1
|
Giannakopoulos C, Panou M, Gkelis S. Phylogenetic analysis of Nostocales (Cyanobacteria) based on two novel molecular markers, implicated in the nitrogenase biosynthesis. FEMS Microbiol Lett 2024; 371:fnad136. [PMID: 38168702 DOI: 10.1093/femsle/fnad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024] Open
Abstract
The characterization of cyanobacteria communities remains challenging, as taxonomy of several cyanobacterial genera is still unresolved, especially within Nostocales taxa. Nostocales cyanobacteria are capable of nitrogen fixation; nitrogenase genes are grouped into operons and are located in the same genetic locus. Structural nitrogenase genes (nifH, nifK and nifD) as well as 16S rRNA have been shown to be adequate genetic markers for distinguishing cyanobacterial genera. However, there is no available information regarding the phylogeny of regulatory genes of the nitrogenase cluster. Aiming to provide a more accurate overview of the evolution of nitrogen fixation, this study analyzed for the first time nifE and nifN genes, which regulate the production of nitrogenase, alongside nifH. Specific primers were designed to amplify nifE and nifN genes, previously not available in literature and phylogenetic analysis was carried out in 13 and 14 TAU-MAC culture collection strains, respectively, of ten Nostocales genera along with other sequences retrieved from cyanobacteria genomes. Phylogenetic analysis showed that these genes seem to follow a common evolutionary pattern with nitrogenase structural genes and 16S rRNA. The classification of cyanobacteria based on these molecular markers seems to distinguish Nostocales strains with common morphological, ecological, and physiological characteristics.
Collapse
Affiliation(s)
- Christos Giannakopoulos
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
2
|
Almeida AVM, Vaz MGMV, Castro NVD, Genuário DB, Oder JC, Souza PAMD, Martins SB, Machado M, Nunes-Nesi A, Araújo WL. How diverse a genus can be: An integrated multi-layered analysis into Desmonostoc (Nostocaceae, Cyanobacteriota). Syst Appl Microbiol 2023; 46:126422. [PMID: 37119668 DOI: 10.1016/j.syapm.2023.126422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Cyanobacteria (Phylum Cyanobacteriota) are Gram-negative bacteria capable of performing oxygenic photosynthesis. Although the taxonomic classification of cyanobacteria was for a long time based primarily on morphological characters, the application of other techniques (e.g. molecular phylogeny), especially in recent decades, has contributed to a better resolution of cyanobacteria systematics, leading to a revision of the phylum. Although Desmonostoc occurs as a new genus/cluster and some species have been described recently, relatively few studies have been carried out to elucidate its diversity, which encompasses strains from different ecological origins, or examine the application of new characterization tools. In this context, the present study investigated the diversity within Desmonostoc, based on morphological, molecular, metabolic, and physiological characteristics. Although the usage of physiological parameters is unusual for a polyphasic approach, they were efficient in the characterization performed here. The phylogenetic analysis based on 16S rRNA gene sequences put all studied strains (25) into the D1 cluster and indicated the emergence of novel sub-clusters. It was also possible to observe that nifD and nifH exhibited different evolutionary histories within the Desmonostoc strains. Collectively, metabolic and physiological data, coupled with the morphometric data, were in general, in good agreement with the separation based on the phylogeny of the 16S rRNA gene. Furthermore, the study provided important information on the diversity of Desmonostoc strains collected from different Brazilian biomes by revealing that they were cosmopolitan strains, acclimatized to low luminous intensities, with a large metabolic diversity and great biotechnological potential.
