1
|
Lintern G, Scarlett AG, Gagnon MM, Leeder J, Amhet A, Lettoof DC, Leshyk VO, Bujak A, Bujak J, Grice K. Phytoremediation Potential of Azolla filiculoides: Uptake and Toxicity of Seven Per- and Polyfluoroalkyl Substances (PFAS) at Environmentally Relevant Water Concentrations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2157-2168. [PMID: 39110072 DOI: 10.1002/etc.5967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024]
Abstract
Environmental contamination of aquatic systems by per- and polyfluoroalkyl substances (PFAS) has generated significant health concerns. Remediation of contaminated sites such as the fire-fighting emergency training grounds that use aqueous film-forming foams is a high priority. Phytoremediation may help play a part in removing PFAS from such contaminated waters. We investigated the potential of the water fern Azolla filiculoides, which is used for phytoremediation of a wide range of contaminants, to uptake seven common PFAS (perfluorobutanoic acid [PFBA], perfluorobutane sulfonic acid [PFBS], perfluoroheptanoic acid [PFHpA], perfluorohexanoic acid [PFHxA], perfluorohexane sulfonic acid [PFHxS], perfluorooctanoic acid [PFOA], and perfluoropentanoic acid [PFPeA]), during a 12-day exposure to environmentally relevant concentrations delivered as equimolar mixtures: low (∑PFAS = 0.0123 ± 1.89 μmol L-1), medium (∑PFAS = 0.123 ± 2.88 μmol L-1), and high (∑PFAS = 1.39 μmol L-1) treatments, equivalent to approximately 5, 50, and 500 µg L-1 total PFAS, respectively. The possible phytotoxic effects of PFAS were measured at 3-day intervals using chlorophyll a content, photosystem II efficiency (Fv/Fm), performance index, and specific growth rate. The PFAS concentrations in plant tissue and water were also measured every 3 days using ultra-high-performance liquid chromatography-tandem mass spectrometry. Treatments with PFAS did not lead to any detectable phytotoxic effects. All seven PFAS were detected in plant tissue, with the greatest uptake occurring during the first 6 days of exposure. After 12 days of exposure, a maximum bioconcentration factor was recorded for PFBA of 1.30 and a minimum of 0.192 for PFBS. Consequently, the application of Azolla spp. as a stand-alone system for phytoremediation of PFAS in aquatic environments is not sufficient to substantially reduce PFAS concentrations. Environ Toxicol Chem 2024;43:2157-2168. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Gina Lintern
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Alan G Scarlett
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Marthe Monique Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - John Leeder
- Leeder Analytical, Fairfield, Victoria, Australia
| | - Aydin Amhet
- Leeder Analytical, Fairfield, Victoria, Australia
| | - Damian C Lettoof
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Environment, Commonwealth Scientific and Industrial Research Organisation, Centre for Environment and Life Sciences, Floreat, Western Australia, Australia
| | | | - Alexandra Bujak
- Azolla Biosystems and the Azolla Foundation, Blackpool, Lancashire, UK
| | - Jonathan Bujak
- Azolla Biosystems and the Azolla Foundation, Blackpool, Lancashire, UK
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
2
|
Chen S, Xu J, Peng L, Cheng Z, Kuang X, Li D, Peng C, Song H. Cadmium accumulation in rice grains is mitigated by duckweed-like hydrophyte through adsorption and increased ammonia nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164510. [PMID: 37257595 DOI: 10.1016/j.scitotenv.2023.164510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Although increasing attention has been paid to agronomic measures for reducing the heavy metal load in rice grain, the effects of duckweed-paddy co-cropping technology on the accumulation of cadmium (Cd) in rice grains remain unclear. To investigate its specific effects on Cd accumulation in paddy fields, three types of duckweed-like hydrophyte (DH), Azolla imbricata, Spirodela polyrrhiza, and Lemna minor were chosen for study. Their use resulted in a reduction of Cd content in rice grains from 0.40 mg/kg to <0.20 mg/kg, with A. imbricata yielding the best results (0.15 mg/kg). The three types of DH reduced the available Cd content in the soil by 10 % to 35 % after the paddy tillering stage. The reduction of available Cd content was attributed to the absorption, high pH, and increase of relative abundance of special bacteria of immobilizing Cd. In addition, DH could regulate soil nitrogen leading to ammonium nitrogen increased from 75 mg/kg to 100 mg/kg, while nitrate nitrogen decreased from 0.55 to 0.1-0.3 mg/kg. The increase of ammonium nitrogen content might induce the low Cd transfer ability in rice plant and then low Cd content in rice grain. This study demonstrated that DH has a good effect on the reduction of the Cd concentration in rice grains. Consequently, duckweed-paddy co-cropping technology offers a potential solution to heavy metal pollution and agricultural non-point source pollution, as it not only reduces Cd levels in rice plants, but also fixes nitrogen, reducing the need for nitrogen application.
