1
|
Liu GH, Yang S, Narsing Rao MP, Han S, Xie CJ, Alwathnani HA, Herzberg M, Rensing C, Zhou SG. Isolation and genomics of ten novel Shewanella species from mangrove wetland. Int J Syst Evol Microbiol 2023; 73. [PMID: 37327059 DOI: 10.1099/ijsem.0.005929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Mangrove bacteria largely compose the microbial community of the coastal ecosystem and are directly associated with nutrient cycling. In the present study, 12 Gram-negative and motile strains were isolated from a mangrove wetland in Zhangzhou, China. Pairwise comparisons (based on 16S rRNA gene sequences) and phylogenetic analysis indicated that these 12 strains belong to the genus Shewanella. The 16S rRNA gene sequence similarities among the 12 Shewanella strains and their related type strains ranged from 98.8 to 99.8 %, but they still could not be considered as known species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the 12 strains and their related type strains were below the cut-off values (ANI 95-96% and dDDH 70 %) for prokaryotic species delineation. The DNA G+C contents of the present study strains ranged from 44.4 to 53.8 %. The predominant menaquinone present in all strains was MK-7. The present study strains (except FJAT-53532T) also contained ubiquinones (Q-8 and Q-7). The polar lipid phosphatidylglycerol and fatty acid iso-C15 : 0 was noticed in all strains. Based on phenotypic, chemotaxonomic, phylogenetic and genomic comparisons, we propose that these 12 strains represent 10 novel species within the genus Shewanella, with the names Shewanella psychrotolerans sp. nov. (FJAT-53749T=GDMCC 1.2398T=KCTC 82649T), Shewanella zhangzhouensis sp. nov. (FJAT-52072T=MCCC 1K05363T=KCTC 82447T), Shewanella rhizosphaerae sp. nov. (FJAT-53764T=GDMCC 1.2349T=KCTC 82648T), Shewanella mesophila sp. nov. (FJAT-53870T=GDMCC 1.2346T= KCTC 82640T), Shewanella halotolerans sp. nov. (FJAT-53555T=GDMCC 1.2344T=KCTC 82645T), Shewanella aegiceratis sp. nov. (FJAT-53532T=GDMCC 1.2343T=KCTC 82644T), Shewanella alkalitolerans sp. nov. (FJAT-54031T=GDMCC 1.2347T=KCTC 82642T), Shewanella spartinae sp. nov. (FJAT-53681T=GDMCC 1.2345T=KCTC 82641T), Shewanella acanthi sp. nov. (FJAT-51860T=GDMCC 1.2342T=KCTC 82650T) and Shewanella mangrovisoli sp. nov. (FJAT-51754T=GDMCC 1.2341T= KCTC 82647T).
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou City, Fujian Province, 350003, PR China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Manik Prabhu Narsing Rao
- Programa de Doctorado en Ciencias Aplicadas, Universidad Autónoma de Chile, Talca, 3460000, Chile
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| |
Collapse
|
2
|
Li S, Wang J, Liu J, Zhang H, Bao T, Sun C, Fang J, Cao J. Genomic Analysis of the Deep-Sea Bacterium Shewanella sp. MTB7 Reveals Backgrounds Related to Its Deep-Sea Environment Adaptation. Microorganisms 2023; 11:microorganisms11030798. [PMID: 36985371 PMCID: PMC10059138 DOI: 10.3390/microorganisms11030798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Shewanella species are widely distributed in various environments, especially deep-sea sediments, due to their remarkable ability to utilize multiple electron receptors and versatile metabolic capabilities. In this study, a novel facultatively anaerobic, psychrophilic, and piezotolerant bacterium, Shewanella sp. MTB7, was isolated from the Mariana Trench at a depth of 5900 m. Here, we report its complete genome sequence and adaptation strategies for survival in deep-sea environments. MTB7 contains what is currently the third-largest genome among all isolated Shewanella strains and shows higher coding density than neighboring strains. Metabolically, MTB7 is predicted to utilize various carbon and nitrogen sources. D-amino acid utilization and HGT-derived purine-degrading genes could contribute to its oligotrophic adaptation. For respiration, the cytochrome o ubiquinol oxidase genes cyoABCDE, typically expressed at high oxygen concentrations, are missing. Conversely, a series of anaerobic respiratory genes are employed, including fumarate reductase, polysulfide reductase, trimethylamine-N-oxide reductase, crotonobetaine reductase, and Mtr subunits. The glycine reductase genes and the triplication of dimethyl sulfoxide reductase genes absent in neighboring strains could also help MTB7 survive in low-oxygen environments. Many genes encoding cold-shock proteins, glycine betaine transporters and biosynthetic enzymes, and reactive oxygen species-scavenging proteins could contribute to its low-temperature adaptation. The genomic analysis of MTB7 will deepen our understanding of microbial adaptation strategies in deep-sea environments.
Collapse
Affiliation(s)
- Sicong Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Jiahua Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Hongcai Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tianqiang Bao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Chengwen Sun
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Munson-McGee JH, Lindsay MR, Sintes E, Brown JM, D'Angelo T, Brown J, Lubelczyk LC, Tomko P, Emerson D, Orcutt BN, Poulton NJ, Herndl GJ, Stepanauskas R. Decoupling of respiration rates and abundance in marine prokaryoplankton. Nature 2022; 612:764-770. [PMID: 36477536 PMCID: PMC9771814 DOI: 10.1038/s41586-022-05505-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The ocean-atmosphere exchange of CO2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton)1-3, their respiration usually is measured in bulk and treated as a 'black box' in global biogeochemical models4; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy3,5-7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.
Collapse
Affiliation(s)
| | | | - Eva Sintes
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Instituto Español de Oceanografía-CSIC, Centro Oceanográfico de Baleares, Palma, Spain
| | - Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Joe Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | | | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Den Burg, The Netherlands
| | | |
Collapse
|
4
|
Sieg J, Sandmeier CC, Lieske J, Meents A, Lemmen C, Streit WR, Rarey M. Analyzing structural features of proteins from deep-sea organisms. Proteins 2022; 90:1521-1537. [PMID: 35313380 DOI: 10.1002/prot.26337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022]
Abstract
Protein adaptations to extreme environmental conditions are drivers in biotechnological process optimization and essential to unravel the molecular limits of life. Most proteins with such desirable adaptations are found in extremophilic organisms inhabiting extreme environments. The deep sea is such an environment and a promising resource that poses multiple extremes on its inhabitants. Conditions like high hydrostatic pressure and high or low temperature are prevalent and many deep-sea organisms tolerate multiple of these extremes. While molecular adaptations to high temperature are comparatively good described, adaptations to other extremes like high pressure are not well-understood yet. To fully unravel the molecular mechanisms of individual adaptations it is probably necessary to disentangle multifactorial adaptations. In this study, we evaluate differences of protein structures from deep-sea organisms and their respective related proteins from nondeep-sea organisms. We created a data collection of 1281 experimental protein structures from 25 deep-sea organisms and paired them with orthologous proteins. We exhaustively evaluate differences between the protein pairs with machine learning and Shapley values to determine characteristic differences in sequence and structure. The results show a reasonable discrimination of deep-sea and nondeep-sea proteins from which we distinguish correlations previously attributed to thermal stability from other signals potentially describing adaptions to high pressure. While some distinct correlations can be observed the overall picture appears intricate.
Collapse
Affiliation(s)
- Jochen Sieg
- Universität Hamburg, ZBH - Center for Bioinformatics, Hamburg, Germany
| | | | - Julia Lieske
- Deutsches Elektronen-Synchrotron DESY, Center for Free-Electron Laser Science, Hamburg, Germany
| | - Alke Meents
- Deutsches Elektronen-Synchrotron DESY, Center for Free-Electron Laser Science, Hamburg, Germany
| | | | - Wolfgang R Streit
- Universität Hamburg, Department of Microbiology and Biotechnology, Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Hamburg, Germany
| |
Collapse
|
5
|
Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut. BIOLOGY 2022; 11:biology11050632. [PMID: 35625360 PMCID: PMC9138089 DOI: 10.3390/biology11050632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The genus Shewanella is widely distributed in niches ranging from an aquatic environment to spoiled fish and is loaded with various ecologically and commercially important metabolites. Bacterial species under this genus find application in bioelectricity generation and bioremediation due to their capability to use pollutants as the terminal electron acceptor and could produce health-beneficial omega-3 fatty acids, particularly eicosapentaenoic acid (EPA). Here, the genome sequence of an EPA-producing bacterium, Shewanella sp. N2AIL, isolated from the gastrointestinal tract of Tilapia fish, is reported. The genome size of the strain was 4.8 Mb with a GC content of 46.3% containing 4385 protein-coding genes. Taxonogenomic analysis assigned this strain to the genus Shewanella on the basis of average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH), phylogenetically most closely related with S. baltica NCTC 10735T. The comparative genome analysis with the type strain of S. baltica revealed 693 unique genes in the strain N2AIL, highlighting the variation at the strain level. The genes associated with stress adaptation, secondary metabolite production, antibiotic resistance, and metal reduction were identified in the genome suggesting the potential of the bacterium to be explored as an industrially important strain. PUFA synthase gene cluster of size ~20.5 kb comprising all the essential domains for EPA biosynthesis arranged in five ORFs was also identified in the strain N2AIL. The study provides genomic insights into the diverse genes of Shewanella sp. N2AIL, which is particularly involved in adaptation strategies and prospecting secondary metabolite potential, specifically the biosynthesis of omega-3 polyunsaturated fatty acids.