Collapse
Affiliation(s)
- Allan Victor M Almeida
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | | | - Naira Valle de Castro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Diego Bonaldo Genuário
- Biodiversita Tecnologia Microbiana, 13148-153 Paulínia, São Paulo, Brazil; Laboratório de Microbiologia Ambiental, EMBRAPA Meio Ambiente, 13820-000 Jaguariúna, São Paulo, Brazil
| | - Jean Coutinho Oder
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | | | - Sandy Bastos Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Mariana Machado
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Maltseva S, Kezlya E, Krivova Z, Gusev E, Kulikovskiy M, Maltsev Y. Phylogeny and fatty acid profiles of Aliinostoc vietnamicum sp. nov. (cyanobacteria) from the soils of Vietnam. JOURNAL OF PHYCOLOGY 2022; 58:789-803. [PMID: 36054495 DOI: 10.1111/jpy.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A new cyanobacterial species of Aliinostoc, A. vietnamicum sp. nov., is recorded in the tropical forest soil from the Cát Tiên National Park, Vietnam. The analysis is based on morphological characters, 16S rDNA phylogeny, ITS secondary structure, and fatty acid composition analysis. Aliinostoc vietnamicum differed from the other species of the genus by the size and shape of vegetative cells, size of akinetes and heterocytes, and presence of granular polyphosphate inclusions in vegetative cells. The evolutionary distance matrix based on the 16S rRNA gene shared 96.2-98.2% similarities with other Aliinostoc sequences. The phylogeny inferred by maximum likelihood and Bayesian inference placed A. vietnamicum in the Aliinostoc clade, within the Nostocaceae. For the first time, fatty acid composition analysis was obtained for a member of the genus Aliinostoc with cultivation time experiments. α-linolenic (27.54-37.75%), palmitic (13.87-22.65%), and stearic (10.08-20.27%) acids were the dominant fatty acids when cultured during the exponential growth phase, as well as during stationary. This is the first finding of a strain with such a high content of stearic acid among cyanobacteria with Nostoc-like morphology.
Collapse
Affiliation(s)
- Svetlana Maltseva
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Elena Kezlya
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Zinaida Krivova
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Evgeniy Gusev
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Maxim Kulikovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Yevhen Maltsev
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| |
Collapse
|
4
|
Pal S, Saraf A, Kumar N, Singh P. Phycological exploration of the global biodiversity hotspots of Northeast India: discovery of a new species of soil-dwelling cyanobacteria, Desikacharya kailashaharensis sp. nov. FEMS Microbiol Lett 2022; 369:6758503. [PMID: 36220146 DOI: 10.1093/femsle/fnac099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022] Open
Abstract
A soil-dwelling cyanobacterial strain (KLS-BP-3A_PS), has been isolated from the biodiversity rich Northeast region of India and characterized using a polyphasic approach. The strain was collected from a field covered with grass, near a stream from the Unakoti district of Tripura. Upon culturing in the laboratory, initial studies indicated the strain to be showing typical Nostoc or Nostoc-like morphology. Subsequently, 16S rRNA gene phylogenetic analyses using Neighbour joining, Maximum-likelihood, and Bayesian inference methods gave a distinct and stable positioning of the strain inside the genus Desikacharya. Upon recovery of the full-length operon of the 16S-23S ITS region with both tRNAs (tRNAIle and tRNAAla), the folded secondary structures revealed unique patterns of the D1-D1', V2, Box-B, and V3 regions of the strain KLS-BP-3A_PS as compared to phylogenetically related species of the genus Desikacharya. The total evidence approach indicated conclusively that the strain under investigation is a new species of the genus Desikacharya, which we describe as Desikacharya kailashaharensis in accordance with the International Code of Nomenclature for algae, fungi, and plants. Further, 16S rRNA gene phylogeny and evaluation of the 16S-23S ITS operons along with implying a re-examination of the family level affiliation of Desikacharya as well its generic limits may be in order. Notably, this study brings into focus the very less explored Northeast region of India which shares two global biodiversity hotspots in the world.
Collapse
Affiliation(s)
- Sagarika Pal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Aniket Saraf
- Department of Biological Science, Ramniranjan Jhunjhunwala College of Arts, Science and Commerce, Ghatkopar-400086, Mumbai, Maharashtra, India
| | - Naresh Kumar
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Prashant Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
5
|
Effendi DB, Sakamoto T, Ohtani S, Awai K, Kanesaki Y. Possible involvement of extracellular polymeric substrates of Antarctic cyanobacterium Nostoc sp. strain SO-36 in adaptation to harsh environments. JOURNAL OF PLANT RESEARCH 2022; 135:771-784. [PMID: 36107269 DOI: 10.1007/s10265-022-01411-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are some of the primary producers in extremely cold biospheres such as the Arctic, Antarctic, and vast ice sheets. Many genera of cyanobacteria are identified from these harsh environments, but their specific mechanisms for cold adaptation are not fully understood. Nostoc sp. strain SO-36 is a cyanobacterium isolated in Antarctica more than 30 years ago and regarded as a psychrotolelant species. To determine whether the strain is psychrotolelant or psychrophilic, it was first grown at 30 °C and 10 °C. The cells grew exponentially at 30 °C, but their growth stopped at 10 °C, indicating that the strain is only psychrotolerant. Microscopic analysis revealed that the morphology of the cells grown at 30 °C was filamentous and differentiated heterocysts, which are specialized cells for gaseous nitrogen fixation under nitrogen-deprived conditions, indicating that the strain can grow diazotrophically. The cells grown at 10 °C have a smaller size, shortened filament length and decreased chlorophyll content per cell. At 10 °C, the cells are aggregated with extracellular polymeric substrates (EPSs), which is a common mechanism to protect cells from ultraviolet light. These results imply that segmentation into short filaments was induced by photodamage at low temperatures. To fully understand the adaptation mechanisms of Nostoc sp. strain SO-36 for low-temperature conditions, next-generation sequencing analyses were conducted. Complete genome sequence of the strain revealed that it has one main chromosome of approximately 6.8 Mbp with 4 plasmids, including 6855 coding sequences, 48 tRNA genes, 4 copies of rRNA operons, and 5 CRISPR regions. Putative genes for EPS biosynthesis were found to be conserved in Nostocaceae regardless of their habitat. These results provide basic information to understand the adaptation mechanisms at low temperatures, and the strain can be a model organism to analyze adaptation to extreme environments.
