1
|
Bacillus litorisediminis sp. nov., a Thermophilic Bacterium Isolated from Mangrove Sediment. Curr Microbiol 2023; 80:79. [PMID: 36656344 DOI: 10.1007/s00284-023-03180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023]
Abstract
Two aerobic, Gram-staining-positive, rod-shaped, endospore-forming, thermophilic bacterial strains, designated FJAT-47801T and FJAT-47835, were isolated from the sediment collected from Zhangjiang Estuary Mangrove National Nature Reserve in Fujian Province, China. Growth was observed at 25-55 °C (optimum, 50 °C) and pH 7.0-9.0 (optimum, pH 7.0), with up to 4.0% (w/v) NaCl (optimum, without NaCl). Strains FJAT-47801T and FJAT-47835 showed the highest 16S rRNA gene sequence similarity to Bacillus oleivorans (98.5%). The 16S rRNA gene sequence similarity between FJAT-47801T and FJAT-47835 was 99.9% indicating they were the same species. Phylogenetic (based on 16S rRNA gene sequences) and phylogenomic (based on 120 conserved bacterial single-copy genes) trees showed that strains FJAT-47801T and FJAT-47835 should be affiliated to the genus Bacillus. The of menaquinone of strain FJAT-47801T was MK-7. The major fatty acids of strain FJAT-47801T were iso-C15:0, anteiso-C15:0, iso-C17:0, and C16:0. The major polar lipids strain FJAT-47801T were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), and phosphatidylglycerol (PG). The genomic DNA G+C content of strain FJAT-47801T was 39.3%. The average nucleotide identity (84.3%) and the digital DNA-DNA hybridization value (28.1%) between strain FJAT-47801T and B. oleivorans CCTCC AB 2013353T were below the cut-off level for species delineation. Based on the above results, strain FJAT-47801T represents a novel species of the genus Bacillus, for which the name Bacillus litorisediminis sp. nov., is proposed. The type strain is FJAT-47801T (=GDMCC 1.2712T = JCM 34875T).
Collapse
|
2
|
Ishida K, Nakamura A, Kojima S. Crystal structure of the AlbEF complex involved in subtilosin A biosynthesis. Structure 2022; 30:1637-1646.e3. [DOI: 10.1016/j.str.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
|
3
|
Chen Z, Chen Z, Sun H, Xing R, Zhou S. Degradation of microplastics by hydroxyl radicals generated during microbially driven humus redox transformation. WATER RESEARCH 2022; 221:118731. [PMID: 35738060 DOI: 10.1016/j.watres.2022.118731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The production of ·OH during transformation of redox active substances has been increasingly documented, and it causes the ageing or degradation of microplastics (MPs) in natural systems. However, the contribution of the humus redox cycle to ·OH generation and MPs transformation has previously been overlooked, even though it is ubiquitous in alternating anoxic-oxic environments. In this work, the integrated pathways of ·OH generation during the redox transformation of humic acids (HAs) and the contribution of this ·OH to the transformation of MPs were investigated for the first time. It was found that ·OH could be produced continuously during successive cycles of redox transformation of HAs mediated by Bacillus thermotolerans SgZ-8 through exogeneous HAs dependent and independent pathways. O2·- and H2O2 were identified as the key intermediate species, which were produced by both microbial aerobic respiration and HA oxidation. The ·OH generated by HA redox cycles could lead to a weight loss of PS-MPs of 18.1% through oxidative degradation during a period of 8 weeks of anoxic-oxic incubation. The EDC of HAs is closely related to ·OH production, which could have a large influence on the effectiveness of oxidative degradation of PS-MPs during various HAs redox cycles in temporarily anoxic environmental systems. These findings provide new insights into ·OH formation and MPs transformation through microbially driven humus redox cycles in alternating anoxic-oxic environments.
