1
|
Odom AR, Faits T, Castro-Nallar E, Crandall KA, Johnson WE. Metagenomic profiling pipelines improve taxonomic classification for 16S amplicon sequencing data. Sci Rep 2023; 13:13957. [PMID: 37633998 PMCID: PMC10460424 DOI: 10.1038/s41598-023-40799-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Most experiments studying bacterial microbiomes rely on the PCR amplification of all or part of the gene for the 16S rRNA subunit, which serves as a biomarker for identifying and quantifying the various taxa present in a microbiome sample. Several computational methods exist for analyzing 16S amplicon sequencing. However, the most-used bioinformatics tools cannot produce high quality genus-level or species-level taxonomic calls and may underestimate the potential accuracy of these calls. We used 16S sequencing data from mock bacterial communities to evaluate the sensitivity and specificity of several bioinformatics pipelines and genomic reference libraries used for microbiome analyses, concentrating on measuring the accuracy of species-level taxonomic assignments of 16S amplicon reads. We evaluated the tools DADA2, QIIME 2, Mothur, PathoScope 2, and Kraken 2 in conjunction with reference libraries from Greengenes, SILVA, Kraken 2, and RefSeq. Profiling tools were compared using publicly available mock community data from several sources, comprising 136 samples with varied species richness and evenness, several different amplified regions within the 16S rRNA gene, and both DNA spike-ins and cDNA from collections of plated cells. PathoScope 2 and Kraken 2, both tools designed for whole-genome metagenomics, outperformed DADA2, QIIME 2 using the DADA2 plugin, and Mothur, which are theoretically specialized for 16S analyses. Evaluations of reference libraries identified the SILVA and RefSeq/Kraken 2 Standard libraries as superior in accuracy compared to Greengenes. These findings support PathoScope and Kraken 2 as fully capable, competitive options for genus- and species-level 16S amplicon sequencing data analysis, whole genome sequencing, and metagenomics data tools.
Collapse
Affiliation(s)
- Aubrey R Odom
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Tyler Faits
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Avda. Lircay S/N, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Avda. Lircay S/N, Talca, Chile
| | - Keith A Crandall
- Department of Biostatistics & Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - W Evan Johnson
- Division of Infectious Disease, Center for Data Science, Rutgers University - New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
2
|
Das S, Najar IN, Sherpa MT, Kumar S, Sharma P, Mondal K, Tamang S, Thakur N. Baseline metagenome-assembled genome (MAG) data of Sikkim hot springs from Indian Himalayan geothermal belt (IHGB) showcasing its potential CAZymes, and sulfur-nitrogen metabolic activity. World J Microbiol Biotechnol 2023; 39:179. [PMID: 37133792 DOI: 10.1007/s11274-023-03631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Here we present the construction and characterization of metagenome assembled genomes (MAGs) from two hot springs residing in the vicinity of Indian Himalayan Geothermal Belt (IHGB). A total of 78 and 7 taxonomic bins were obtained for Old Yume Samdong (OYS) and New Yume Samdong (NYS) hot springs respectively. After passing all the criteria only 21 and 4 MAGs were further studied based on the successful prediction of their 16 S rRNA. Various databases were used such as GTDB, Kaiju, EzTaxon, BLAST XY Plot and NCBI BLAST to get the taxonomic classification of various 16 S rRNA predicted MAGs. The bacterial genomes found were from both thermophilic and mesophilic bacteria among which Proteobacteria, Chloroflexi, Bacteroidetes and Firmicutes were the abundant phyla. However, in case of OYS, two genomes belonged to archaeal Methanobacterium and Methanocaldococcus. Functional characterization revealed the richness of CAZymes such as Glycosyl Transferase (GT) (56.7%), Glycoside Hydrolase (GH) (37.4%), Carbohydrate Esterase family (CE) (8.2%), and Polysaccharide Lyase (PL) (1.9%). There were negligible antibiotic resistance genes in the MAGs however, a significant heavy metal tolerance gene was found in the MAGs. Thus, it may be assumed that there is no coexistence of antibiotic and heavy metal resistance genes in these hot spring microbiomes. Since the selected hot springs possess good sulfur content thus, we also checked the presence of genes for sulfur and nitrogen metabolism. It was found that MAGs from both the hot springs possess significant number of genes related to sulfur and nitrogen metabolism.