Collapse
Affiliation(s)
- Devi B Effendi
- Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshio Sakamoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Shuji Ohtani
- Faculty of Education, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Koichiro Awai
- Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Electronics, Shizuoka University, Johoku-ku, Hamamatsu, 432-8561, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
6
|
Abstract
Species of the floating, freshwater fern Azolla form a well-characterized symbiotic association with the non-culturable cyanobacterium Nostoc azollae, which fixes nitrogen for the plant. However, several cyanobacterial strains have over the years been isolated and cultured from Azolla from all over the world. The genomes of 10 of these strains were sequenced and compared with each other, with other symbiotic cyanobacterial strains, and with similar strains that were not isolated from a symbiotic association. The 10 strains fell into three distinct groups: six strains were nearly identical to the non-symbiotic strain, Nostoc (Anabaena) variabilis ATCC 29413; three were similar to the symbiotic strain, Nostoc punctiforme, and one, Nostoc sp. 2RC, was most similar to non-symbiotic strains of Nostoc linckia. However, Nostoc sp. 2RC was unusual because it has three sets of nitrogenase genes; it has complete gene clusters for two distinct Mo-nitrogenases and an alternative V-nitrogenase. Genes for Mo-nitrogenase, sugar transport, chemotaxis and pili characterized all the symbiotic strains. Several of the strains infected the liverwort Blasia, including N. variabilis ATCC 29413, which did not originate from Azolla but rather from a sewage pond. However, only Nostoc sp. 2RC, which produced highly motile hormogonia, was capable of high-frequency infection of Blasia. Thus, some of these strains, which grow readily in the laboratory, may be useful in establishing novel symbiotic associations with other plants.
Collapse
Affiliation(s)
- Brenda S. Pratte
- Department of Biology, University of Missouri–St. Louis, One University Blvd, St. Louis, MO 63121, USA
| | - Teresa Thiel
- Department of Biology, University of Missouri–St. Louis, One University Blvd, St. Louis, MO 63121, USA
- *Correspondence: Teresa Thiel,
| |
Collapse
|
7
|
Kaasalainen U, Tuovinen V, Mwachala G, Pellikka P, Rikkinen J. Complex Interaction Networks Among Cyanolichens of a Tropical Biodiversity Hotspot. Front Microbiol 2021; 12:672333. [PMID: 34177853 PMCID: PMC8220813 DOI: 10.3389/fmicb.2021.672333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Interactions within lichen communities include, in addition to close mutualistic associations between the main partners of specific lichen symbioses, also more elusive relationships between members of a wider symbiotic community. Here, we analyze association patterns of cyanolichen symbionts in the tropical montane forests of Taita Hills, southern Kenya, which is part of the Eastern Afromontane biodiversity hotspot. The cyanolichen specimens analyzed represent 74 mycobiont taxa within the order Peltigerales (Ascomycota), associating with 115 different variants of the photobionts genus Nostoc (Cyanobacteria). Our analysis demonstrates wide sharing of photobionts and reveals the presence of several photobiont-mediated lichen guilds. Over half of all mycobionts share photobionts with other fungal species, often from different genera or even families, while some others are strict specialists and exclusively associate with a single photobiont variant. The most extensive symbiont network involves 24 different fungal species from five genera associating with 38 Nostoc photobionts. The Nostoc photobionts belong to two main groups, the Nephroma-type Nostoc and the Collema/Peltigera-type Nostoc, and nearly all mycobionts associate only with variants of one group. Among the mycobionts, species that produce cephalodia and those without symbiotic propagules tend to be most promiscuous in photobiont choice. The extent of photobiont sharing and the structure of interaction networks differ dramatically between the two major photobiont-mediated guilds, being both more prevalent and nested among Nephroma guild fungi and more compartmentalized among Peltigera guild fungi. This presumably reflects differences in the ecological characteristics and/or requirements of the two main groups of photobionts. The same two groups of Nostoc have previously been identified from many lichens in various lichen-rich ecosystems in different parts of the world, indicating that photobiont sharing between fungal species is an integral part of lichen ecology globally. In many cases, symbiotically dispersing lichens can facilitate the dispersal of sexually reproducing species, promoting establishment and adaptation into new and marginal habitats and thus driving evolutionary diversification.