Collapse
|
6
|
Araújo S, Azenha SR, Henriques I, Tacão M. qnrA gene diversity in Shewanella spp. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34914577 DOI: 10.1099/mic.0.001118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Members of Shewanella are ubiquitous in aquatic environments, some of which have been implicated in human infections. The progenitors of antibiotic resistance genes with clinical relevance, such as qnrA genes, have been identified in Shewanella. qnrA code for a pentapeptide repeat protein that protects type II topoisomerases, decreasing susceptibility to quinolones and fluoroquinolones. In this study, 248 genomes of 49 Shewanella species were analysed as well as 33 environmental isolates belonging to 10 Shewanella species. The presence of the qnrA gene was detected in 22.9% of the genomes and 15.2% of the isolates. The gene was more often detected in Shewanella algae, but was also detected in Shewanella carassii, Shewanella chilikensis, Shewanella haliotis and Shewanella indica. The identified genes encoded the previously described variants QnrA3 (in 22 genomes of one species), QnrA2 (eight genomes and three species), QnrA1 (six genomes and two species), QnrA7 (five genomes and two species), QnrA10 (two genomes of one species) and QnrA4 (one genome). In addition, 11 novel variants with 3 to 7 amino acid substitutions were identified (in 13 genomes and one environmental isolate). The presence of this gene appears to be species-specific although within some species several variants were detected. The study presents a previously unknown diversity of qnrA in Shewanella, highlighting the role of this genus as progenitor and reservoir of these genes. Further studies are needed to determine the phenotypes conferred by the new variants and the mechanisms that may mediate the transfer of these genes to new hosts.
Collapse
Affiliation(s)
- S Araújo
- Biology Department, University of Aveiro, Aveiro, Portugal.,CESAM, University of Aveiro, Aveiro, Portugal
| | - S R Azenha
- Biology Department, University of Aveiro, Aveiro, Portugal
| | - I Henriques
- Biology Department, University of Aveiro, Aveiro, Portugal.,CESAM, University of Aveiro, Aveiro, Portugal.,University of Coimbra, Department of Life Sciences, Faculty of Sciences and Technology, Coimbra, Portugal
| | - M Tacão
- Biology Department, University of Aveiro, Aveiro, Portugal.,CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Palau J, Benaiges-Fernandez R, Offeddu F, Urmeneta J, Soler JM, Cama J, Dold B. Release of trace elements during bioreductive dissolution of magnetite from metal mine tailings: Potential impact on marine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147579. [PMID: 34023600 DOI: 10.1016/j.scitotenv.2021.147579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Adverse impacts of mine tailings on water and sediments quality are major worldwide environmental problems. Due to the environmental issues associated with the deposition of mine tailings on land, a controversial discussed alternative is submarine tailings disposal (STD). However, Fe(III) bioreduction of iron oxides (e.g., magnetite) in the tailings disposed might cause toxic effects on coastal environments due to the release of different trace elements (TEs) contained in the oxides. To study the extent and kinetics of magnetite bioreduction under marine conditions and the potential release of TEs, a number of batch experiments with artificial seawater (pH 8.2) and a marine microbial strain (Shewanella loihica) were performed using several magnetite ore samples from different mines and a mine tailings sample. The elemental composition of the magnetite determined in the tailings showed relatively high amounts of TEs (e.g., Mn, Zn, Co) compared with those of the magnetite ore samples (LA-ICP-MS and EMPA analyses). The experiments were conducted at 10 °C in the dark for up to 113 days. Based on the consumption of lactate and production of acetate and aqueous Fe(II) over time, the magnitude of Fe(III) bioreduction was calculated using a geochemical model including Monod kinetics. Model simulations reproduced the release of iron and TEs observed throughout the experiments, e.g., Mn (up to 203 μg L-1), V (up to 79 μg L-1), As (up to 17 μg L-1) and Cu (up to 328 μg L-1), suggesting a potential contamination of pore water by STD. Therefore, the results of this study can help to better evaluate the potential impacts of STD.
Collapse
Affiliation(s)
- Jordi Palau
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain; University of Barcelona, Barcelona 08028, Catalonia, Spain.
| | - Robert Benaiges-Fernandez
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain; University of Barcelona, Barcelona 08028, Catalonia, Spain
| | - Francesco Offeddu
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain
| | - Jordi Urmeneta
- University of Barcelona, Barcelona 08028, Catalonia, Spain; Biodiversity Research Institute (IRBio), University of Barcelona, Barcelona 08028, Catalonia, Spain
| | - Josep M Soler
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain
| | - Jordi Cama
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain
| | - Bernhard Dold
- Pontifical Catholic University of Peru (PUCP), San Miguel, Lima, Peru; SUMIRCO, San Pedro de la Paz, Chile
| |
Collapse
|
8
|
Banerjee A, Sarkar S, Govil T, González-Faune P, Cabrera-Barjas G, Bandopadhyay R, Salem DR, Sani RK. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front Microbiol 2021; 12:721365. [PMID: 34489911 PMCID: PMC8417407 DOI: 10.3389/fmicb.2021.721365] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.
Collapse
Affiliation(s)
- Aparna Banerjee
- Centro de investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación Y Posgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Shrabana Sarkar
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center, Rapid City, SD, United States
| | - Patricio González-Faune
- Escuela Ingeniería en Biotecnología, Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | | | - Rajib Bandopadhyay
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - David R. Salem
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Department of Materials and Metallurgical Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Rajesh K. Sani
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
9
|
Asamoto CK, Rempfert KR, Luu VH, Younkin AD, Kopf SH. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5537-5546. [PMID: 33687201 DOI: 10.1021/acs.est.0c07816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dissimilatory nitrate reduction (DNR) to nitrite is the first step in denitrification, the main process through which bioavailable nitrogen is removed from ecosystems. DNR is catalyzed by both cytosolic (Nar) and periplasmic (Nap) nitrate reductases and fractionates the stable isotopes of nitrogen (14N, 15N) and oxygen (16O, 18O), which is reflected in residual environmental nitrate pools. Data on the relationship between the pattern in oxygen vs nitrogen isotope fractionation (18ε/15ε) suggests that systematic differences exist between marine and terrestrial ecosystems that are not fully understood. We examined the 18ε/15ε of nitrate-reducing microorganisms that encode Nar, Nap, or both enzymes, as well as gene deletion mutants of Nar and Nap to test the hypothesis that enzymatic differences alone could explain the environmental observations. We find that the distribution of 18ε/15ε fractionation ratios of all examined nitrate reductases forms two distinct peaks centered around an 18ε/15ε proportionality of 0.55 (Nap) and 0.91 (Nar), with the notable exception of the Bacillus Nar reductases, which cluster isotopically with the Nap reductases. Our findings may explain differences in 18ε/15ε fractionation between marine and terrestrial systems and challenge current knowledge about Nar 18ε/15ε signatures.
Collapse
Affiliation(s)
- Ciara K Asamoto
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kaitlin R Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Victoria H Luu
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Adam D Younkin
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Chmykhalo V, Belanova A, Belousova M, Butova V, Makarenko Y, Khrenkova V, Soldatov A, Zolotukhin P. Microbial-based magnetic nanoparticles production: a mini-review. Integr Biol (Camb) 2021; 13:98-107. [PMID: 33829272 DOI: 10.1093/intbio/zyab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/14/2022]
Abstract
The ever-increasing biomedical application of magnetic nanoparticles (MNPs) implies increasing demand in their scalable and high-throughput production, with finely tuned and well-controlled characteristics. One of the options to meet the demand is microbial production by nanoparticles-synthesizing bacteria. This approach has several benefits over the standard chemical synthesis methods, including improved homogeneity of synthesis, cost-effectiveness, safety and eco-friendliness. There are, however, specific challenges emanating from the nature of the approach that are to be accounted and resolved in each manufacturing instance. Most of the challenges can be resolved by proper selection of the producing organism and optimizing cell culture and nanoparticles extraction conditions. Other issues require development of proper continuous production equipment, medium usage optimization and precursor ions recycling. This mini-review focuses on the related topics in microbial synthesis of MNPs: producing organisms, culturing methods, nanoparticles characteristics tuning, nanoparticles yield and synthesis timeframe considerations, nanoparticles isolation as well as on the respective challenges and possible solutions.