Collapse
Affiliation(s)
- Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
- Department of Life Science and Bioinformatics, Hargobind Khurana School of Life Sciences, Assam University, Silchar, Assam, 788011, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Krishnendu Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
3
|
Santos VHJMD, Engelmann PDM, Marconatto L, Borge LGDA, Palhano PDL, Augustin AH, Rodrigues LF, Ketzer JMM, Giongo A. Exploratory analysis of the microbial community profile of the municipal solid waste leachate treatment system: A case study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:125-135. [PMID: 35114563 DOI: 10.1016/j.wasman.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Studies on the degradation dynamics of landfill leachate indicate that the microbial community profile is a valuable and sensitive tool for landfill monitoring programs. Although knowledge about the microbial community can improve the efficiency of leachate treatment systems, little is known about the microbial profile changes that occur throughout the leachate attenuation process. In the present work, an exploratory analysis of the microbial community profile of the MSW leachate treatment system in the municipality of Osório (Brazil) was conducted. In this way, a comprehensive analysis of chemical parameters, isotopic signature and microbial profile data were applied to monitor the changes in the structure of the microbial community throughout the leachate attenuation process and to describe the relationship between the microbial community structure and the attenuation of chemical and isotopic parameters. From data analysis, it was possible to assess the microbial community structure and relate it to the attenuation of chemical and isotopic parameters. Based on massive parallel 16S rRNA gene sequencing, it was possible to observe that each leachate treatment unit has a specific microbial consortium, reflecting the adaptation of different microorganisms to changes in leachate characteristics throughout treatment. From our results, we concluded that the structure of the microbial community is sensitive to the leachate composition and can be applied to study the municipal solid waste management system.
Collapse
Affiliation(s)
- Victor Hugo Jacks Mendes Dos Santos
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Pâmela de Medeiros Engelmann
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul, PUCRS, Materials Engineering and Technology Graduate Program, 6681 Ipiranga Avenue, Building 32, 90619-900 Porto Alegre, Brazil.
| | - Letícia Marconatto
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Gustavo Dos Anjos Borge
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Pâmela de Lara Palhano
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Adolpho Herbert Augustin
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Luiz Frederico Rodrigues
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil
| | - João Marcelo Medina Ketzer
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Linnaeus University, Department of Biology and Environmental Sciences, 391 82 Kalmar, Sweden
| | - Adriana Giongo
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, Institute of Petroleum and Natural Resources, 6681 Ipiranga Avenue, TECNOPUC, Building 96J, 90619-900 Porto Alegre, Brazil; Regional University of Blumenau, Environmental Engineering Graduate Program, Blumenau, Brazil.
| |
Collapse
|
4
|
Kattan J, Doerr A, Dogterom M, Danelon C. Shaping Liposomes by Cell-Free Expressed Bacterial Microtubules. ACS Synth Biol 2021; 10:2447-2455. [PMID: 34585918 PMCID: PMC8524656 DOI: 10.1021/acssynbio.1c00278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Genetic control over
a cytoskeletal network inside lipid vesicles
offers a potential route to controlled shape changes and DNA segregation
in synthetic cell biology. Bacterial microtubules (bMTs) are protein
filaments found in bacteria of the genus Prosthecobacter. They are formed by the tubulins BtubA and BtubB, which polymerize
in the presence of GTP. Here, we show that the tubulins BtubA/B can
be functionally expressed from DNA templates in a reconstituted transcription-translation
system, thus providing a cytosol-like environment to study their biochemical
and biophysical properties. We found that bMTs spontaneously interact
with lipid membranes and display treadmilling. When compartmentalized
inside liposomes, de novo synthesized BtubA/B tubulins
self-organize into cytoskeletal structures of different morphologies.
Moreover, bMTs can exert a pushing force on the membrane and deform
liposomes, a phenomenon that can be reversed by a light-activated
disassembly of the filaments. Our work establishes bMTs as a new building
block in synthetic biology. In the context of creating a synthetic
cell, bMTs could help shape the lipid compartment, establish polarity
or directional transport, and assist the division machinery.