Collapse
Affiliation(s)
- Ulla Kaasalainen
- Department of Geobiology, University of Göttingen, Göttingen, Germany.,Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Veera Tuovinen
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | - Petri Pellikka
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Jouko Rikkinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Pecundo MH, Chang ACG, Chen T, dela Cruz TEE, Ren H, Li N. Full-Length 16S rRNA and ITS Gene Sequencing Revealed Rich Microbial Flora in Roots of Cycas spp. in China. Evol Bioinform Online 2021; 17:1176934321989713. [PMID: 33613025 PMCID: PMC7868495 DOI: 10.1177/1176934321989713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Cycads have developed a complex root system categorized either as normal or coralloid roots. Past literatures revealed that a great diversity of key microbes is associated with these roots. This recent study aims to comprehensively determine the diversity and community structure of bacteria and fungi associated with the roots of two Cycas spp. endemic to China, Cycas debaoensis Zhong & Chen and Cycas fairylakea D.Y. Wang using high-throughput amplicon sequencing of the full-length 16S rRNA (V1-V9 hypervariable) and short fragment ITS region. The total DNA from 12 root samples were extracted, amplified, sequenced, and analyzed. Resulting sequences were clustered into 61 bacteria and 2128 fungal OTUs. Analysis of community structure revealed that the coralloid roots were dominated mostly by the nitrogen-fixer Nostocaceae but also contain other non-diazotrophic bacteria. The sequencing of entire 16S rRNA gene identified four different strains of cyanobacteria under the heterocystous genera Nostoc and Desmonostoc. Meanwhile, the top bacterial families in normal roots were Xanthobacteraceae, Burkholderiaceae, and Bacillaceae. Moreover, a diverse fungal community was also found in the roots of cycads and the predominating families were Ophiocordycipitaceae, Nectriaceae, Bionectriaceae, and Trichocomaceae. Our results demonstrated that bacterial diversity in normal roots of C. fairylakea is higher in richness and abundance than C. debaoensis. On the other hand, a slight difference, albeit insignificant, was noted for the diversity of fungi among root types and host species as the number of shared taxa is relatively high (67%). Our results suggested that diverse microbes are present in roots of cycads which potentially interact together to support cycads survival. Our study provided additional knowledge on the microbial diversity and composition in cycads and thus expanding our current knowledge on cycad-microbe association. Our study also considered the possible impact of ex situ conservation on cyanobiont community of cycads.
Collapse
Affiliation(s)
- Melissa H Pecundo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aimee Caye G Chang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Thomas Edison E dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Hai Ren
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Bhattacharjee S, Mishra AK. The tale of caspase homologues and their evolutionary outlook: deciphering programmed cell death in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4639-4657. [PMID: 32369588 PMCID: PMC7475262 DOI: 10.1093/jxb/eraa213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD), a genetically orchestrated mechanism of cellular demise, is paradoxically required to support life. As in lower eukaryotes and bacteria, PCD in cyanobacteria is poorly appreciated, despite recent biochemical and molecular evidence that supports its existence. Cyanobacterial PCD is an altruistic reaction to stressful conditions that significantly enhances genetic diversity and inclusive fitness of the population. Recent bioinformatic analysis has revealed an abundance of death-related proteases, i.e. orthocaspases (OCAs) and their mutated variants, in cyanobacteria, with the larger genomes of morphologically complex strains harbouring most of them. Sequence analysis has depicted crucial accessory domains along with the proteolytic p20-like sub-domain in OCAs, predicting their functional versatility. However, the cascades involved in sensing death signals, their transduction, and the downstream expression and activation of OCAs remain to be elucidated. Here, we provide a comprehensive description of the attempts to identify mechanisms of PCD and the existence and importance of OCAs based on in silico approaches. We also review the evolutionary and ecological significance of PCD in cyanobacteria. In the future, the analysis of cyanobacterial PCD will identify novel proteins that have varied functional roles in signalling cascades and also help in understanding the incipient mechanism of PCD morphotype(s) from where eukaryotic PCD might have originated.