Collapse
Affiliation(s)
- Shaoning Chen
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Junhui Xu
- Agriculture and Rural Bureau of Heshan District, Yiyang City, Hunan Province Yiyang 413002, PR China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China.
| | - Ziyi Cheng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaolin Kuang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Dan Li
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Cheng Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
3
|
Oscillatoria limnetica Mediated Green Synthesis of Iron Oxide (Fe 2O 3) Nanoparticles and Their Diverse In Vitro Bioactivities. Molecules 2023; 28:molecules28052091. [PMID: 36903337 PMCID: PMC10004046 DOI: 10.3390/molecules28052091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Iron oxide nanoparticles (Fe2O3-NPs) were synthesized using Oscillatoria limnetica extract as strong reducing and capping agents. The synthesized iron oxide nanoparticles IONPs were characterized by UV-visible spectroscopy, Fourier transform infrared (FTIR), X-ray diffractive analysis (XRD), scanning electron microscope (SEM), and Energy dispersive X-ray spectroscopy (EDX). IONPs synthesis was confirmed by UV-visible spectroscopy by observing the peak at 471 nm. Furthermore, different in vitro biological assays, which showed important therapeutic potentials, were performed. Antimicrobial assay of biosynthesized IONPs was performed against four different Gram-positive and Gram-negative bacterial strains. E. coli was found to be the least suspected strain (MIC: 35 µg/mL), and B. subtilis was found to be the most suspected strain (MIC: 14 µg/mL). The maximum antifungal assay was observed for Aspergillus versicolor (MIC: 27 µg mL). The cytotoxic assay of IONPs was also studied using a brine shrimp cytotoxicity assay, and LD50 value was reported as 47 µg/mL. In toxicological evaluation, IONPs was found to be biologically compatible to human RBCs (IC50: >200 µg/mL). The antioxidant assay, DPPH 2,2-diphenyl-1-picrylhydrazyly was recorded at 73% for IONPs. In conclusion, IONPs revealed great biological potential and can be further recommended for in vitro and in vivo therapeutic purposes.
Collapse
|
4
|
de Vries S, de Vries J. Evolutionary genomic insights into cyanobacterial symbioses in plants. QUANTITATIVE PLANT BIOLOGY 2022; 3:e16. [PMID: 37077989 PMCID: PMC10095879 DOI: 10.1017/qpb.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 05/03/2023]
Abstract
Photosynthesis, the ability to fix atmospheric carbon dioxide, was acquired by eukaryotes through symbiosis: the plastids of plants and algae resulted from a cyanobacterial symbiosis that commenced more than 1.5 billion years ago and has chartered a unique evolutionary path. This resulted in the evolutionary origin of plants and algae. Some extant land plants have recruited additional biochemical aid from symbiotic cyanobacteria; these plants associate with filamentous cyanobacteria that fix atmospheric nitrogen. Examples of such interactions can be found in select species from across all major lineages of land plants. The recent rise in genomic and transcriptomic data has provided new insights into the molecular foundation of these interactions. Furthermore, the hornwort Anthoceros has emerged as a model system for the molecular biology of cyanobacteria-plant interactions. Here, we review these developments driven by high-throughput data and pinpoint their power to yield general patterns across these diverse symbioses.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| |
Collapse
|
5
|