Collapse
Affiliation(s)
- Victor Chmykhalo
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna Belanova
- Smart Materials International Research Centre, Southern Federal University, Rostov-on-Don, Russia
| | - Mariya Belousova
- English Language Department for Natural Sciences Faculties, Southern Federal University, Rostov-on-Don, Russia
| | - Vera Butova
- Smart Materials International Research Centre, Southern Federal University, Rostov-on-Don, Russia
| | | | - Vera Khrenkova
- Medical Consulting Department, Rostov-on-Don Pathological-Anatomical Bureau No. 1, Rostov-on-Don, Russia
| | - Alexander Soldatov
- Smart Materials International Research Centre, Southern Federal University, Rostov-on-Don, Russia
| | - Peter Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
11
|
Yi Y, Zhao T, Zang Y, Xie B, Liu H. Different mechanisms for riboflavin to improve the outward and inward extracellular electron transfer of Shewanella loihica. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Dissimilatory Nitrate Reduction to Ammonium (DNRA) and Denitrification Pathways Are Leveraged by Cyclic AMP Receptor Protein (CRP) Paralogues Based on Electron Donor/Acceptor Limitation in Shewanella loihica PV-4. Appl Environ Microbiol 2021; 87:AEM.01964-20. [PMID: 33158888 DOI: 10.1128/aem.01964-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Under anoxic conditions, many bacteria, including Shewanella loihica strain PV-4, could use nitrate as an electron acceptor for dissimilatory nitrate reduction to ammonium (DNRA) and/or denitrification. Previous and current studies have shown that DNRA is favored under higher ambient carbon-to-nitrogen (C/N) ratios, whereas denitrification is upregulated under lower C/N ratios, which is consistent with our bioenergetics calculations. Interestingly, computational analyses indicate that the common cyclic AMP receptor protein (designated CRP1) and its paralogue CRP2 might both be involved in the regulation of two competing dissimilatory nitrate reduction pathways, DNRA and denitrification, in S. loihica PV-4 and several other denitrifying Shewanella species. To explore the regulatory mechanism underlying the dissimilatory nitrate reduction (DNR) pathways, nitrate reduction of a series of in-frame deletion mutants was analyzed under different C/N ratios. Deletion of crp1 could accelerate the reduction of nitrite to NO under both low and high C/N ratios. CRP1 is not required for denitrification and actually suppresses production of NO and N2O gases. Deletion of either of the NO-forming nitrite reductase genes nirK or crp2 blocked production of NO gas. Furthermore, real-time PCR and electrophoretic mobility shift assays (EMSAs) demonstrated that the transcription levels of DNRA-relevant genes such as nap-β (napDABGH), nrfA, and cymA were upregulated by CRP1, while nirK transcription was dependent on CRP2. There are tradeoffs between the different physiological roles of nitrate/lactate, as nitrogen nutrient/carbon source and electron acceptor/donor and CRPs may leverage dissimilatory nitrate reduction pathways for maximizing energy yield and bacterial survival under ambient environmental conditions.IMPORTANCE Some microbes utilize different dissimilatory nitrate reduction (DNR) pathways, including DNR to ammonia (DNRA) and denitrification pathways, for anaerobic respiration in response to ambient carbon/nitrogen ratio changes. Large-scale industrial nitrogen fixation and fertilizer application raise the concern of emission of N2O, a stable gas with potent global warming potential, as consequence of microbial respiration, thereby aggravating global warming and climate change. However, little is known about the molecular mechanism underlying the choice of two competing DNR pathways. We demonstrate that the global regulator CRP1, which is widely encoded in bacteria, is required for DNRA in S. loihica PV-4 strain, while the CRP2 paralogue is required for transcription of the nitrite reductase gene nirK for denitrification. Sufficient carbon source lead to the predominance of DNRA, while carbon source/electron donor deficiency may result in an incomplete denitrification process, raising the concern of high levels of N2O emission from nitrate-rich and carbon source-poor waters and soils.
Collapse
|
13
|
Benaiges-Fernandez R, Offeddu FG, Margalef-Marti R, Palau J, Urmeneta J, Carrey R, Otero N, Cama J. Geochemical and isotopic study of abiotic nitrite reduction coupled to biologically produced Fe(II) oxidation in marine environments. CHEMOSPHERE 2020; 260:127554. [PMID: 32688313 DOI: 10.1016/j.chemosphere.2020.127554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Estuarine sediments are often characterized by abundant iron oxides, organic matter, and anthropogenic nitrogen compounds (e.g., nitrate and nitrite). Anoxic dissimilatory iron reducing bacteria (e.g., Shewanella loihica) are ubiquitous in these environments where they can catalyze the reduction of Fe(III) (oxyhydr)oxides, thereby releasing aqueous Fe(II). The biologically produced Fe(II) can later reduce nitrite to form nitrous oxide. The effect on nitrite reduction by both biologically produced and artificially amended Fe(II) was examined experimentally. Ferrihydrite was reduced by Shewanella loihica in a batch reaction with an anoxic synthetic sea water medium. Some of the Fe(II) released by S. loihica adsorbed onto ferrihydrite, which was involved in the transformation of ferrihydrite to magnetite. In a second set of experiments with identical medium, no microorganism was present, instead, Fe(II) was amended. The amount of solid-bound Fe(II) in the experiments with bioproduced Fe(II) increased the rate of abiotic NO2- reduction with respect to that with synthetic Fe(II), yielding half-lives of 0.07 and 0.47 d, respectively. The δ18O and δ15N of NO2- was measured through time for both the abiotic and innoculated experiments. The ratio of ε18O/ε15N was 0.6 for the abiotic experiments and 3.1 when NO2- was reduced by S. loihica, thus indicating two different mechanisms for the NO2- reduction. Notably, there is a wide range of the ε18O/ε15N values in the literature for abiotic and biotic NO2- reduction, as such, the use of this ratio to distinguish between reduction mechanisms in natural systems should be taken with caution. Therefore, we suggest an additional constraint to identify the mechanisms (i.e. abiotic/biotic) controlling NO2- reduction in natural settings through the correlation of δ15N-NO2- and the aqueous Fe(II) concentration.
Collapse
Affiliation(s)
- R Benaiges-Fernandez
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain.
| | - F G Offeddu
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain
| | - R Margalef-Marti
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - J Palau
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain; Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - J Urmeneta
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain; Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - R Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain
| | - N Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de La Terra, Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain; Institut de Recerca de L'Aigua (IdRA), Universitat de Barcelona (UB), 08001, Barcelona, Catalonia, Spain; Serra Húnter Fellowship. Generalitat de Catalunya, Catalonia, Spain
| | - J Cama
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Structural and enzymatic analysis of a dimeric cholylglycine hydrolase like acylase active on N-acyl homoserine lactones. Biochimie 2020; 177:108-116. [PMID: 32835734 DOI: 10.1016/j.biochi.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/17/2023]
Abstract
The prevalence of substrate cross-reactivity between AHL acylases and β-lactam acylases provides a glimpse of probable links between quorum sensing and antibiotic resistance in bacteria. Both these enzyme classes belong to the N-terminal nucleophile (Ntn)-hydrolase superfamily. Penicillin V acylases alongside bile salt hydrolases constitute the cholylglycine hydrolase (CGH) group of the Ntn-hydrolase superfamily. Here we report the ability of two acylases, Slac1 and Slac2, from the marine bacterium Shewanella loihica-PV4 to hydrolyze AHLs. Three-dimensional structure of Slac1reveals the conservation of the Ntn hydrolase fold and CGH active site, making it a unique CGH exclusively active on AHLs. Slac1homologs phylogenetically cluster separate from reported CGHs and AHL acylases, thereby representing a functionally distinct sub-class of CGH that might have evolved as an adaptation to the marine environment. We hypothesize that Slac1 could provide the structural framework for understanding this subclass, and further our understanding of the evolutionary link between AHL acylases and β-lactam acylases.
Collapse
|
15
|
Tang X, Yu L, Yi Y, Wang J, Wang S, Meng C, Liu S, Hao Y, Zhang Y, Cao X, Jian H, Xiao X. Phylogenomic analysis reveals a two-stage process of the evolutionary transition of Shewanella from the upper ocean to the hadal zone. Environ Microbiol 2020; 23:744-756. [PMID: 32657519 DOI: 10.1111/1462-2920.15162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Shewanella strains are characterized by versatile metabolic capabilities, resulting in their wide distribution in the ocean at different depths. Considering that particle sedimentation is an important dynamic process in the ocean, we hypothesized that hadal Shewanella species evolved from the upper ocean. In this study, we isolated three novel Shewanella strains from deep-sea sediments in the Southwest Indian Ocean. Genome sequencing indicated that strains YLB-06 and YLB-08 represent two novel species in the genus Shewanella. Through phylogenomic analysis, we showed that speciation and genomic changes in marine Shewanella strains are related to water depth. We further confirmed the aforementioned hypothesis and revealed a two-stage process of the evolutionary transition of Shewanella from the upper ocean to the hadal zone by comparative genomics and gene gain/loss analysis. Finally, the transcriptomic analysis demonstrated that recently obtained genes are strictly repressed and may thus play a minor role in the response to environmental changes.