Collapse
Affiliation(s)
- Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Cyanobacteria Phylogenetic Studies Reveal Evidence for Polyphyletic Genera from Thermal and Freshwater Habitats. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12080298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyanobacteria are among the most diverse morphological microorganisms that inhabit a great variety of habitats. Their presence in the Azores, a volcanic archipelago of nine islands in the middle of the North Atlantic Ocean, has already been reported. However, due to the high diversity of cyanobacteria habitats, their biodiversity is still understudied, mainly in extreme environments. To address this, a total of 156 cyanobacteria strains from Azores lakes, streams, thermal and terrestrial habitats were isolated. Identification was made based on a polyphasic approach using classical taxonomy (morphological characteristics and environmental data) and phylogeny among 81 strains assessed by maximum likelihood and Bayesian analysis of 16S rDNA partial sequences. The 156 isolates showed a high genera diversity (38) belonging to the orders Chroococcales, Nostocales, Oscillatoriales, and Synechococcales. Eleven new genera for the Azores habitats are here reported, reinforcing that cyanobacteria biodiversity in these islands is still much understudied. Phylogenetic analysis showed 14 clusters associated with these cyanobacteria orders, with evidence for six new genera and valuable information towards Microchaete/Coleospermum taxonomic revision that better reflects species environmental distribution. These results emphasize the need for cyanobacteria taxonomy revisions, through polyphasic studies, mainly in Synechococcales order and in the Microchaete/Coleospermum, Nostoc, and Anabaena genera.
Collapse
|
11
|
Kabirnataj S, Nematzadeh GA, Talebi AF, Saraf A, Suradkar A, Tabatabaei M, Singh P. Description of novel species of Aliinostoc, Desikacharya and Desmonostoc using a polyphasic approach. Int J Syst Evol Microbiol 2020; 70:3413-3426. [DOI: 10.1099/ijsem.0.004188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Five cyanobacterial strains with
Nostoc
-like morphology from different localities of the Mazandaran province of Iran were characterized using a polyphasic approach. Three strains clustered within the
Aliinostoc
clade whereas one each of the remaining two strains clustered within the genera
Desmonostoc
and
Desikacharya
. The phylogenetic positioning of all the strains by the bayesian inference, neighbour joining and maximum parsimony methods inferred using 16S rRNA gene indicated them to represent novel species of the genera
Aliinostoc
,
Desmonostoc
and
Desikacharya
. The 16S–23S ITS secondary structure analysis revealed that all five strains under study represented novel species unknown to science. In accordance with the International Code of Nomenclature for algae, fungi and plants we describe three novel species of the genus
Aliinostoc
and one species each of the genera
Desmonostoc
and
Desikacharya
.
Collapse
Affiliation(s)
- Sara Kabirnataj
- Genetic and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ghorban A. Nematzadeh
- Genetic and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ahmad F. Talebi
- Department of Genetics, Faculty of Microbial Biotechnology, Semnan University, Semnan, Iran
| | - Aniket Saraf
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
- Ramniranjan Jhunjhunwala College, Mumbai, India
| | - Archana Suradkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Meisam Tabatabaei
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
- Biofuel Research Team (BRTeam), Karaj, Iran
- Faculty of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Prashant Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| |
Collapse
|
12
|
Singh P, Šnokhousová J, Saraf A, Suradkar A, Elster J. Phylogenetic evaluation of the genus Nostoc and description of Nostoc neudorfense sp. nov., from the Czech Republic. Int J Syst Evol Microbiol 2020; 70:2740-2749. [DOI: 10.1099/ijsem.0.004102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cyanobacterial strain ARC8 was isolated from seepage coming into the river Dračice, Františkov, Czech Republic, and was characterized using a polyphasic approach. Strain ARC8 showed a typical
Nostoc
-like morphology and in-depth morphological characterization indicated that it is a member of the genus
Nostoc
. Furthermore, in the 16S rRNA gene phylogeny inferred using Bayesian inference, maximum likelihood and neighbour joining methods, strain ARC8 clustered within the Nostoc sensu stricto clade. The phylogenetic distance and the positioning of strain ARC8 also indicated that it is a member of the genus
Nostoc
. Furthermore, the rbcL gene phylogeny along with the 16S–23S ITS secondary structure analysis also supported the findings from the 16S rRNA gene tree. In accordance with the International Code of Nomenclature for Algae, Fungi and Plants we describe a novel species of
Nostoc
with the name Nostoc neudorfense sp. nov.