A Hypothesis on How the Azolla Symbiosis Mitigates Nitrous Oxide Based on In Silico Analyses. J 2022. [DOI: 10.3390/j5010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitrous oxide is a long-lived greenhouse gas that exists for 114 years in the atmosphere and is 298-fold more potent than carbon dioxide in its global warming potential. Two recent studies showcased the utility of Azolla plants for a lesser footprint in nitrous oxide production from urea and other supplements to the irrigated ecosystem, which mandates exploration since there is still no clear solution to nitrous oxide in paddy fields or in other ecosystems. Here, we propose a solution based on the evolution of a single cytochrome oxidase subunit II protein (WP_013192178.1) from the cyanobiont Trichormus azollae that we hypothesize to be able to quench nitrous oxide. First, we draw attention to a domain in the candidate protein that is emerging as a sensory periplasmic Y_Y_Y domain that is inferred to bind nitrous oxide. Secondly, we draw the phylogeny of the candidate protein showcasing the poor bootstrap support of its position in the wider clade showcasing its deviation from the core function. Thirdly, we show that the NtcA protein, the apical N-effecting transcription factor, can putatively bind to a promoter sequence of the gene coding for the candidate protein (WP_013192178.1), suggesting a function associated with heterocysts and N-metabolism. Our fourth point involves a string of histidines at the C-terminal extremity of the WP_013192178.1 protein that is missing on all other T. azollae cytochrome oxidase subunit II counterparts, suggesting that such histidines are perhaps involved in forming a Cu center. As the fifth point, we showcase a unique glycine-183 in a lengthy linker region containing multiple glycines that is absent in all proximal Nostocales cyanobacteria, which we predict to be a DNA binding residue. We propose a mechanism of action for the WP_013192178.1 protein based on our in silico analyses. In total, we hypothesize the incomplete and rapid conversion of a likely heterocystous cytochrome oxidase subunit II protein to an emerging nitrous oxide sensing/quenching subunit based on bioinformatics analyses and past literature, which can have repercussions to climate change and consequently, future human life.
Collapse
|
6
|
Brilli F, Dani KGS, Pasqualini S, Costarelli A, Cannavò S, Paolocci F, Zittelli GC, Mugnai G, Baraldi R, Loreto F. Exposure to different light intensities affects emission of volatiles and accumulations of both pigments and phenolics in Azolla filiculoides. PHYSIOLOGIA PLANTARUM 2022; 174:e13619. [PMID: 34988977 PMCID: PMC9305523 DOI: 10.1111/ppl.13619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 06/01/2023]
Abstract
Many agronomic trials demonstrated the nitrogen-fixing ability of the ferns Azolla spp. and its obligate cyanobiont Trichormus azollae. In this study, we have screened the emission of volatile organic compounds (VOCs) and analyzed pigments (chlorophylls, carotenoids) as well as phenolic compounds in Azolla filiculoides-T. azollae symbionts exposed to different light intensities. Our results revealed VOC emission mainly comprising isoprene and methanol (~82% and ~13% of the overall blend, respectively). In particular, by dissecting VOC emission from A. filiculoides and T. azollae, we found that the cyanobacterium does not emit isoprene, whereas it relevantly contributes to the methanol flux. Enhanced isoprene emission capacity (15.95 ± 2.95 nmol m-2 s-1 ), along with increased content of both phenolic compounds and carotenoids, was measured in A. filiculoides grown for long-term under high (700 μmol m-2 s-1 ) rather than medium (400 μmol m-2 s-1 ) and low (100 μmol m-2 s-1 ) light intensity. Moreover, light-responses of chlorophyll fluorescence demonstrated that A. filiculoides was able to acclimate to high growth light. However, exposure of A. filiculoides from low (100 μmol m-2 s-1 ) to very high light (1000 μmol m-2 s-1 ) did not affect, in the short term, photosynthesis, but slightly decreased isoprene emission and leaf pigment content whereas, at the same time, dramatically raised the accumulation of phenolic compounds (i.e. deoxyanthocyanidins and phlobaphenes). Our results highlight a coordinated photoprotection mechanism consisting of isoprene emission and phenolic compounds accumulation employed by A. filiculoides to cope with increasing light intensities.
