28646634 DOI: 10.1099/ijsem.0.001883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four novel Gram-stain-positive, endospore-forming bacteria of the order Clostridiales were isolated from subsurface sediments sampled during International Ocean Discovery Program Expedition 347 to the Baltic Sea. One strain (59.4MT) grew as an obligate heterotroph by aerobic respiration and anaerobically by fermentation. Optimum growth was observed with 0.5 % NaCl at 25 °C and pH 7.0-7.3. Analysis of 16S rRNA gene sequences of 59.4MT revealed Alkaliphilus transvaalensis (92.3 % identity), Candidatus Geosporobacter ferrireducens (92.2 %), Geosporobacter subterraneus (91.9 %) and Alkaliphilus peptidifermentans (91.7 %) to be the closest relatives. On the basis of the results of phenotypic and genotypic analyses, we propose that strain 59.4MT represents a novel species within a novel genus, Marinisporobacter balticus gen. nov., sp. nov., with the type strain 59.4MT (=DSM 102940T=JCM 31103T). Three other strains, 59.4F, 59.4BT and 63.6FT, were affiliated with the genus Desulfosporosinus and grew as strictly anaerobic sulfate reducers. These strains additionally used thiosulfate, elemental sulfur, sulfite and DMSO as electron acceptors and hydrogen as an electron donor. Strains 59.4F and 59.4BT had identical 16S rRNA gene sequences, which were most similar to those of Desulfosporosinus lacus (97.8 %), Desulfosporosinus hippei (97.3 %) and Desulfosporosinus orientis (97.3 %). Strain 63.6FT was closely related to D. lacus (97.7 %), Desulfosporosinus meridiei (96.6 %) and D. hippei (96.5 %). The similarity of 16S rRNA gene sequences of strains 59.4BT and 63.6FT was 96.6 %. We propose the new names Desulfosporosinus nitroreducens sp. nov., incorporating strain 59.4F (=DSM 101562=JCM 31104) and the type strain 59.4BT (=DSM 101608T=JCM 31105T), and Desulfosporosinus fructosivorans sp. nov., with the type strain 63.6FT (=DSM 101609T=JCM 31106T).
Collapse
Affiliation(s)
- Verona Vandieken
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Helge Niemann
- Centre for Arctic Gas Hydrate, Environment and Climate, University of Tromsø, 9037 Tromsø, Norway.,Aquatic and Stable Isotope Biogeochemistry, University of Basel, 4056 Basel, Switzerland
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
15
|
Sánchez-Andrea I, Stams AJM, Hedrich S, Ňancucheo I, Johnson DB. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles 2014; 19:39-47. [PMID: 25370366 DOI: 10.1007/s00792-014-0701-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/14/2014] [Indexed: 11/26/2022]
Abstract
Three strains of sulfate-reducing bacteria (M1(T), D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8-7.0, with an optimum at pH 5.5. The temperature range for growth was 15-40 °C, with an optimum at 30 °C. Strains M1(T), D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1(T)) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1(T) tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1(T), D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1(T) (=DSM 27692(T) = JCM 19471(T)). Strain M1(T) was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense.
Collapse
Affiliation(s)
- Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands,
| | | | | | | | | |
Collapse
|
16
|
Sánchez-Andrea I, Sanz JL, Bijmans MFM, Stams AJM. Sulfate reduction at low pH to remediate acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:98-109. [PMID: 24444599 DOI: 10.1016/j.jhazmat.2013.12.032] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 05/25/2023]
Abstract
Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.
Collapse
Affiliation(s)
- Irene Sánchez-Andrea
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | - Jose Luis Sanz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Martijn F M Bijmans
- Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|