Collapse
Affiliation(s)
- Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,China Ocean Sample Repository (Biology), Xiamen, 361005, China
| | - Libo Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,China Ocean Sample Repository (Biology), Xiamen, 361005, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiahua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Canxing Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.,China Ocean Sample Repository (Biology), Xiamen, 361005, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
16
|
Park S, Chen S, Lee JS, Kim W, Yoon JH. Description of Shewanella salipaludis sp. nov., isolated from a salt marsh. FEMS Microbiol Lett 2020; 367:5873409. [PMID: 32681637 DOI: 10.1093/femsle/fnaa121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
A Gram-stain-negative and flagellated bacterial strain, SHSM-M6T, was isolated from salt marsh from Yellow Sea, Republic of Korea. Neighbor-joining phylogenetic tree of 16S rRNA gene sequences showed that strain SHSM-M6T belongs to the genus Shewanella. 16S rRNA gene sequence similarity values between strain SHSM-M6T and the type strains of Shewanella species were <98.0%. The average nucleotide identity and DNA-DNA hybridization values between genomic sequences of strain SHSM-M6T and the type strains of Shewanella species were <73.3 and 20.7%, respectively. Strain SHSM-M6T contained MK-6 as predominant menaquinone and Q-7 and Q-8 as the predominant ubiquinones. The novel strain contained C16:1ω7c and/or C16:1ω6c, iso-C15:0 and C16:0 as major fatty acids. Major polar lipids of strain SHSM-M6T were phosphatidylethanolamine, phosphatidylglycerol, one unidentified lipid, one unidentified aminolipid and one unidentified phospholipid. Differential phenotypic properties of strain SHSM-M6T, together with its phylogenetic and genetic distinctiveness, revealed that strain SHSM-M6T is separated from recognized Shewanella species. On the basis of the data presented, strain SHSM-M6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella salipaludis sp. nov. is proposed. The type strain is SHSM-M6T (=KACC 19901T = NBRC 113646T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Siyu Chen
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, 56212, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
17
|
Park S, Kim IK, Kim W, Yoon JH. Shewanella insulae sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2020; 70:3872-3877. [PMID: 32511087 DOI: 10.1099/ijsem.0.004252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M18T, was isolated from tidal-flat sediment collected from the Yellow Sea, Republic of Korea. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M18T fell within the clade comprising the type strains of Shewanella species. Strain JBTF-M18T exhibited 16S rRNA gene sequence similarity values of 97.1-98.8 % to the type strains of S. loihica, S. aquimarina, S. waksmanii and S. marisflavi and of less than 96.9 % to the type strains of the other Shewanella species. The average nucleotide identity and digital DNA-DNA hybridization values between strain JBTF-M18T and the type strains of S. waksmanii and S. loihica were 72.0 and 89.5% and 18.9 and 38.1 %, respectively. DNA-DNA relatedness values between strain JBTF-M18T and the type strains of S. aquimarina and S. marisflavi were 14 and 19 %, respectively. The DNA G+C content of strain JBTF-M18T from genomic sequence data was 52.9 %. Strain JBTF-M18Tcontained MK-6 as the predominant menaquinone and Q-7 and Q-8 as the predominant ubiquinones. It had iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0 as the major fatty acids. The major polar lipids of strain JBTF-M18T were phosphatidylethanolamine and phosphatidylglycerol. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M18T is separated from recognized Shewanella species. On the basis of the data presented, strain JBTF-M18T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella insulae sp. nov. is proposed. The type strain is JBTF-M18T (=KACC 19869T=NBRC 113583T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - In Kyu Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
18
|
Metabolic processes applied to endangered metal and wood heritage objects: Call a microbial plumber! N Biotechnol 2020; 56:21-26. [DOI: 10.1016/j.nbt.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
|
19
|
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Front Microbiol 2020; 11:37. [PMID: 32082281 PMCID: PMC7005843 DOI: 10.3389/fmicb.2020.00037] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
20
|
Lemaire ON, Méjean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol Rev 2020; 44:155-170. [DOI: 10.1093/femsre/fuz031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
The Gram-negative Shewanella bacterial genus currently includes about 70 species of mostly aquatic γ-proteobacteria, which were isolated around the globe in a multitude of environments such as surface freshwater and the deepest marine trenches. Their survival in such a wide range of ecological niches is due to their impressive physiological and respiratory versatility. Some strains are among the organisms with the highest number of respiratory systems, depending on a complex and rich metabolic network. Implicated in the recycling of organic and inorganic matter, they are important components of organism-rich oxic/anoxic interfaces, but they also belong to the microflora of a broad group of eukaryotes from metazoans to green algae. Examples of long-term biological interactions like mutualism or pathogeny have been described, although molecular determinants of such symbioses are still poorly understood. Some of these bacteria are key organisms for various biotechnological applications, especially the bioremediation of hydrocarbons and metallic pollutants. The natural ability of these prokaryotes to thrive and detoxify deleterious compounds explains their use in wastewater treatment, their use in energy generation by microbial fuel cells and their importance for resilience of aquatic ecosystems.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| |
Collapse
|
21
|
Bae SS, Jung YH, Baek K. Shewanella maritima sp. nov. , a facultative anaerobic marine bacterium isolated from seawater, and emended description of Shewanella intestini. Int J Syst Evol Microbiol 2019; 70:1288-1293. [PMID: 31778351 DOI: 10.1099/ijsem.0.003916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, motile, facultative anaerobic rod-shaped marine bacterium, designated strain D4-2T, was isolated from a sample of seawater collected at Dong-do marina, Dokdo Island, in the East Sea of the Republic of Korea. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain D4-2T was affiliated with members of genus Shewanella and closely related to Shewanella intestini XMDDZSB0408T (97.4%), followed by Shewanella gelidii RZB5-4T (96.7 %) and Shewanella inventionis KX27T (96.1 %). D4-2T has a single circular chromosome of 4.72 Mbp with a DNA G+C content of 44.5 mol%. Average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values between strain D4-2T and the previously mentioned type strains of species of the genus Shewanella were in range of 69-83.8 % and 20.5-21.7 %, respectively. Growth was observed at 10-36 °C (optimum 29-32 °C), at pH 6-9 (optimum pH 7), and with 1-6% NaCl (optimum 2%). The predominant fatty acids (>10 %) of D4-2T were iso-C15:0 and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The respiratory quinones were Q-7, Q-8, MK-7 and MMK-7. Phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and four unidentified lipids were detected in D4-2T. On the basis of phenotypic, chemotaxonomic and molecular properties, D4-2T represents a novel species of the genus Shewanella, for which the name Shewanella maritima sp. nov. is proposed with D4-2T as the type strain (=KCTC 72040T=JCM 33294T).
Collapse
Affiliation(s)
- Seung Seob Bae
- National Marine Biodiversity Institute of Korea, 101-75, Jangsan-ro, Janghang-eup, Seocheon-gun Chungcheongnam-do 33662, Republic of Korea
| | - Yoon-Hee Jung
- National Marine Biodiversity Institute of Korea, 101-75, Jangsan-ro, Janghang-eup, Seocheon-gun Chungcheongnam-do 33662, Republic of Korea
| | - Kyunghwa Baek
- National Marine Biodiversity Institute of Korea, 101-75, Jangsan-ro, Janghang-eup, Seocheon-gun Chungcheongnam-do 33662, Republic of Korea
| |
Collapse
|
22
|
Benaiges-Fernandez R, Palau J, Offeddu FG, Cama J, Urmeneta J, Soler JM, Dold B. Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104782. [PMID: 31514974 DOI: 10.1016/j.marenvres.2019.104782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Shewanella is a genus of marine bacteria capable of dissimilatory iron reduction (DIR). In the context of deep-sea mining activities or submarine mine tailings disposal, dissimilatory iron reducing bacteria may play an important role in biogeochemical reactions concerning iron oxides placed on the sea bed. In this study, batch experiments were performed to evaluate the capacity of Shewanella loihica PV-4 to bioreduce different iron oxides (ferrihydrite, magnetite, goethite and hematite) under conditions similar to those in anaerobic sea sediments. Results showed that bioreduction of structural Fe(III) via oxidation of labile organic matter occurred in all these iron oxides. Based on the aqueous Fe (II) released, derived Fe(II)/acetate ratios and bioreduction coefficients seem to be only up to about 4% of the theoretical ones, considering the ideal stoichiometry of the reaction. A loss of aqueous Fe (II) was caused by adsorption and mineral transformation processes. Scanning electron microscope images showed that Shewanella lohica was attached to the Fe(III)-oxide surfaces during bioreduction. Our findings suggest that DIR of Fe(III) oxides from mine waste placed in marine environments could result in adverse ecological impacts such as liberation of trace metals in the environment.