Collapse
Affiliation(s)
- Federico Brilli
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - K. G. Srikanta Dani
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Stefania Pasqualini
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Alma Costarelli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Sara Cannavò
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Francesco Paolocci
- Institute of Biosciences and BioResources (IBBR)National Research Council of Italy (CNR)PerugiaItaly
| | | | - Gianmarco Mugnai
- Institute of BioEconomy (IBE)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Rita Baraldi
- Institute of BioEconomy (IBE)National Research Council of Italy (CNR)BolognaItaly
| | - Francesco Loreto
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
- Department of BiologyThe University of Naples Federico IINaplesItaly
| |
Collapse
|
7
|
Abstract
Species of the floating, freshwater fern Azolla form a well-characterized symbiotic association with the non-culturable cyanobacterium Nostoc azollae, which fixes nitrogen for the plant. However, several cyanobacterial strains have over the years been isolated and cultured from Azolla from all over the world. The genomes of 10 of these strains were sequenced and compared with each other, with other symbiotic cyanobacterial strains, and with similar strains that were not isolated from a symbiotic association. The 10 strains fell into three distinct groups: six strains were nearly identical to the non-symbiotic strain, Nostoc (Anabaena) variabilis ATCC 29413; three were similar to the symbiotic strain, Nostoc punctiforme, and one, Nostoc sp. 2RC, was most similar to non-symbiotic strains of Nostoc linckia. However, Nostoc sp. 2RC was unusual because it has three sets of nitrogenase genes; it has complete gene clusters for two distinct Mo-nitrogenases and an alternative V-nitrogenase. Genes for Mo-nitrogenase, sugar transport, chemotaxis and pili characterized all the symbiotic strains. Several of the strains infected the liverwort Blasia, including N. variabilis ATCC 29413, which did not originate from Azolla but rather from a sewage pond. However, only Nostoc sp. 2RC, which produced highly motile hormogonia, was capable of high-frequency infection of Blasia. Thus, some of these strains, which grow readily in the laboratory, may be useful in establishing novel symbiotic associations with other plants.
Collapse
Affiliation(s)
- Brenda S. Pratte
- Department of Biology, University of Missouri–St. Louis, One University Blvd, St. Louis, MO 63121, USA
| | - Teresa Thiel
- Department of Biology, University of Missouri–St. Louis, One University Blvd, St. Louis, MO 63121, USA
- *Correspondence: Teresa Thiel,
| |
Collapse
|
8
|
Darnet S, Blary A, Chevalier Q, Schaller H. Phytosterol Profiles, Genomes and Enzymes - An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:665206. [PMID: 34093623 PMCID: PMC8172173 DOI: 10.3389/fpls.2021.665206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 05/12/2023]
Abstract
The remarkable diversity of sterol biosynthetic capacities described in living organisms is enriched at a fast pace by a growing number of sequenced genomes. Whereas analytical chemistry has produced a wealth of sterol profiles of species in diverse taxonomic groups including seed and non-seed plants, algae, phytoplanktonic species and other unicellular eukaryotes, functional assays and validation of candidate genes unveils new enzymes and new pathways besides canonical biosynthetic schemes. An overview of the current landscape of sterol pathways in the tree of life is tentatively assembled in a series of sterolotypes that encompass major groups and provides also peculiar features of sterol profiles in bacteria, fungi, plants, and algae.
Collapse
Affiliation(s)
| | | | | | - Hubert Schaller
- Plant Isoprenoid Biology Team, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
ABRAHAM GERARD, JAISWAL PRANITA, SINGH YUDHVIR, YADAV RAVINDRAKUMAR, KUMAR RAVINDRA, MUDGAL VISHAL, SINGH PAWANKUMAR. Perspectives on the utilization of Azolla-Anabaena system as feed supplement. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i9.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nitrogen fixing aquatic pteridophyte Azolla is one of the fastest growing nitrogen-fixing plants and it is used as a potential source for high rate biomass production. Azolla has the ability to fix atmospheric nitrogen at cheaper and faster rates due to the presence of a symbiotic cyanobacterium Anabaena azollae. Therefore, the ability to fix atmospheric nitrogen is important from an agricultural perspective. However, Azolla is gaining popularity as feed supplement for cattle, poultry and fish. Further, the ease of cultivation and favourable nutrient composition make Azolla an important feed supplement. This review focuses on the perspectives of Azolla as feed supplement.