Collapse
Affiliation(s)
- Prashant Singh
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jana Šnokhousová
- Phycology Centre, Institute of Botany, Academy of Science CR, Třeboň, Czechia
| | - Aniket Saraf
- Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai, India
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Archana Suradkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Josef Elster
- Phycology Centre, Institute of Botany, Academy of Science CR, Třeboň, Czechia
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
13
|
Moura KAF, Lizieri C, Wittig Franco M, Vaz MGMV, Araújo WL, Convey P, Barbosa FAR. Physiological and thylakoid ultrastructural changes in cyanobacteria in response to toxic manganese concentrations. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1009-1021. [PMID: 31471822 DOI: 10.1007/s10646-019-02098-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, two cyanobacterial strains (morphologically identified as Microcystis novacekii BA005 and Nostoc paludosum BA033) were exposed to different Mn concentrations: 7.0, 10.5, 15.7, 23.6 and 35.4 mg L-1 for BA005; and 15.0, 22.5, 33.7, 50.6, and 76.0 mg L-1 for BA033. Manganese toxicity was assessed by growth rate inhibition (EC50), chlorophyll a content, quantification of Mn accumulation in biomass and monitoring morphological and ultrastructural effects. The Mn EC50 values were 16 mg L-1 for BA005 and 39 mg L-1 for BA033, respectively. Reduction of chlorophyll a contents and ultrastructural changes were observed in cells exposed to Mn concentrations greater than 23.6 and 33.7 mg L-1 for BA005 and BA033. Damage to intrathylakoid spaces, increased amounts of polyphosphate granules and an increased number of carboxysomes were observed in both strains. In the context of the potential application of these strains in bioremediation approaches, BA005 was able to remove Mn almost completely from aqueous medium after 96 h exposure to an initial concentration of 10.5 mg L-1, and BA033 was capable of removing 38% when exposed to initial Mn concentration of 22.5 mg L-1. Our data shed light on how these cyanobacterial strains respond to Mn stress, as well as supporting their utility as organisms for monitoring Mn toxicity in industrial wastes and potential bioremediation application.
Collapse
Affiliation(s)
- Karen Ann Ferreira Moura
- Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, B. I3, 163, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Claudineia Lizieri
- Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, B. I3, 163, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maione Wittig Franco
- Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, B. I3, 163, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Marcelo Gomes Marçal Vieira Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Francisco Antônio Rodrigues Barbosa
- Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, B. I3, 163, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
14
|
Arsenic-contaminated sediment from mining areas as source of morphological and phylogenetic distinct cyanobacterial lineages. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Saraf AG, Dawda HG, Singh P. Desikacharya gen. nov., a phylogenetically distinct genus of Cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov. Int J Syst Evol Microbiol 2019; 69:307-315. [DOI: 10.1099/ijsem.0.003093] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Aniket G. Saraf
- 1Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai, India
| | | | - Prashant Singh
- 2Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
16
|
Saraf A, Dawda HG, Suradkar A, Behere I, Kotulkar M, Shaikh ZM, Kumat A, Batule P, Mishra D, Singh P. Description of two new species ofAliinostocand one new species ofDesmonostocfrom India based on the Polyphasic Approach and reclassification ofNostoc punensistoDesmonostoc punensecomb. nov. FEMS Microbiol Lett 2018; 365:5184455. [DOI: 10.1093/femsle/fny272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/12/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aniket Saraf
- Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai-400086, Maharashtra, India
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune-411021, Maharashtra, India
| | - Himanshu G Dawda
- Ramniranjan Jhunjhunwala College, Ghatkopar, Mumbai-400086, Maharashtra, India
| | - Archana Suradkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune-411021, Maharashtra, India
| | - Isha Behere
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune-411021, Maharashtra, India
| | - Manasi Kotulkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune-411021, Maharashtra, India
| | - Zaid Muneef Shaikh
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune-411021, Maharashtra, India
| | - Ankita Kumat
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune-411021, Maharashtra, India
| | - Priyanka Batule
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune-411021, Maharashtra, India
| | - Deeksha Mishra
- Laboratory of Cyanobacterial Systematics, Department of Botany, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Prashant Singh
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune-411021, Maharashtra, India