Collapse
Affiliation(s)
- Robert Benaiges-Fernandez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Barcelona, Catalonia, Spain.
| | - Jordi Palau
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Barcelona, Catalonia, Spain; Department of Mineralogy, Petrology and Applied Geology, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Francesco G Offeddu
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Barcelona, Catalonia, Spain
| | - Jordi Cama
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Barcelona, Catalonia, Spain
| | - Jordi Urmeneta
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain; Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep M Soler
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Barcelona, Catalonia, Spain
| | - Bernhard Dold
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden; Sustainable Mining Research & Consultancy EIRL, San Pedro de La Paz, Chile
| |
Collapse
|
23
|
Thorell K, Meier-Kolthoff JP, Sjöling Å, Martín-Rodríguez AJ. Whole-Genome Sequencing Redefines Shewanella Taxonomy. Front Microbiol 2019; 10:1861. [PMID: 31555221 PMCID: PMC6722870 DOI: 10.3389/fmicb.2019.01861] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Shewanella encompasses a diverse group of Gram negative, primarily aquatic bacteria with a remarkable ecological relevance, an outstanding set of metabolic features and an emergent clinical importance. The rapid expansion of the genus over the 2000 s has prompted questions on the real taxonomic position of some isolates and species. Recent work by us and others identified inconsistencies in the existing species classification. In this study we aimed to clarify such issues across the entire genus, making use of the genomic information publicly available worldwide. Phylogenomic analyses, including comparisons based on genome-wide identity indexes (digital DNA-DNA hybridization and Average Nucleotide Identity) combined with core and accessory genome content evaluation suggested that the taxonomic position of 64 of the 131 analyzed strains should be revisited. Based on the genomic information currently available, emended descriptions for some Shewanella species are proposed. Our study establishes for the first time a whole-genome based phylogeny for Shewanella spp. including a classification at the subspecific level.
Collapse
Affiliation(s)
- Kaisa Thorell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Brunswick, Germany
| | - Åsa Sjöling
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto J. Martín-Rodríguez
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Dai J, Liu Y, Liu S, Li S, Gao N, Wang J, Zhou J, Qiu D. Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins. BMC Microbiol 2019; 19:173. [PMID: 31362704 PMCID: PMC6664582 DOI: 10.1186/s12866-019-1549-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/19/2019] [Indexed: 01/31/2023] Open
Abstract
Background Most species of Shewanella harbor two ferrochelatase paralogues for the biosynthesis of c-type cytochromes, which are crucial for their respiratory versatility. In our previous study of the Shewanella loihica PV-4 strain, we found that the disruption of hemH1 but not hemH2 resulted in a significant accumulation of extracellular protoporphyrin IX (PPIX), but it is different in Shewanella oneidensis MR-1. Hence, the function and transcriptional regulation of two ferrochelatase genes, hemH1 and hemH2, are investigated in S. oneidensis MR-1. Result In the present study, deletion of either hemH1 or hemH2 in S. oneidensis MR-1 did not lead to overproduction of extracellular protoporphyrin IX (PPIX) as previously described in the hemH1 mutants of S. loihica PV-4. Moreover, supplement of exogenous hemins made it possible to generate the hemH1 and hemH2 double mutant in MR-1, but not in PV-4. Under aerobic condition, exogenous hemins were required for the growth of MR-1ΔhemH1ΔhemH2, which also overproduced extracellular PPIX. These results suggest that heme is essential for aerobic growth of Shewanella species and MR-1 could also uptake hemin for biosynthesis of essential cytochrome(s) and respiration. Besides, the exogenous hemin mediated CymA cytochrome maturation and the cellular KatB catalase activity. Both hemH paralogues were transcribed in wild-type MR-1, and the hemH2 transcription was remarkably up-regulated in MR-1ΔhemH1 mutant to compensate for the loss of hemH1. The periplasmic glutathione peroxidase gene pgpD, located in the same operon with hemH2, and a large gene cluster coding for iron, heme (hemin) uptake systems are absent in the PV-4 genome. Conclusion Our results indicate that the genetic divergence in gene content and gene expression between these Shewanella species, accounting for the phenotypic difference described here, might be due to their speciation and adaptation to the specific habitats (iron-rich deep-sea vent versus iron-poor freshwater) in which they evolved and the generated mutants could potentially be utilized for commercial production of PPIX. Electronic supplementary material The online version of this article (10.1186/s12866-019-1549-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingcheng Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqi Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyang Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.,Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270, USA
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Complete genome sequence of Shewanella benthica DB21MT-2, an obligate piezophilic bacterium isolated from the deepest Mariana Trench sediment. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Wright MH, Shalom J, Matthews B, Greene AC, Cock IE. Terminalia ferdinandiana Exell: Extracts inhibit Shewanella spp. growth and prevent fish spoilage. Food Microbiol 2019; 78:114-122. [DOI: 10.1016/j.fm.2018.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/26/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
|
27
|
Ahmed E, Kalathil S, Shi L, Alharbi O, Wang P. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2018.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Sudha Rani P, Saini MK, Pinnaka AK, Sampath Kumar G, Kumar S, Vemuluri VR, Tanuku NRS. Shewanella submarina sp. nov., a gammaproteobacterium isolated from marine water. Int J Syst Evol Microbiol 2018; 69:39-45. [PMID: 30499770 DOI: 10.1099/ijsem.0.003059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A curved-rod-shaped bacterium was isolated from a marine (100 m depth) water sample collected from Bay of Bengal, Visakhapatnam, India. Strain NIO-S14T, was Gram-stain-negative, motile and pale-yellow. NIO-S14T was able to grow aerobically and anaerobically and could utilize a number of organic substrates. Major fatty acids were C12 : 0, iso-C13 : 0, C14 : 0, iso-C15 : 0, C16 : 0 and C16 : 1ω7c and/or C16 : 1ω6c (summed feature 3). NIO-S14T contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminophospholipids and six unidentified lipids as polar lipids. The DNA G+C content of NIO-S14T was 47.9 mol%. The 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Shewanellaceae within the class Gammaproteobacteria. According to the results of 16S rRNA gene sequence analysis, NIO-S14T was closely related to Shewanella coralliiwith a pair-wise sequence similarity of 99.26 %. On the basis of the sequence comparison, NIO-S14T clustered with Shewanella coralliiand together they clustered with Shewanella mangroviand seven other species of the genus Shewanella but were distantly related. DNA-DNA hybridization between NIO-S14T and Shewanella corallii DSM 21332Trevealed a relatedness of 35 %. Distinct morphological, physiological and genotypic differences from these previously described taxa supported the classification of NIO-S14T as a representative of a novel species of the genus Shewanella, for which the name Shewanellasubmarina sp. nov. is proposed. The type strain of Shewanellasubmarina is NIO-S14T (=MTCC 12524T=KCTC 52277T=LMG 30752T).
Collapse
Affiliation(s)
- P Sudha Rani
- 1CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam-530017, India
| | - Mohit Kumar Saini
- 2MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Anil Kumar Pinnaka
- 2MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,3Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
| | - G Sampath Kumar
- 1CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam-530017, India
| | - Shekar Kumar
- 2MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Venkata Ramana Vemuluri
- 2MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Naga Radha Srinivas Tanuku
- 1CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam-530017, India.,3Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
| |
Collapse
|
29
|
XU ZIXIANG, GUO JING, YUE YUNXIA, MENG JING, SUN XIAO. IN SILICO GENOME-SCALE RECONSTRUCTION AND ANALYSIS OF THE SHEWANELLA LOIHICA PV-4 METABOLIC NETWORK. J BIOL SYST 2018. [DOI: 10.1142/s0218339018500171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbial Fuel Cells (MFCs) are devices that generate electricity directly from organic compounds with microbes (electricigens) serving as anodic catalysts. As a novel environment-friendly energy source, MFCs have extensive practical value. Since the biological features and metabolic mechanism of electricigens have a great effect on the electricity production of MFCs, it is a big deal to screen strains with high electricity productivity for improving the power output of MFC. Reconstructions and simulations of metabolic networks are of significant help in studying the metabolism of microorganisms so as to guide gene engineering and metabolic engineering to improve their power-generating efficiency. Herein, we reconstructed a genome-scale constraint-based metabolic network model of Shewanella loihica PV-4, an important electricigen, based on its genomic functional annotations, reaction databases and published metabolic network models of seven microorganisms. The resulting network model iGX790 consists of 902 reactions (including 71 exchange reactions), 798 metabolites and 790 genes, covering the main pathways such as carbon metabolism, energy metabolism, amino acid metabolism, nucleic acid metabolism and lipid metabolism. Using the model, we simulated the growth rate, the maximal synthetic rate of ATP, the flux variability analysis of metabolic network, gene deletion and so on to examine the metabolism of S. loihica PV-4.