Collapse
|
10
|
Gunawardana D. An in silico Study of Two Transcription Factors Controlling Diazotrophic Fates of the Azolla Major Cyanobiont Trichormus azollae. Bioinform Biol Insights 2020; 14:1177932220977490. [PMID: 33402818 PMCID: PMC7747107 DOI: 10.1177/1177932220977490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/01/2020] [Indexed: 11/17/2022] Open
Abstract
The cyanobiont Trichormus azollae lives symbiotically within fronds of the genus Azolla, and assimilates atmospheric nitrogen upon N-limitation, which earmarks this symbiosis to be a valuable biofertilizer in rice cultivation, among many other benefits that also include carbon sequestration. Therefore, studying the regulation of nitrogen fixation in Trichormus azollae is of great importance and benefit, especially the two topmost rungs of regulation, the NtcA and HetR transcription factors that are able to regulate the expression of myriads of downstream genes. Bioinformatics tools were used to zoom in on the NtcA and HetR transcription factors from Trichormus azollae to elaborate on what makes this particular cyanobiont different from other symbiotic as well as more distinct counterparts, in their commitment to nitrogen fixation. The utility of Azolla plants in tropical agriculture in particular merits the "top down N-regulation" by cyanobiont as a significant niche area of study, to make sense of superior N-fixing capabilities. The Trichormus azollae NtcA sequence was found as a phylogenetic outlier to horizontally infecting cyanobionts, which points to a distinct identity compared to symbiotic counterparts. There were borderline (60%-70%) levels of acceptable bootstrap support for the phylogenetic position of the Azolla cyanobiont's NtcA protein compared to other cyanobionts. Furthermore, the NtcA global nitrogen regulator in the Azolla cyanobiont has an extra cysteine at position 128, in addition to two other more conspicuous cysteines (positions, 157 and 164). A simulated homology model of the NtcA protein from Trichormus azollae, points to a single unique cysteine (Cysteine-128) as a key residue at the center of a lengthy C-helix, which forms a coiled-coil interface, through likely disulfide bond formation. Three cysteine (Cysteines: 128, 157, 164) architecture is exclusively found in Trichormus azollae and is absent in other cyanobacteria. A separate proline to alanine mutation in position 97-again exclusive to Trichormus azollae-appears to influence the flexibility of effector binding domain (EBD) to 2-oxoglutarate. The Trichormus azollae HetR sequence was found outside of horizontally-infecting cyanobiont sequences that formed a common clade, with the exception of the cyanobiont from the genus Cycas that formed one line of descent with the Trichormus azollae counterpart. Five (out of 6) serines predicted to be phosphorylated in the Trichormus azollae HetR sequence, are conserved in the Nostoc punctiforme counterpart, showcasing that phosphorylation is likley conserved in both vertically-transmitted and horizontally-acquired cyanobionts. A key Serine-127, within a conserved motif TSLTS, although conserved in heterocystous subsection IV and V cyanobacteria, are mutated in subsection III cyanobacteria that form trichomes but are unable to form heterocysts. I conclude that the NtcA protein from Trichormus azollae to be strategically divergent at specific amino acids that gives it an advantage in function as a 2-oxoglutarate-mediated transcription factor. The Trichormus azollae HetR transcription factor appears to possess parallel functionality to horizontally acquired counterparts. Especially Cysteine-128 in the NtcA transcription factor of the Azolla cyanobiont is an interesting proposition for future structure-function studies.
Collapse
|
11
|
Miranda AF, Kumar NR, Spangenberg G, Subudhi S, Lal B, Mouradov A. Aquatic Plants, Landoltia punctata, and Azolla filiculoides as Bio-Converters of Wastewater to Biofuel. PLANTS (BASEL, SWITZERLAND) 2020; 9:E437. [PMID: 32244834 PMCID: PMC7238415 DOI: 10.3390/plants9040437] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
The aquatic plants, Azolla filiculoides, and Landoltia punctate, were used as complementing phytoremediators of wastewater containing high levels of phosphate, which simulates the effluents from textile, dyeing, and laundry detergent industries. Their complementarities are based on differences in capacities to uptake nitrogen and phosphate components from wastewater. Sequential treatment by L. punctata followed by A. filiculoides led to complete removal of NH4, NO3, and up to 93% reduction of PO4. In experiments where L. punctata treatment was followed by fresh L. punctata, PO4 concentration was reduced by 65%. The toxicity of wastewater assessed by shrimps, Paratya australiensis, showed a four-fold reduction of their mortality (LC50 value) after treatment. Collected dry biomass was used as an alternative carbon source for heterotrophic marine protists, thraustochytrids, which produced up to 35% dry weight of lipids rich in palmitic acid (50% of total fatty acids), the key fatty acid for biodiesel production. The fermentation of treated L. punctata biomass by Enterobacter cloacae yielded up to 2.14 mol H2/mole of reduced sugar, which is comparable with leading terrestrial feedstocks. A. filiculoides and L. punctata can be used as a new generation of feedstock, which can treat different types of wastewater and represent renewable and sustainable feedstock for bioenergy production.