Collapse
Affiliation(s)
- Johannes Kattan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Anne Doerr
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Wu S, You F, Boughton B, Liu Y, Nguyen TAH, Wykes J, Southam G, Robertson LM, Chan TS, Lu YR, Lutz A, Yu D, Yi Q, Saha N, Huang L. Chemodiversity of Dissolved Organic Matter and Its Molecular Changes Driven by Rhizosphere Activities in Fe Ore Tailings Undergoing Eco-Engineered Pedogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13045-13060. [PMID: 34565140 DOI: 10.1021/acs.est.1c04527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in soil structure and biogeochemical function development, which are fundamental for the eco-engineering of tailings-soil formation to underpin sustainable tailings rehabilitation. In the present study, we have characterized the DOM composition and its molecular changes in an alkaline Fe ore tailing primed with organic matter (OM) amendment and plant colonization. The results demonstrated that microbial OM decomposition dramatically increased DOM richness and average molecular weight, as well as its degree of unsaturation, aromaticity, and oxidation in the tailings. Plant colonization drove molecular shifts of DOM by depleting the unsaturated compounds with a high value of nominal oxidation state of carbon (NOSC), such as tannin-like and carboxyl-rich polycyclic-like compounds. This may be partially related to their sequestration by secondary Fe-Si minerals formed from rhizosphere-driven mineral weathering. Furthermore, the molecular shifts of DOM may have also resulted from plant-regulated microbial community changes, which further influenced DOM molecules through microbial-DOM interactions. These findings contribute to the understanding of DOM biogeochemistry and ecofunctionality in the tailings during early pedogenesis driven by OM input and pioneer plant/microbial colonization, providing an important basis for the development of strategies and technologies toward the eco-engineering of tailings-soil formation.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Berin Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tuan A H Nguyen
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeremy Wykes
- Australian Synchrotron, Melbourne, Victoria 3168, Australia
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lachlan M Robertson
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dingyi Yu
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qing Yi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Narottam Saha
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Ahmad T, Gupta G, Sharma A, Kaur B, El-Sheikh MA, Alyemeni MN. Metagenomic analysis exploring taxonomic and functional diversity of bacterial communities of a Himalayan urban fresh water lake. PLoS One 2021; 16:e0248116. [PMID: 33764980 PMCID: PMC7993826 DOI: 10.1371/journal.pone.0248116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 11/23/2022] Open
Abstract
Freshwater lakes present an ecological border between humans and a variety of host organisms. The present study was designed to evaluate the microbiota composition and distribution in Dal Lake at Srinagar, India. The non-chimeric sequence reads were classified taxonomically into 49 phyla, 114 classes, 185 orders, 244 families and 384 genera. Proteobacteria was found to be the most abundant bacterial phylum in all the four samples. The highest number of observed species was found to be 3097 in sample taken from least populated area during summer (LPS) whereas the summer sample from highly populated area (HPS) was found most diverse among all as indicated by taxonomic diversity analysis. The QIIME output files were used for PICRUSt analysis to assign functional attributes. The samples exhibited a significant difference in their microbial community composition and structure. Comparative analysis of functional pathways indicated that the anthropogenic activities in populated areas and higher summer temperature, both decrease functional potential of the Lake microbiota. This is probably the first study to demonstrate the comparative taxonomic diversity and functional composition of an urban freshwater lake amid its highly populated and least populated areas during two extreme seasons (winter and summer).