Collapse
Affiliation(s)
- Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zewei Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Li Y, Yang G, Yao S, Zhuang L. Paradesulfitobacterium ferrireducens gen. nov., sp. nov., a Fe(III)-reducing bacterium from petroleum-contaminated soil and reclassification of Desulfitobacterium aromaticivorans as Paradesulfitobacterium aromaticivorans comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34559621 DOI: 10.1099/ijsem.0.005025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic bacterium, strain PLL0T, was isolated from petroleum-contaminated soil sampled in Gansu Province, PR China. Cells were rods, non-motile and Gram-stain-positive. The strain grew at 25-37 °C (optimum, 30 °C) in the presence of 0-3 % (w/v) NaCl (optimum, 2 %). Strain PLL0T was able to reduce ferrihydrite, Fe(III) citrate and thiosulphate. The 16S rRNA gene analysis revealed that this strain clustered with the genus Desulfitobacterium, and showed highest similarity to Desulfitobacterium aromaticivorans UKTLT (95.4 %) followed by Desulfitobacterium chlororespirans Co23T (93.9 %). However, strains PLL0T and UKTLT showed no more than 94.0 % similarity to other species of the genus Desulfitobacterium, and formed an independent group in the phylogenetic tree. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain PLL0T and Desulfitobacterium species (except for D. aromaticivorans) were 67.4-68.5 % and 12.6-12.7 %, respectively, which are far below the threshold for delineation of a new species. Based on ANI, dDDH, average amino acid identity, phylogenetic analysis and physiologic differences from the previously described taxa, we suggest that strain PLL0T represents a novel species of a novel genus, for which the name Paradesulfitobacterium ferrireducens gen. nov. sp. nov. is proposed. The type strain is PLL0T (=MCCC 1K05549=KCTC 25248). We also propose the reclassification of D. aromaticivorans as Paradesulfitobacterium aromaticivorans comb. nov.
Collapse
Affiliation(s)
- Yanling Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Sijie Yao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
5
|
Owusu-Darko R, Allam M, Ismail A, Ferreira CAS, de Oliveira SD, Buys EM. Comparative Genome Analysis of Bacillus sporothermodurans with Its Closest Phylogenetic Neighbor, Bacillus oleronius, and Bacillus cereus and Bacillus subtilis Groups. Microorganisms 2020; 8:microorganisms8081185. [PMID: 32759699 PMCID: PMC7464528 DOI: 10.3390/microorganisms8081185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus sporothermodurans currently possesses one of the most highly heat-resistant spores (HRS), which can withstand ultra-high temperature (UHT) processing. Determination of multiple whole genome sequences of B. sporothermodurans provided an opportunity to perform the first comparative genome analysis between strains and with B. oleronius, B. cereus, and B. subtilis groups. In this study, five whole genome sequences of B. sporothermodurans strains, including those belonging to the HRS clone (SAD and BR12) normally isolated from UHT milk, were compared with the aforementioned Bacillus species for gene clusters responsible for heat resistance. In the phylogenomic analysis, B. sporothermodurans, with its closest phylogenetic neighbor, B. oleronius, clustered with B. thermoamylovorans and B. thermotolerans. Heat shock proteins GrpE, GroES, GroEL, and DnaK presented identical sequences for all B. sporothermodurans strains, indicating that differences in functional efficiency are not involved in the thermal resistance variations. However, comparing all species evaluated, B. sporothermodurans exhibited a different gene configuration in the chromosomal region of the heat shock protein GrpE. Furthermore, only B. sporothermodurans strains presented the stage II sporulation protein P gene located in this region. Multisequence alignment and phylogenetic analysis of the ClpB protein showed differences for HRS and non-HRS strains. The study identified ClpC, ClpE, and ClpX as the three ATPases putatively involved in protein disaggregation in B. sporothermodurans. Bacillussporothermodurans exhibits high homology with other Bacillus species in the DnaK, DnaJ, GroEL, and GroES cluster of genes involved in heat resistance. The data presented here pave the way to select and evaluate the phenotypic effects of genes putatively involved in heat resistance.
Collapse
Affiliation(s)
- Rodney Owusu-Darko
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
| | - Mushal Allam
- National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg 2131, South Africa; (M.A.); (A.I.)
| | - Arshad Ismail
- National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg 2131, South Africa; (M.A.); (A.I.)
| | - Carlos A. S. Ferreira
- Laboratory of Immunology and Microbiology, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Sílvia D. de Oliveira
- Laboratory of Immunology and Microbiology, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Correspondence: (S.D.d.O.); (E.M.B.)