- Laboratory of Cyanobacterial Systematics, Department of Botany, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
17
|
Kust A, Urajová P, Hrouzek P, Vu DL, Čapková K, Štenclová L, Řeháková K, Kozlíková-Zapomělová E, Lepšová-Skácelová O, Lukešová A, Mareš J. A new microcystin producing Nostoc strain discovered in broad toxicological screening of non-planktic Nostocaceae (cyanobacteria). Toxicon 2018; 150:66-73. [DOI: 10.1016/j.toxicon.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
|
18
|
de Alvarenga LV, Vaz MGMV, Genuário DB, Esteves-Ferreira AA, Almeida AVM, de Castro NV, Lizieri C, Souza JJLL, Schaefer CEGR, Nunes-Nesi A, Araújo WL. Extending the ecological distribution of Desmonostoc genus: proposal of Desmonostoc salinum sp. nov., a novel Cyanobacteria from a saline-alkaline lake. Int J Syst Evol Microbiol 2018; 68:2770-2782. [PMID: 29985124 DOI: 10.1099/ijsem.0.002878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cyanobacteria is an ancient phylum of oxygenic photosynthetic microorganisms found in almost all environments of Earth. In recent years, the taxonomic placement of some cyanobacterial strains, including those belonging to the genus Nostocsensu lato, have been reevaluated by means of a polyphasic approach. Thus, 16S rRNA gene phylogeny and 16S-23S internal transcribed spacer (ITS) secondary structures coupled with morphological, ecological and physiological data are considered powerful tools for a better taxonomic and systematics resolution, leading to the description of novel genera and species. Additionally, underexplored and harsh environments, such as saline-alkaline lakes, have received special attention given they can be a source of novel cyanobacterial taxa. Here, a filamentous heterocytous strain, Nostocaceae CCM-UFV059, isolated from Laguna Amarga, Chile, was characterized applying the polyphasic approach; its fatty acid profile and physiological responses to salt (NaCl) were also determined. Morphologically, this strain was related to morphotypes of the Nostocsensu lato group, being phylogenetically placed into the typical cluster of the genus Desmonostoc. CCM-UFV059 showed identity of the 16S rRNA gene as well as 16S-23S secondary structures that did not match those from known described species of the genus Desmonostoc, as well as distinct ecological and physiological traits. Taken together, these data allowed the description of the first strain of a member of the genus Desmonostoc from a saline-alkaline lake, named Desmonostoc salinum sp. nov., under the provisions of the International Code of Nomenclature for algae, fungi and plants. This finding extends the ecological coverage of the genus Desmonostoc, contributing to a better understanding of cyanobacterial diversity and systematics.
Collapse
Affiliation(s)
- Luna Viggiano de Alvarenga
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Diego Bonaldo Genuário
- 3Laboratório de Microbiologia Ambiental, EMBRAPA Meio Ambiente, 13820-000, Jaguariúna, São Paulo, Brazil
| | - Alberto A Esteves-Ferreira
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Allan V Martins Almeida
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Naira Valle de Castro
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Claudineia Lizieri
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,‡Present address: Instituto de Engenharia e Tecnologia, Centro Universitário de Belo Horizonte, UniBH, 30455-610, Belo Horizonte, Minas Gerais, Brazil
| | - José João L L Souza
- 4Departamento de Solos, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,5Departamento de Geografia, Universidade Federal do Rio Grande do Norte, 59300-000, Caicó, Rio Grande do Norte, Brazil
| | | | - Adriano Nunes-Nesi
- 1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- 2Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,1Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
19
|
Pham HTL, Nguyen LTT, Duong TA, Bui DTT, Doan QT, Nguyen HTT, Mundt S. Diversity and bioactivities of nostocacean cyanobacteria isolated from paddy soil in Vietnam. Syst Appl Microbiol 2017; 40:470-481. [PMID: 29100656 DOI: 10.1016/j.syapm.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/05/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022]
Abstract
Nostocacean cyanobacteria are one of the important components of paddy fields due to their ability to fix atmospheric nitrogen and supply phytohormones for crop growth. In this study, 13 Nostoc strains isolated from paddy soils in Vietnam were classified using a polyphasic approach. The results showed a high diversity of the isolated strains that represented seven morphotypes corresponding to five genotypes, with 16S rRNA gene sequence similarity values ranging between 94.97-99.78% compared to the available sequences from GenBank. Bioassay assessment revealed that 11 out of 13 strains possessed antibacterial activities, three of which exhibited cytotoxic activities on MCF7 and HCT116 cells with an IC50 ranging from 47.8μgmL-1 to 232.0μgmL-1. Interestingly, strains with identical 16S rRNA gene sequences displayed different antibacterial and cytotoxic activity profiles.