Collapse
Affiliation(s)
- Tawseef Ahmad
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Gaganjot Gupta
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Anshula Sharma
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Baljinder Kaur
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
- * E-mail: (BK); (MNA)
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail: (BK); (MNA)
| |
Collapse
|
7
|
Savvichev AS, Kadnikov VV, Rusanov II, Beletsky AV, Krasnova ED, Voronov DA, Kallistova AY, Veslopolova EF, Zakharova EE, Kokryatskaya NM, Losyuk GN, Demidenko NA, Belyaev NA, Sigalevich PA, Mardanov AV, Ravin NV, Pimenov NV. Microbial Processes and Microbial Communities in the Water Column of the Polar Meromictic Lake Bol'shie Khruslomeny at the White Sea Coast. Front Microbiol 2020; 11:1945. [PMID: 32849486 PMCID: PMC7432294 DOI: 10.3389/fmicb.2020.01945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Microbiological, molecular ecological, biogeochemical, and isotope geochemical research was carried out at the polar Lake Bol'shie Khruslomeny at the coast of the Kandalaksha Bay, White Sea in March and September 2017. The uppermost mixolimnion was oxic, with low salinity (3-5%). The lower chemocline layer was brown-green colored, with very high content of particulate organic matter (up to 11.8 mg C L-1). The lowermost monimolimnion had marine salinity (22-24%) and very high concentrations of sulfide (up to 18 mmol L-1) and CH4 (up to 1.8 mmol L-1). In the chemocline, total microbial abundance and the rate of anoxygenic photosynthesis were 8.8 × 106 cells mL-1 and 34.4 μmol C L-1 day-1, respectively. Both in March and September, sulfate reduction rate increased with depth, peaking (up to 0.6-1.1 μmol S L-1 day-1) in the lower chemocline. Methane oxidation rates in the chemocline were up to 85 and 180 nmol CH4 L-1 day-1 in March and September, respectively; stimulation of this process by light was observed in September. The percentages of cyanobacteria and methanotrophs in the layer where light-induced methane oxidation occurred were similar, ∼2.5% of the microbial community. Light did not stimulate methane oxidation in deeper layers. The carbon isotope composition of particulate organic matter (δ13C-Corg), dissolved carbonates (δ13C-DIC), and methane (δ13C- CH4) indicated high microbial activity in the chemocline. Analysis of the 16S rRNA gene sequences revealed predominance of Cyanobium cyanobacteria (order Synechococcales) in the mixolimnion. Green sulfur bacteria Chlorobium phaeovibrioides capable of anoxygenic photosynthesis constituted ∼20% of the chemocline community both in March and in September. Methyloprofundus gammaptoteobacteria (family Methylomonaceae) were present in the upper chemocline, where active methane oxidation occurred. During winter, cyanobacteria were less abundant in the chemocline, while methanotrophs occurred in higher horizons, including the under-ice layer. Chemolithotrophic gammaproteobacteria of the genus Thiomicrorhabdus, oxidizing reduced sulfur compounds at low oxygen concentrations, were revealed in the chemocline in March. Both in March and September archaea constituted up to 50% of all microorganisms in the hypolimnion. The percentage of putative methanogens in the archaeal community was low, and they occurred mainly in near-bottom horizons.
Collapse
Affiliation(s)
- Alexander S. Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Igor I. Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena D. Krasnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A. Voronov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Yu. Kallistova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena F. Veslopolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena E. Zakharova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya M. Kokryatskaya
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Moscow, Russia
| | - Galina N. Losyuk
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Moscow, Russia
| | | | - Nikolai A. Belyaev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Sigalevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Szuróczki S, Abbaszade G, Szabó A, Bóka K, Schumann P, Tóth E. Phragmitibacter flavus gen. nov., sp. nov. a new member of the family Verrucomicrobiaceae. Int J Syst Evol Microbiol 2020; 70:2108-2114. [DOI: 10.1099/ijsem.0.004025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-stain-negative, aerobic, non-motile, oxidase- and catalase-positive, rod-shaped yellow-coloured bacterial strain MG-N-17T was isolated from a water sample of Lake Fertő/Neusiedler See (Hungary). Results of phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain forms a distinct linage within the family
Verrucomicrobiaceae
of the phylum
Verrucomicrobia
, and its closest relatives are
Verrucomicrobium spinosum
DSM 4136T (94.38 %) and
Roseimicrobium gellanilyticum