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence: (S.D.d.O.); (E.M.B.)
| |
Collapse
|
6
|
Piché-Choquette S, Constant P. Molecular Hydrogen, a Neglected Key Driver of Soil Biogeochemical Processes. Appl Environ Microbiol 2019; 85:e02418-18. [PMID: 30658976 PMCID: PMC6414374 DOI: 10.1128/aem.02418-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The atmosphere of the early Earth is hypothesized to have been rich in reducing gases such as hydrogen (H2). H2 has been proposed as the first electron donor leading to ATP synthesis due to its ubiquity throughout the biosphere as well as its ability to easily diffuse through microbial cells and its low activation energy requirement. Even today, hydrogenase enzymes enabling the production and oxidation of H2 are found in thousands of genomes spanning the three domains of life across aquatic, terrestrial, and even host-associated ecosystems. Even though H2 has already been proposed as a universal growth and maintenance energy source, its potential contribution as a driver of biogeochemical cycles has received little attention. Here, we bridge this knowledge gap by providing an overview of the classification, distribution, and physiological role of hydrogenases. Distribution of these enzymes in various microbial functional groups and recent experimental evidence are finally integrated to support the hypothesis that H2-oxidizing microbes are keystone species driving C cycling along O2 concentration gradients found in H2-rich soil ecosystems. In conclusion, we suggest focusing on the metabolic flexibility of H2-oxidizing microbes by combining community-level and individual-level approaches aiming to decipher the impact of H2 on C cycling and the C-cycling potential of H2-oxidizing microbes, via both culture-dependent and culture-independent methods, to give us more insight into the role of H2 as a driver of biogeochemical processes.
Collapse
|
7
|
Verma A, Pal Y, Khatri I, Ojha AK, Gruber-Vodicka H, Schumann P, Dastager S, Subramanian S, Mayilraj S, Krishnamurthi S. Examination into the taxonomic position of Bacillus thermotolerans Yang et al., 2013, proposal for its reclassification into a new genus and species Quasibacillus thermotolerans gen. nov., comb. nov. and reclassification of B. encimensis Dastager et al., 2015 as a later heterotypic synonym of B. badius. Syst Appl Microbiol 2017; 40:411-422. [PMID: 28947104 DOI: 10.1016/j.syapm.2017.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022]
Abstract
Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C15:0 and iso-C16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8T (=CCTCC AB2012108T=KACC 16706T). Further our analyses also revealed that B. encimensis SGD-V-25T is a later heterotypic synonym of Bacillus badius DSM 23T.
Collapse
Affiliation(s)
- Ashish Verma
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Yash Pal
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Indu Khatri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Anup Kumar Ojha
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Harald Gruber-Vodicka
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Peter Schumann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, GmBH, Inhoffenstrasse 7b, D-38124 Braunschweig, Germany
| | - Syed Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune 411 008, Maharashtra, India
| | | | - Shanmugam Mayilraj
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.
| |
Collapse
|
8
|
Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost. Arch Microbiol 2016; 198:347-52. [DOI: 10.1007/s00203-016-1193-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
9
|
Yu Z, Wen J, Yang G, Liu J, Zhou S. Compostibacillus humi gen. nov., sp. nov., a member of the family Bacillaceae, isolated from sludge compost. Int J Syst Evol Microbiol 2015; 65:346-352. [DOI: 10.1099/ijs.0.062869-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel Gram-staining-positive, rod-shaped, endospore-forming and moderately thermophilic bacteria, designated strains DX-3T and GIESS002, were isolated from sludge composts from Guangdong Province, China. Analysis of 16S rRNA gene sequences revealed that the isolates were closely related to each other with extremely high similarity (99.6 %), and were members of the family
Bacillaceae
. However, these two isolates formed a novel phylogenetic branch within this family. Their closest relatives were the members of the genera
Ornithinibacillus
,
Oceanobacillus
and
Virgibacillus
. Cells of both strains were facultatively anaerobic and catalase- and oxidase-positive. The cell-wall peptidoglycan type was A1γ (meso-diaminopimelic acid direct). The predominant isoprenoid quinone was MK-7. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acid was iso-C15 : 0. The DNA G+C content was 43.2–43.7 mol%. The results of a polyphasic taxonomic study indicated that strains DX-3T and GIESS002 represent a novel species in a new genus in the family
Bacillaceae
, order
Bacillales
, for which the name Compostibacillus humi gen. nov., sp. nov. is proposed. The type strain is DX-3T ( = KCTC 33104T = CGMCC 1.12360T).
Collapse
Affiliation(s)
- Zhen Yu
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Junlin Wen
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Guiqin Yang
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Jing Liu
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| | - Shungui Zhou
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, PR China
| |
Collapse
|
10
|
Chen YG, Gu FL, Li JH, Xu F, He SZ, Fang YM. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean. Curr Microbiol 2014; 70:235-9. [DOI: 10.1007/s00284-014-0707-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|