Collapse
Affiliation(s)
- Ana F. Miranda
- School of Sciences, RMIT University, Bundoora West Campus, Bundoora VIC 3083, Australia;
| | - N. Ram Kumar
- The Energy and Resources Institute, New Delhi 110 003, India; (N.R.K.); (S.S.); (B.L.)
| | - German Spangenberg
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora VIC 3083, Australia;
- School of Applied Systems Biology, La Trobe University, Bundoora VIC 3086, Australia
| | - Sanjukta Subudhi
- The Energy and Resources Institute, New Delhi 110 003, India; (N.R.K.); (S.S.); (B.L.)
| | - Banwari Lal
- The Energy and Resources Institute, New Delhi 110 003, India; (N.R.K.); (S.S.); (B.L.)
| | - Aidyn Mouradov
- School of Sciences, RMIT University, Bundoora West Campus, Bundoora VIC 3083, Australia;
| |
Collapse
|
12
|
An Exploration of Common Greenhouse Gas Emissions by the Cyanobiont of the Azolla-Nostoc Symbiosis and Clues as to Nod Factors in Cyanobacteria. PLANTS 2019; 8:plants8120587. [PMID: 31835592 PMCID: PMC6963936 DOI: 10.3390/plants8120587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022]
Abstract
Azolla is a genus of aquatic ferns that engages in a unique symbiosis with a cyanobiont that is resistant to cultivation. Azolla spp. are earmarked as a possible candidate to mitigate greenhouse gases, in particular, carbon dioxide. That opinion is underlined here in this paper to show the broader impact of Azolla spp. on greenhouse gas mitigation by revealing the enzyme catalogue in the Nostoc cyanobiont to be a poor contributor to climate change. First, regarding carbon assimilation, it was inferred that the carboxylation activity of the Rubisco enzyme of Azolla plants is able to quench carbon dioxide on par with other C3 plants and fellow aquatic free-floating macrophytes, with the cyanobiont contributing on average ~18% of the carboxylation load. Additionally, the author demonstrates here, using bioinformatics and past literature, that the Nostoc cyanobiont of Azolla does not contain nitric oxide reductase, a key enzyme that emanates nitrous oxide. In fact, all Nostoc species, both symbiotic and nonsymbiotic, are deficient in nitric oxide reductases. Furthermore, the Azolla cyanobiont is negative for methanogenic enzymes that use coenzyme conjugates to emit methane. With the absence of nitrous oxide and methane release, and the potential ability to convert ambient nitrous oxide into nitrogen gas, it is safe to say that the Azolla cyanobiont has a myriad of features that are poor contributors to climate change, which on top of carbon dioxide quenching by the Calvin cycle in Azolla plants, makes it an efficient holistic candidate to be developed as a force for climate change mitigation, especially in irrigated urea-fed rice fields. The author also shows that Nostoc cyanobionts are theoretically capable of Nod factor synthesis, similar to Rhizobia and some Frankia species, which is a new horizon to explore in the future.
Collapse
|
13
|
The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to determine the still not completely described microbiome associated with the aquatic fern Azolla filiculoides. During the experiment, 58 microbial isolates (43 epiphytes and 15 endophytes) with different morphologies were obtained. We successfully identified 85% of microorganisms and assigned them to 9 bacterial genera: Achromobacter, Bacillus, Microbacterium, Delftia, Agrobacterium, and Alcaligenes (epiphytes) as well as Bacillus, Staphylococcus, Micrococcus, and Acinetobacter (endophytes). We also studied an A. filiculoides cyanobiont originally classified as Anabaena azollae; however, the analysis of its morphological traits suggests that this should be renamed as Trichormus azollae. Finally, the potential of the representatives of the identified microbial genera to synthesize plant growth-promoting substances such as indole-3-acetic acid (IAA), cellulase and protease enzymes, siderophores and phosphorus (P) and their potential of utilization thereof were checked. Delftia sp. AzoEpi7 was the only one from all the identified genera exhibiting the ability to synthesize all the studied growth promoters; thus, it was recommended as the most beneficial bacteria in the studied microbiome. The other three potentially advantageous isolates (Micrococcus sp. AzoEndo14, Agrobacterium sp. AzoEpi25 and Bacillus sp. AzoEndo3) displayed 5 parameters: IAA (excluding Bacillus sp. AzoEndo3), cellulase, protease, siderophores (excluding Micrococcus sp. AzoEndo14), as well as mineralization and solubilization of P (excluding Agrobacterium sp. AzoEpi25).