DC2a-G7T (91.55 %). The novel bacterial strain prefers a weak alkaline environment and grows optimally between 22–28 °C in the absence of NaCl. The major isoprenoid quinones are MK-10, MK-11, MK-12 and MK-9. The major cellular fatty acids are anteiso-C15 : 0, C16 : 0, C16 : 1ω5c and iso-C14 : 0. The polar lipid profile contains phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and four unidentified glycolipids. The assembled draft genome of strain MG-N-17T had 44 contigs with an N50 value 348255 nt, 56.5× genome coverage, total length of 5 910 933 bp and G+C content of 56.9 mol%. Strain MG-N-17T (=DSM 106674T=NCAIM B.02643T) is proposed as the type strain of a new genus and species in the family
Verrucomicrobiaceae
, for which the name Phragmitibacter flavus gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Sára Szuróczki
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Gorkhmaz Abbaszade
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Faculty of Science, Eötvös Loránd University, Budapest, Pázmány Péter stny. 1/C, H-1117, Hungary
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Erika Tóth
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
9
|
Ziembińska-Buczyńska A, Ciesielski S, Żabczyński S, Cema G. Bacterial community structure in rotating biological contactor treating coke wastewater in relation to medium composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19171-19179. [PMID: 31111385 PMCID: PMC6594990 DOI: 10.1007/s11356-019-05087-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Biological wastewater treatment using biofilm systems is an effective way to treat difficult wastewater, such as coke wastewater. The information about the structure and the dynamics of this microbial community in biofilm, which are responsible for wastewater treatment, is relevant in the context of treatment efficacy and the biochemical potential to remove various pollutants. However, physico-chemical factors can influence the biofilm community significantly, causing performance disturbances. Therefore, we decided to examine the structure of microbial community in rotating biological contactor (RBC) biofilm during coke wastewater treatment and to investigate the possible shift in the community structure caused by the feeding medium change from synthetic to real coke wastewater. The experiment performed with high-throughput next-generation sequencing (NGS) revealed that bacteria commonly present in wastewater treatment plant (WWTP) systems, responsible for nitrite oxidizing, such as Nitrospira or Nitrobacter, were absent or below detection threshold, while Nitrosomonas, responsible for ammonia oxidizing, was detected in a relatively small number especially after shift to real coke wastewater. This research indicates that medium change could cause the change from autotrophic into heterotrophic nitrification led by Acinetobacter. Moreover, biofilm systems can be also a potential source of bacteria possessing high biochemical potential for pollutants removal but less known in WWTP systems, as well as potentially pathogenic microorganisms.
Collapse
Affiliation(s)
| | - Sławomir Ciesielski
- Faculty of Environmental Sciences, Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland
| | - Sebastian Żabczyński
- Environmental Biotechnology Department, Silesian University of Technology, Akademicka 2, 44-100, Gliwice, Poland
| | - Grzegorz Cema
- Environmental Biotechnology Department, Silesian University of Technology, Akademicka 2, 44-100, Gliwice, Poland
| |
Collapse
|
10
|
Resistance and resilience of small-scale recirculating aquaculture systems (RAS) with or without algae to pH perturbation. PLoS One 2018; 13:e0195862. [PMID: 29659617 PMCID: PMC5901992 DOI: 10.1371/journal.pone.0195862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/31/2018] [Indexed: 11/27/2022] Open
Abstract
The experimental set-up of this study mimicked recirculating aquaculture systems (RAS) where water quality parameters such as dissolved oxygen, pH, temperature, and turbidity were controlled and wastes produced by fish and feeding were converted to inorganic forms. A key process in the RAS was the conversion of ammonia to nitrite and nitrite to nitrate through nitrification. It was hypothesized that algae inclusion in RAS would improve the ammonia removal from the water; thereby improving RAS water quality and stability. To test this hypothesis, the stability of the microbiota community composition in a freshwater RAS with (RAS+A) or without algae (RAS-A) was challenged by introducing an acute pH drop (from pH 7 to 4 during three hours) to the system. Stigeoclonium nanum, a periphytic freshwater microalga was used in this study. No significant effect of the algae presence was found on the resistance to the acute pH drop on ammonia conversion to nitrite and nitrite conversion to nitrate. Also the resilience of the ammonia conversion to the pH drop disruption was not affected by the addition of algae. This could be due to the low biomass of algae achieved in the RAS. However, with regard to the conversion step of nitrite to nitrate, RAS+A was significantly more resilient than RAS-A. In terms of overall bacterial communities, the composition and predictive function of the bacterial communities was significantly different between RAS+A and RAS-A.