Collapse
Affiliation(s)
- ZIXIANG XU
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - JING GUO
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - YUNXIA YUE
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - JING MENG
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - XIAO SUN
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
30
|
Jung-Schroers V, Jung A, Ryll M, Bauer J, Teitge F, Steinhagen D. Methods for identification and differentiation of different Shewanella spp. isolates for diagnostic use. JOURNAL OF FISH DISEASES 2018; 41:689-714. [PMID: 29280153 DOI: 10.1111/jfd.12772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/24/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Shewanella spp. are Gram-negative, rod-shaped, motile bacteria that are widely distributed in marine and freshwater environments. The bacteria are present in the physiological microflora of fish from temperate waters and are known as fish spoilage species. From clinically healthy fish and from fish with skin ulcerations, Shewanella spp. is regularly isolated, indicating a possible role as fish pathogen. In this study, 74 isolates of Shewanella spp. were analysed. For species identification, biochemical techniques, 16S rRNA sequencing, MALDI-TOF MS and the Sherlock Microbial Identification System (MIS) based on the composition of fatty acid ethyl esters were compared. The phylogenetic relationship, cytotoxicity in vitro and resistance against antibiotics were tested. The most reliable method for species identification was 16S rRNA sequencing. From diseased fish, clinically healthy fish and the aquatic environment, different Shewanella species were isolated. This indicates that Shewanella spp. is widespread in the aquatic milieu and acts as a secondary pathogen. The virulence of Shewanella spp. is probably not depending on the species but on the isolate itself. Many isolates of Shewanella spp. were showing multiresistances against antibiotic substances, especially in samples derived from retailers and in routine diagnostics, all Shewanella spp. should therefore be tested for resistances against antibiotic agents.
Collapse
Affiliation(s)
- V Jung-Schroers
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - A Jung
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Germany
| | - M Ryll
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Germany
| | - J Bauer
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - F Teitge
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - D Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
31
|
Harris HW, Sánchez-Andrea I, McLean JS, Salas EC, Tran W, El-Naggar MY, Nealson KH. Redox Sensing within the Genus Shewanella. Front Microbiol 2018; 8:2568. [PMID: 29422884 PMCID: PMC5789149 DOI: 10.3389/fmicb.2017.02568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022] Open
Abstract
A novel bacterial behavior called congregation was recently described in Shewanella oneidensis MR-1 as the accumulation of cells around insoluble electron acceptors (IEA). It is the result of a series of "run-and-reversal" events enabled by modulation of swimming speed and direction. The model proposed that the swimming cells constantly sense their surroundings with specialized outer membrane cytochromes capable of extracellular electron transport (EET). Up to this point, neither the congregation nor attachment behavior have been studied in any other strains. In this study, the wild type of S. oneidensis MR-1 and several deletion mutants as well as eight other Shewanella strains (Shewanella putrefaciens CN32, S. sp. ANA-3, S. sp. W3-18-1, Shewanella amazonensis SB2B, Shewanella loihica PV-4, Shewanella denitrificans OS217, Shewanella baltica OS155, and Shewanella frigidimarina NCIMB400) were screened for the ability to congregate. To monitor congregation and attachment, specialized cell-tracking techniques, as well as a novel cell accumulation after photo-bleaching (CAAP) confocal microscopy technique were utilized in this study. We found a strong correlation between the ability of strain MR-1 to accumulate on mineral surface and the presence of key EET genes such as mtrBC/omcA (SO_1778, SO_1776, and SO_1779) and gene coding for methyl-accepting protein (MCPs) with Ca+ channel chemotaxis receptor (Cache) domain (SO_2240). These EET and taxis genes were previously identified as essential for characteristic run and reversal swimming around IEA surfaces. CN32, ANA-3, and PV-4 congregated around both Fe(OH)3 and MnO2. Two other Shewanella spp. showed preferences for one oxide over the other: preferences that correlated with the metal content of the environments from which the strains were isolated: e.g., W3-18-1, which was isolated from an iron-rich habitat congregated and attached preferentially to Fe(OH)3, while SB2B, which was isolated from a MnO2-rich environment, preferred MnO2.
Collapse
Affiliation(s)
- Howard W. Harris
- Department of Earth Sciences, Biological Sciences and Physics, University of Southern California, Los Angeles, CA, United States
| | | | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, WA, United States
- Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA, United States
| | | | - William Tran
- Department of Earth Sciences, Biological Sciences and Physics, University of Southern California, Los Angeles, CA, United States
| | - Mohamed Y. El-Naggar
- Department of Earth Sciences, Biological Sciences and Physics, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, Biological Sciences and Physics, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
32
|
Kooli WM, Comensoli L, Maillard J, Albini M, Gelb A, Junier P, Joseph E. Bacterial iron reduction and biogenic mineral formation for the stabilisation of corroded iron objects. Sci Rep 2018; 8:764. [PMID: 29335593 PMCID: PMC5768810 DOI: 10.1038/s41598-017-19020-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022] Open
Abstract
Exploiting bacterial metabolism for the stabilisation of corroded iron artefacts is a promising alternative to conventional conservation-restoration methods. Bacterial iron reduction coupled to biogenic mineral formation has been shown to promote the conversion of reactive into stable corrosion products that are integrated into the natural corrosion layer of the object. However, in order to stabilise iron corrosion, the formation of specific biogenic minerals is essential. In this study, we used the facultative anaerobe Shewanella loihica for the production of stable biogenic iron minerals under controlled chemical conditions. The biogenic formation of crystalline iron phosphates was observed after iron reduction in a solution containing Fe(III) citrate. When the same biological treatment was applied on corroded iron plates, a layer composed of iron phosphates and iron carbonates was formed. Surface and cross-section analyses demonstrated that these two stable corrosion products replaced 81% of the reactive corrosion layer after two weeks of treatment. Such results demonstrate the potential of a biological treatment in the development of a stabilisation method to preserve corroded iron objects.
Collapse
Affiliation(s)
- Wafa M Kooli
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.,Laboratory of Technologies for Heritage Materials, Institute of Chemistry, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Lucrezia Comensoli
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.,Laboratory of Technologies for Heritage Materials, Institute of Chemistry, University of Neuchâtel, 2000, Neuchâtel, Switzerland.,Laboratory of Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, ENAC-IIE-LBE, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Monica Albini
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.,Laboratory of Technologies for Heritage Materials, Institute of Chemistry, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Arnaud Gelb
- Laboratory for Environmental Biotechnology, ENAC-IIE-LBE, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| | - Edith Joseph
- Laboratory of Technologies for Heritage Materials, Institute of Chemistry, University of Neuchâtel, 2000, Neuchâtel, Switzerland. .,Haute Ecole Arc Conservation-Restauration, HES-SO, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
33
|
Zhong C, Han M, Yu S, Yang P, Li H, Ning K. Pan-genome analyses of 24 Shewanella strains re-emphasize the diversification of their functions yet evolutionary dynamics of metal-reducing pathway. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:193. [PMID: 30026808 PMCID: PMC6048853 DOI: 10.1186/s13068-018-1201-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/10/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Shewanella strains are important dissimilatory metal-reducing bacteria which are widely distributed in diverse habitats. Despite efforts to genomically characterize Shewanella, knowledge of the molecular components, functional information and evolutionary patterns remain lacking, especially for their compatibility in the metal-reducing pathway. The increasing number of genome sequences of Shewanella strains offers a basis for pan-genome studies. RESULTS A comparative pan-genome analysis was conducted to study genomic diversity and evolutionary relationships among 24 Shewanella strains. Results revealed an open pan-genome of 13,406 non-redundant genes and a core-genome of 1878 non-redundant genes. Selective pressure acted on the invariant members of core genome, in which purifying selection drove evolution in the housekeeping mechanisms. Shewanella strains exhibited extensive genome variability, with high levels of gene gain and loss during the evolution, which affected variable gene sets and facilitated the rapid evolution. Additionally, genes related to metal reduction were diversely distributed in Shewanella strains and evolved under purifying selection, which highlighted the basic conserved functionality and specificity of respiratory systems. CONCLUSIONS The diversity of genes present in the accessory and specific genomes of Shewanella strains indicates that each strain uses different strategies to adapt to diverse environments. Horizontal gene transfer is an important evolutionary force in shaping Shewanella genomes. Purifying selection plays an important role in the stability of the core-genome and also drives evolution in mtr-omc cluster of different Shewanella strains.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Shaojun Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Hongjun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| |
Collapse
|
34
|
Murhekar S, Wright MH, Greene AC, Brownlie JC, Cock IE. Inhibition of Shewanella spp. growth by Syzygium australe and Syzygium luehmannii extracts: natural methods for the prevention of fish spoilage. Journal of Food Science and Technology 2017; 54:3314-3326. [PMID: 28974817 DOI: 10.1007/s13197-017-2782-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 11/30/2022]
Abstract
Syzygium australe and Syzygium luehmannii fruit and leaf were investigated for their ability to inhibit Shewanella spp. growth. Extracts of both Syzygium spp. displayed potent growth inhibitory properties against all Shewanella spp. tested in disc diffusion and liquid diffusion assays. In general, S. australe extracts were more potent inhibitors of Shewanella spp. growth, and the fruit extracts were generally better than the corresponding leaf extracts. The methanolic S. australe fruit extract was a particularly potent inhibitor of all Shewanella spp. growth, with MIC values as low as 87 µg/mL. The aqueous and ethyl acetate S. australe fruit extracts were similarly potent inhibitors of Shewanella spp. growth, albeit with slightly higher MIC values. Several other Syzygium spp. extracts also were potent bacterial growth inhibitors, albeit with MIC values generally >1000 µg/mL. The most potent S. australe fruit extracts were nontoxic in the Artemia franciscana bioassay, with LC50 values substantially >1000 µg/mL. The potent bacterial growth inhibitory activity and lack of toxicity of the S. australe fruit extracts indicate their potential as natural fish and seafood preservatives.