Collapse
|
14
|
Kumar U, Nayak AK, Panneerselvam P, Kumar A, Mohanty S, Shahid M, Sahoo A, Kaviraj M, Priya H, Jambhulkar NN, Dash PK, Mohapatra SD, Nayak PK. Cyanobiont diversity in six Azolla spp. and relation to Azolla-nutrient profiling. PLANTA 2019; 249:1435-1447. [PMID: 30684037 DOI: 10.1007/s00425-019-03093-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Illumina-Miseq®-based cyanobiont diversity and biomass were analyzed in six Azolla spp. Results revealed that 93-98% of total operational taxonomic units (OTUs) belong to Nostacaceae followed by Cylindrospermopsis with about 1-6% OTUs. The taxonomy of Azolla-cyanobiont is a long-term debate within the scientific community. Morphological and biochemical-based reports indicated the presence of Anabaena, Nostoc and/or Trichormus azollae as abundant Azolla-cyanobionts, however, molecular data did not support the abundance of Anabaena and/or Nostoc. To understand furthermore, the cyanobiont diversity in six species of Azolla (A. microphylla, A. mexicana, A. filiculoides, A. caroliniana, A. pinnata and A. rubra) was analyzed based on 16S rRNA Illumina-MiSeq sequencing. Additionally, biomass and nutrient profiling of Azolla spp. were analyzed and correlated with cyanobiont diversity. Illumina-MiSeq data revealed that 99.6-99.9% of total operational taxonomic units (OTUs) belonged to Nostocophycideae (class), Nostocales (order) and Nostacaceae (family). At genus level, the unassigned affiliation (93.4-97.9%) under Nostacaceae family was abundant followed by Cylindrospermopsis OTUs (1.1-6.0%). Interestingly, A. pinnata harboured maximum Cylindrospermopsis OTUs and also recorded higher biomass (40.67 g m-2 day-1), whereas crude protein (25.9%) and antioxidants (76.9%) were recorded to be higher in A. microphylla. Biplot analysis revealed that A. pinnata and its cyanobiont abundance were positively correlated with neutral and acid detergent fibers. Overall, the present findings deepened the understanding about cyanobiont in Azolla and its relations with Azolla nutrient profiling.
Collapse
Affiliation(s)
- Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.
| | - Amaresh K Nayak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - Anjani Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sangita Mohanty
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Mohammad Shahid
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Archana Sahoo
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Himani Priya
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - Pradeep K Dash
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - S D Mohapatra
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Prafulla K Nayak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| |
Collapse
|
15
|
Saraf AG, Dawda HG, Singh P. Desikacharya gen. nov., a phylogenetically distinct genus of Cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov. Int J Syst Evol Microbiol 2019; 69:307-315. [DOI: 10.1099/ijsem.0.003093] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Aniket G. Saraf
- 1Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai, India
| | | | - Prashant Singh
- 2Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
16
|
de Vries S, de Vries J, Teschke H, von Dahlen JK, Rose LE, Gould SB. Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont. PLANT, CELL & ENVIRONMENT 2018; 41:2530-2548. [PMID: 29314046 DOI: 10.1111/pce.13131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/05/2017] [Accepted: 12/21/2017] [Indexed: 05/16/2023]
Abstract
Plants sense and respond to microbes utilizing a multilayered signalling cascade. In seed plants, the phytohormones jasmonic and salicylic acid (JA and SA) are key denominators of how plants respond to certain microbes. Their interplay is especially well-known for tipping the scales in plants' strategies of dealing with phytopathogens. In non-angiosperm lineages, the interplay is less well understood, but current data indicate that it is intertwined to a lesser extent and the canonical JA/SA antagonism appears to be absent. Here, we used the water fern Azolla filiculoides to gain insights into the fern's JA/SA signalling and the molecular communication with its unique nitrogen fixing cyanobiont Nostoc azollae, which the fern inherits both during sexual and vegetative reproduction. By mining large-scale sequencing data, we demonstrate that Azolla has most of the genetic repertoire to produce and sense JA and SA. Using qRT-PCR on the identified biosynthesis and signalling marker genes, we show that Azolla is responsive to exogenously applied SA. Furthermore, exogenous SA application influenced the abundance and gene expression of Azolla's cyanobiont. Our data provide a framework for JA/SA signalling in ferns and suggest that SA might be involved in Azolla's communication with its vertically inherited cyanobiont.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Hendrik Teschke