Collapse
|
11
|
Rochman FF, Kim JJ, Rijpstra WIC, Sinninghe Damsté JS, Schumann P, Verbeke TJ, Dunfield PF. Oleiharenicola alkalitolerans gen. nov., sp. nov., a new member of the phylum Verrucomicrobia isolated from an oilsands tailings pond. Int J Syst Evol Microbiol 2018; 68:1078-1084. [PMID: 29461179 DOI: 10.1099/ijsem.0.002624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel member of the phylum Verrucomicrobia was isolated from an oilsands tailings pond in Alberta, Canada. Cells of isolate NVTT are Gram-negative, strictly aerobic, non-pigmented, non-motile cocci to diplococci 0.5-1.0 µm in diameter. The bacterium is neutrophilic (optimum pH 6.0-8.0) but alkalitolerant, capable of growth between pH 5.5 and 11.0. The temperature range for growth is 15-40 °C (optimum 25-37 °C). Carbon and energy sources include sugars and organic acids. Nitrogen sources include nitrate, urea, l-glycine, l-alanine, l-proline and l-serine. Does not fix atmospheric nitrogen. Does not require NaCl and is inhibited at NaCl concentrations above 3.0 % (w/v). The DNA G+C content of strain NVTT, based on a draft genome sequence, is 66.1 mol%. MK-6 and MK-7 are the major respiratory quinones. Major cellular fatty acids are anteiso-C15 : 0 and iso-C15 : 0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the strain belongs to the family Opitutaceae of the phylum Verrucomicrobia. The most closely related validated species is Opitutus terrae (93.7 % 16S rRNA gene sequence identity to its type strain PB90-1T). Based on genotypic, phenotypic and chemotaxonomic characteristics, it was concluded that this strain represents a novel genus and species, for which the name Oleiharenicola alkalitolerans gen. nov., sp. nov. is proposed. The type strain of this novel species is NVTT (=ATCC BAA-2697T;=DSM 29249T).
Collapse
Affiliation(s)
- Fauziah F Rochman
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Joong-Jae Kim
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, Utrecht University, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, Utrecht University, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.,Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tobin J Verbeke
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
12
|
Rast P, Glöckner I, Boedeker C, Jeske O, Wiegand S, Reinhardt R, Schumann P, Rohde M, Spring S, Glöckner FO, Jogler C, Jogler M. Three Novel Species with Peptidoglycan Cell Walls form the New Genus Lacunisphaera gen. nov. in the Family Opitutaceae of the Verrucomicrobial Subdivision 4. Front Microbiol 2017; 8:202. [PMID: 28243229 PMCID: PMC5303756 DOI: 10.3389/fmicb.2017.00202] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/27/2017] [Indexed: 11/13/2022] Open
Abstract
The cell wall of free-living bacteria consists of peptidoglycan (PG) and is critical for maintenance of shape as dissolved solutes cause osmotic pressure and challenge cell integrity. Surprisingly, the subdivision 4 of the phylum Verrucomicrobia appears to be exceptional in this respect. Organisms of this subdivision are described to be devoid of muramic or diaminopimelic acid (DAP), usually found as components of PG in bacterial cell walls. Here we describe three novel bacterial strains from a freshwater lake, IG15T, IG16bT, and IG31T, belonging to a new genus in the subdivision 4 of Verrucomicrobia which we found to possess PG as part of their cell walls. Biochemical analysis revealed the presence of DAP not only in these novel strains, but also in Opitutus terrae PB90-1T, the closest described relative of strains IG15T, IG16bT, and IG31T. Furthermore, we found that nearly all genes necessary for peptidoglycan synthesis are present in genomes of subdivision 4 members, as well as in the complete genome sequence of strain IG16bT. In addition, we isolated and visualized PG-sacculi for strain IG16bT. Thus, our results challenge the concept of peptidoglycan-less free-living bacteria. Our polyphasic taxonomy approach places the novel strains in a new genus within the family Opitutaceae, for which the name Lacunisphaera gen. nov. is proposed. Strain designations for IG15T, IG16bT and IG31T are Lacunisphaera parvula sp. nov. (=DSM 26814 = LMG 29468), L. limnophila sp. nov. (=DSM 26815 = LMG 29469) and L. anatis sp. nov. (=DSM 103142 = LMG 29578) respectively, with L. limnophila IG16bT being the type species of the genus.
Collapse
Affiliation(s)
- Patrick Rast
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Ines Glöckner
- Institute for Pharmacology, Toxicology and Clinical Pharmacy, University of Technology Braunschweig, Germany
| | - Christian Boedeker
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Olga Jeske
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Sandra Wiegand
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Richard Reinhardt
- Max Planck Genome Center, Max Planck Institute for Plant Breeding Research Köln, Germany
| | - Peter Schumann
- Department of Central Services, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Stefan Spring
- Department Microorganisms, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Frank O Glöckner
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Christian Jogler
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweig, Germany; Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegen, Netherlands
| | - Mareike Jogler
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| |
Collapse
|