Collapse
Affiliation(s)
- Shweta Murhekar
- Environmental Futures Research Institute, Nathan Campus, Griffith University, Brisbane, Australia.,School of Natural Sciences, Nathan Campus, Griffith University, Brisbane, Australia
| | | | | | - Jeremy Colin Brownlie
- Environmental Futures Research Institute, Nathan Campus, Griffith University, Brisbane, Australia.,School of Natural Sciences, Nathan Campus, Griffith University, Brisbane, Australia
| | - Ian Edwin Cock
- Environmental Futures Research Institute, Nathan Campus, Griffith University, Brisbane, Australia.,School of Natural Sciences, Nathan Campus, Griffith University, Brisbane, Australia
| |
Collapse
|
35
|
|
36
|
Kim JY, Yoo HS, Lee DH, Park SH, Kim YJ, Oh DC. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae. Int J Syst Evol Microbiol 2016; 66:2218-2224. [PMID: 26962005 DOI: 10.1099/ijsem.0.001014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T).
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Biology, Jeju National University, Jeju 690-756, Republic of Korea
- Jeju Biological Resource Co., Ltd, CTC Business Incubator Jeju Tourism College, Jeju 690-756, Republic of Korea
| | - Han-Su Yoo
- Department of Biology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Dong-Heon Lee
- Research Institute for Basic Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - So-Hyun Park
- Department of Biology, Jeju National University, Jeju 690-756, Republic of Korea
- Department of Aquatic Life Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Young-Ju Kim
- Jeju Biological Resource Co., Ltd, CTC Business Incubator Jeju Tourism College, Jeju 690-756, Republic of Korea
| | - Duck-Chul Oh
- Department of Biology, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
37
|
Selective Growth of and Electricity Production by Marine Exoelectrogenic Bacteria in Self-Aggregated Hydrogel of Microbially Reduced Graphene Oxide. C — JOURNAL OF CARBON RESEARCH 2016. [DOI: 10.3390/c2020015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
38
|
Pérez-Rodríguez I, Rawls M, Coykendall DK, Foustoukos DI. Deferrisoma palaeochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea. Int J Syst Evol Microbiol 2015; 66:830-836. [PMID: 26610851 DOI: 10.1099/ijsem.0.000798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30-70 °C (optimum 60 °C), 0-50 g NaCl l- 1 (optimum 15-20 g l- 1) and pH 5.5-8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( - )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T).
Collapse
Affiliation(s)
| | - Matthew Rawls
- Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, 20015, USA.,Department of Oceanic, Atmospheric and Earth Sciences, George Mason University, Fairfax, VA 22030, USA
| | - D Katharine Coykendall
- US Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, Kearneysville, WV 25430, USA
| | - Dionysis I Foustoukos
- Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, 20015, USA
| |
Collapse
|
39
|
A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust. PLoS One 2015; 10:e0140106. [PMID: 26488482 PMCID: PMC4619311 DOI: 10.1371/journal.pone.0140106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites—remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust.
Collapse
|
40
|
Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea. J Microbiol 2015; 53:598-605. [DOI: 10.1007/s12275-015-5217-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
|
41
|
Blöthe M, Wegorzewski A, Müller C, Simon F, Kuhn T, Schippers A. Manganese-Cycling Microbial Communities Inside Deep-Sea Manganese Nodules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7692-7700. [PMID: 26020127 DOI: 10.1021/es504930v] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polymetallic nodules (manganese nodules) have been formed on deep sea sediments over millions of years and are currently explored for their economic potential, particularly for cobalt, nickel, copper, and manganese. Here we explored microbial communities inside nodules from the northeastern equatorial Pacific. The nodules have a large connected pore space with a huge inner surface of 120 m(2)/g as analyzed by computer tomography and BET measurements. X-ray photoelectron spectroscopy (XPS) and electron microprobe analysis revealed a complex chemical fine structure. This consisted of layers with highly variable Mn/Fe ratios (<1 to >500) and mainly of turbostratic phyllomanganates such as 7 and 10 Å vernadites alternating with layers of Fe-bearing vernadite (δ-MnO2) epitaxially intergrown with amorphous feroxyhyte (δ-FeOOH). Using molecular 16S rRNA gene techniques (clone libraries, pyrosequencing, and real-time PCR), we show that polymetallic nodules provide a suitable habitat for prokaryotes with an abundant and diverse prokaryotic community dominated by nodule-specific Mn(IV)-reducing and Mn(II)-oxidizing bacteria. These bacteria were not detected in the nodule-surrounding sediment. The high abundance and dominance of Mn-cycling bacteria in the manganese nodules argue for a biologically driven closed manganese cycle inside the nodules relevant for their formation and potential degradation.
Collapse
Affiliation(s)
- Marco Blöthe
- †Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Anna Wegorzewski
- †Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Cornelia Müller
- ‡Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany
| | - Frank Simon
- §Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Thomas Kuhn
- †Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Axel Schippers
- †Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| |
Collapse
|
42
|
Yoon S, Cruz-García C, Sanford R, Ritalahti KM, Löffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3(-)/NO2(-) reduction pathways in Shewanella loihica strain PV-4. THE ISME JOURNAL 2015; 9:1093-104. [PMID: 25350157 PMCID: PMC4409154 DOI: 10.1038/ismej.2014.201] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/30/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
Denitrification and respiratory ammonification are two competing, energy-conserving NO3(-)/NO2(-) reduction pathways that have major biogeochemical consequences for N retention, plant growth and climate. Batch and continuous culture experiments using Shewanella loihica strain PV-4, a bacterium possessing both the denitrification and respiratory ammonification pathways, revealed factors that determine NO3(-)/NO2(-) fate. Denitrification dominated at low carbon-to-nitrogen (C/N) ratios (that is, electron donor-limiting growth conditions), whereas ammonium was the predominant product at high C/N ratios (that is, electron acceptor-limiting growth conditions). pH and temperature also affected NO3(-)/NO2(-) fate, and incubation above pH 7.0 and temperatures of 30 °C favored ammonium formation. Reverse-transcriptase real-time quantitative PCR analyses correlated the phenotypic observations with nirK and nosZ transcript abundances that decreased up to 1600-fold and 27-fold, respectively, under conditions favoring respiratory ammonification. Of the two nrfA genes encoded on the strain PV-4 genome, nrfA0844 transcription decreased only when the chemostat reactor received medium with the lowest C/N ratio of 1.5, whereas nrfA0505 transcription occurred at low levels (≤3.4 × 10(-2) transcripts per cell) under all growth conditions. At intermediate C/N ratios, denitrification and respiratory ammonification occurred concomitantly, and both nrfA0844 (5.5 transcripts per cell) and nirK (0.88 transcripts per cell) were transcribed. Recent findings suggest that organisms with both the denitrification and respiratory ammonification pathways are not uncommon in soil and sediment ecosystems, and strain PV-4 offers a tractable experimental system to explore regulation of dissimilatory NO3(-)/NO2(-) reduction pathways.
Collapse
Affiliation(s)
- Sukhwan Yoon
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Claribel Cruz-García
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert Sanford
- Department of Geology, University of Illinois, Urbana, IL, USA
| | - Kirsti M Ritalahti
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
43
|
Nitrite Control over Dissimilatory Nitrate/Nitrite Reduction Pathways in Shewanella loihica Strain PV-4. Appl Environ Microbiol 2015; 81:3510-7. [PMID: 25769828 DOI: 10.1128/aem.00688-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/09/2015] [Indexed: 02/04/2023] Open
Abstract
Shewanella loihica strain PV-4 harbors both a functional denitrification (NO3 (-)→N2) and a respiratory ammonification (NO3 (-)→NH4 (+)) pathway. Batch and chemostat experiments revealed that NO2 (-) affects pathway selection and the formation of reduced products. Strain PV-4 cells grown with NO2 (-) as the sole electron acceptor produced exclusively NH4 (+). With NO3 (-) as the electron acceptor, denitrification predominated and N2O accounted for ∼90% of reduced products in the presence of acetylene. Chemostat experiments demonstrated that the NO2 (-):NO3 (-) ratio affected the distribution of reduced products, and respiratory ammonification dominated at high NO2 (-):NO3 (-) ratios, whereas low NO2 (-):NO3 (-) ratios favored denitrification. The NO2 (-):NO3 (-) ratios affected nirK transcript abundance, a measure of denitrification activity, in the chemostat experiments, and cells grown at a NO2 (-):NO3 (-) ratio of 3 had ∼37-fold fewer nirK transcripts per cell than cells grown with NO3 (-) as the sole electron acceptor. In contrast, the transcription of nrfA, implicated in NO2 (-)-to-NH4 (+) reduction, remained statistically unchanged under continuous cultivation conditions at NO2 (-):NO3 (-) ratios below 3. At NO2 (-):NO3 (-) ratios above 3, both nirK and nrfA transcript numbers decreased and the chemostat culture washed out, presumably due to NO2 (-) toxicity. These findings implicate NO2 (-) as a relevant modulator of NO3 (-) fate in S. loihica strain PV-4, and, by extension, suggest that NO2 (-) is a relevant determinant for N retention (i.e., ammonification) versus N loss and greenhouse gas emission (i.e., denitrification).