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| |
Collapse
|
17
|
Pereira AL. The Unique Symbiotic System between a Fern and a Cyanobacterium, Azolla-Anabaena azollae: Their Potential as Biofertilizer, Feed, and Remediation. Symbiosis 2018. [DOI: 10.5772/intechopen.70466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Miranda AF, Liu Z, Rochfort S, Mouradov A. Lipid production in aquatic plant Azolla at vegetative and reproductive stages and in response to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:117-125. [PMID: 29366971 DOI: 10.1016/j.plaphy.2018.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
The aquatic plant Azolla became increasingly popular as bioenergy feedstock because of its high growth rate, production of biomass with high levels of biofuel-producing molecules and ability to grow on marginal lands. In this study, we analysed the contribution of all organs of Azolla to the total yield of lipids at vegetative and reproductive stages and in response to stress. Triacylglycerol-containing lipid droplets were detected in all (vegetative and reproductive) organs with the highest level in the male microsporocarps and microspores. As a result, significantly higher total yields of lipids were detected in Azolla filiculoides and Azolla pinnata at the reproductive stage. Starving changed the yield and composition of the fatty acid as a result of re-direction of carbon flow from fatty acid to anthocyanin pathways. The composition of lipids, in regard the length and degree of unsaturation of fatty acids, in Azolla meets most of the important requirements for biodiesel standards. The ability of Azolla to grow on wastewaters, along with their high productivity rate, makes it an attractive feedstock for the production of biofuels.
Collapse
Affiliation(s)
- Ana F Miranda
- School of Sciences, RMIT University, Melbourne, VIC, Australia.
| | - Zhiqian Liu
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Simone Rochfort
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Aidyn Mouradov
- School of Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Dijkhuizen LW, Brouwer P, Bolhuis H, Reichart G, Koppers N, Huettel B, Bolger AM, Li F, Cheng S, Liu X, Wong GK, Pryer K, Weber A, Bräutigam A, Schluepmann H. Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N 2 but may denitrify. THE NEW PHYTOLOGIST 2018; 217:453-466. [PMID: 29084347 PMCID: PMC5901025 DOI: 10.1111/nph.14843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/05/2017] [Indexed: 05/18/2023]
Abstract
Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N2 -fixation. 15 N2 incorporation was active in ferns with N. azollae but not in ferns without. N2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N2 O.
Collapse
Affiliation(s)
- Laura W. Dijkhuizen
- Molecular Plant Physiology DepartmentUtrecht UniversityPadualaan 8Utrecht3584CHthe Netherlands
| | - Paul Brouwer
- Molecular Plant Physiology DepartmentUtrecht UniversityPadualaan 8Utrecht3584CHthe Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and BiogeochemistryNetherlands Institute for Sea Research (NIOZ)Utrecht UniversityDen Hoorn1797SZthe Netherlands
| | - Gert‐Jan Reichart
- Department of Earth SciencesUtrecht UniversityUtrecht3508TAthe Netherlands
| | - Nils Koppers
- Department of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding ADIS/DNA Core FacilityCologne50829Germany
| | - Anthony M. Bolger
- Institute of Botany and Molecular Genetics IBMGIRWTH Aachen University52074AachenGermany
| | - Fay‐Wei Li
- Department of BiologyDuke UniversityDurhamNC27708USA
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNY14853USA
| | - Shifeng Cheng
- Beijing Genomics Institute‐ShenzhenShenzhen518083China
| | - Xin Liu
- Beijing Genomics Institute‐ShenzhenShenzhen518083China
| | - Gane Ka‐Shu Wong
- Beijing Genomics Institute‐ShenzhenShenzhen518083China
- Department of Biological SciencesUniversity of AlbertaEdmontonABT6G 2E9Canada
| | | | - Andreas Weber
- Department of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Andrea Bräutigam
- Department of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Henriette Schluepmann
- Molecular Plant Physiology DepartmentUtrecht UniversityPadualaan 8Utrecht3584CHthe Netherlands
| |
Collapse
|