Collapse
|
44
|
Spetter CV, Buzzi NS, Fernández EM, Cuadrado DG, Marcovecchio JE. Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina). MARINE POLLUTION BULLETIN 2015; 91:491-505. [PMID: 25909095 DOI: 10.1016/j.marpolbul.2014.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this work is to assess the physicochemical conditions of the supratidal sediments colonized by microbial mats at two sites from Rosales Harbor (Bahía Blanca Estuary, Argentina) close to sewage discharge. Both sites differed in the size grain. No differences in pH, Eh and temperature were observed. Moisture retention and chlorophyll a concentration were significantly different between sites and sediment layers. Heavy metals and organic matter content were significantly higher in SII. No statistical differences were found in porewater nutrients concentration, being higher in SI (except DSi). The presence of Escherichia coli in water and sediment (1000 CFU/100 mL - uncountable and 35-40 CFU g(-1) dw, respectively) evidenced microbial contamination in the study area. The relationships between the physicochemical parameters evaluated and the influence of the sewage discharge allow defining two different areas in the Rosales Harbor despite the proximity and the presence of microbial mats.
Collapse
|
45
|
The Deep Biosphere of the Subseafloor Igneous Crust. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_5014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
|
47
|
Nogi Y, Abe M, Kawagucci S, Hirayama H. Psychrobium conchae gen. nov., sp. nov., a psychrophilic marine bacterium isolated from the Iheya North hydrothermal field. Int J Syst Evol Microbiol 2014; 64:3668-3675. [PMID: 25096326 DOI: 10.1099/ijs.0.066738-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel psychrophilic, marine, bacterial strain designated BJ-1(T) was isolated from the Iheya North hydrothermal field in the Okinawa Trough off Japan. Cells were Gram-negative, rod-shaped, non-spore-forming, aerobic chemo-organotrophs and motile by means of a single polar flagellum. Growth occurred at temperatures below 16 °C, with the optimum between 9 and 12 °C. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the closest relatives of strain BJ-1(T) were Shewanella denitrificans OS-217(T) (93.5% similarity), Shewanella profunda DSM 15900(T) (92.9%), Shewanella gaetbuli TF-27(T) (92.9%), Paraferrimonas sedimenticola Mok-106(T) (92.1%) and Ferrimonas kyonanensis Asr22-7(T) (91.7%). The major respiratory quinone was Q-8. The predominant fatty acids were C(16:1)ω7c and C(16:0). The G+C content of the novel strain was 40.5 mol%. Based on phylogenetic, phenotypic and chemotaxonomic evidence, it is proposed that strain BJ-1(T) represents a novel species in a new genus, for which the name Psychrobium conchae gen. nov., sp. nov. is proposed. The type strain of Psychrobium conchae is BJ-1(T) ( =JCM 30103(T) =DSM 28701(T)).
Collapse
Affiliation(s)
- Yuichi Nogi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Mariko Abe
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Shinsuke Kawagucci
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Hisako Hirayama
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
48
|
Wu W, Yang F, Liu X, Bai L. Influence of substrate on electricity generation of Shewanella loihica PV-4 in microbial fuel cells. Microb Cell Fact 2014; 13:69. [PMID: 24885728 PMCID: PMC4032171 DOI: 10.1186/1475-2859-13-69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 05/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The substrate, serving as carbon and energy source, is one of the major factors affecting the performance of microbial fuel cells (MFCs). We utilized BIOLOG system to rapidly screen substrates for electricigens, and further evaluated influence of these substrates on electricity generation of Shewanella loihica PV-4 in MFCs. RESULTS Three of most favorable substrates (lactate acid, formic acid and cyclodextrin) with OD590/750 of 0.952, 0.880 and 0.849 as well as three of most unfavorable substrates (galactose, arabinose and glucose) with OD590/750 of 0.248, 0.137 and 0.119 were selected by BIOLOG system under aerobic conditions. The chronoamperometry results showed that MFCs fed with these substrates exhibited different current behaviors. Cyclic voltammograms results showed that arabinose, galactose and glucose promoted electron transfer from outer membrane c-Cyts of cells to the electrode surface. Lactic acid, formic acid and cyclodextrin produced lower quantity of electric charge of 10.13 C, 9.83 C and 10.10 C, the corresponding OD600 value was 0.180, 0.286 and 0.152 in BES; while galactose, arabinose and glucose generated higher quantity of electric charge of 12.34 C, 13.42 C and 17.45 C, and increased OD600 values were 0.338, 0.558 and 0.409 in BES. SEMs results showed that plenty of plump and stretched cells as well as appendages were observed when lactic acid, formic acid, and cyclodextrin were utilized as substrates, while sparse cells in short shape were obtained when galactose, arabinose and glucose were used as substrates. CONCLUSIONS These results suggest that substrate not only has important role in electrochemical performances of MFCs but also in biological properties of electricigens. Lactic acid, formic acid, and cyclodextrin beneficial for cell growth under aerobic conditions are unfavourable for planktonic cell growth and current generation under anaerobic conditions, while consumptions of galactose, arabinose and glucose adverse to cell growth under aerobic conditions are favourable for planktonic cell growth and current generation under anaerobic conditions due to the increase of cell numbers with more outer membrane c-Cyts transferring electrons between the electrode surface and cells.
Collapse
Affiliation(s)
- Wenguo Wu
- College of Chemical Engineering, Huaqiao University, 361021 Xiamen, P, R, China.
| | | | | | | |
Collapse
|
49
|
Yang Y, Chen J, Qiu D, Zhou J. Roles of UndA and MtrC of Shewanella putrefaciens W3-18-1 in iron reduction. BMC Microbiol 2013; 13:267. [PMID: 24274142 PMCID: PMC4222724 DOI: 10.1186/1471-2180-13-267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The completion of genome sequencing in a number of Shewanella species, which are most renowned for their metal reduction capacity, offers a basis for comparative studies. Previous work in Shewanella oneidensis MR-1 has indicated that some genes within a cluster (mtrBAC-omcA-mtrFED) were involved in iron reduction. To explore new features of iron reduction pathways, we experimentally analyzed Shewanella putrefaciens W3-18-1 since its gene cluster is considerably different from that of MR-1 in that the gene cluster encodes only four ORFs. RESULTS Among the gene cluster, two genes (mtrC and undA) were shown to encode c-type cytochromes. The ΔmtrC deletion mutant revealed significant deficiencies in reducing metals of Fe2O3, α-FeO(OH), β-FeO(OH), ferric citrate, Mn(IV) and Co(III), but not organic compounds. In contrast, no deficiency of metal reduction was observed in the ΔundA deletion mutant. Nonetheless, undA deletion resulted in progressively slower iron reduction in the absence of mtrC and fitness loss under the iron-using condition, which was indicative of a functional role of UndA in iron reduction. CONCLUSIONS These results provide physiological and biochemical evidences that UndA and MtrC of Shewanella putrefaciens W3-18-1 are involved in iron reduction.
Collapse
Affiliation(s)
- Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | | | | | | |
Collapse
|
50
|
Mind the gap: diversity and reactivity relationships among multihaem cytochromes of the MtrA/DmsE family. Biochem Soc Trans 2013; 40:1268-73. [PMID: 23176466 DOI: 10.1042/bst20120106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Shewanella oneidensis MR-1 has the ability to use many external terminal electron acceptors during anaerobic respiration, such as DMSO. The pathway that facilitates this electron transfer includes the decahaem cytochrome DmsE, a paralogue of the MtrA family of decahaem cytochromes. Although both DmsE and MtrA are decahaem cytochromes implicated in the long-range electron transfer across a ~300 Å (1 Å=0.1 nm) wide periplasmic 'gap', MtrA has been shown to be only 105 Å in maximal length. In the present paper, DmsE is further characterized via protein film voltammetry, revealing that the electrochemistry of the DmsE haem cofactors display macroscopic potentials lower than those of MtrA by 100 mV. It is possible this tuning of the redox potential of DmsE is required to shuttle electrons to the outer-membrane proteins specific to DMSO reduction. Other decahaem cytochromes found in S. oneidensis, such as the outer-membrane proteins MtrC, MtrF and OmcA, have been shown to have electrochemical properties similar to those of MtrA, yet possess a different evolutionary relationship.
Collapse
|