Collapse
Affiliation(s)
- Hang T L Pham
- Faculty of Biology, VNU University of Science, Hanoi, Vietnam; The Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam.
| | - Lien T T Nguyen
- Institute of Biotechnology, Hue University, Thua Thien Hue, Vietnam
| | - Tuan A Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Dung T T Bui
- Faculty of Biology, VNU University of Science, Hanoi, Vietnam
| | - Que T Doan
- Faculty of Biology, VNU University of Science, Hanoi, Vietnam
| | - Ha T T Nguyen
- Faculty of Biology, VNU University of Science, Hanoi, Vietnam
| | - Sabine Mundt
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University, 17491 Greifswald, Germany
| |
Collapse
|
20
|
Zúñiga C, Leiva D, Carú M, Orlando J. Substrates of Peltigera Lichens as a Potential Source of Cyanobionts. MICROBIAL ECOLOGY 2017; 74:561-569. [PMID: 28349162 DOI: 10.1007/s00248-017-0969-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Photobiont availability is one of the main factors determining the success of the lichenization process. Although multiple sources of photobionts have been proposed, there is no substantial evidence confirming that the substrates on which lichens grow are one of them. In this work, we obtained cyanobacterial 16S ribosomal RNA gene sequences from the substrates underlying 186 terricolous Peltigera cyanolichens from localities in Southern Chile and maritime Antarctica and compared them with the sequences of the cyanobionts of these lichens, in order to determine if cyanobacteria potentially available for lichenization were present in the substrates. A phylogenetic analysis of the sequences showed that Nostoc phylotypes dominated the cyanobacterial communities of the substrates in all sites. Among them, an overlap was observed between the phylotypes of the lichen cyanobionts and those of the cyanobacteria present in their substrates, suggesting that they could be a possible source of lichen photobionts. Also, in most cases, higher Nostoc diversity was observed in the lichens than in the substrates from each site. A better understanding of cyanobacterial diversity in lichen substrates and their relatives in the lichens would bring insights into mycobiont selection and the distribution patterns of lichens, providing a background for hypothesis testing and theory development for future studies of the lichenization process.
Collapse
Affiliation(s)
- Catalina Zúñiga
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Diego Leiva
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Margarita Carú
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Julieta Orlando
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
21
|
Bagchi SN, Dubey N, Singh P. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. Int J Syst Evol Microbiol 2017; 67:3329-3338. [DOI: 10.1099/ijsem.0.002112] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Suvendra Nath Bagchi
- Department of Biological Science, Rani Durgavati University, Jabalpur, Madhya Pradesh 482001, India
| | - Neelam Dubey
- Department of Biological Science, Rani Durgavati University, Jabalpur, Madhya Pradesh 482001, India
| | - Prashant Singh
- National Centre for Microbial Resource (NCMR) (formerly Microbial Culture Collection, MCC), National Centre for Cell Science (NCCS), Pune, India
| |
Collapse
|
22
|
Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME JOURNAL 2017; 11:2821-2833. [PMID: 28800136 PMCID: PMC5702739 DOI: 10.1038/ismej.2017.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022]
Abstract
Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss–cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria–plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant–cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria–feathermoss symbiosis.
Collapse
|
23
|
Genuário DB, Andreote APD, Vaz MGMV, Fiore MF. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol Phylogenet Evol 2017; 109:105-112. [DOI: 10.1016/j.ympev.2016.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
|
24
|
The current status of cyanobacterial nomenclature under the "prokaryotic" and the "botanical" code. Antonie Van Leeuwenhoek 2017; 110:1257-1269. [PMID: 28243951 DOI: 10.1007/s10482-017-0848-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Cyanobacterial taxonomy developed in the botanical world because Cyanobacteria/Cyanophyta have traditionally been identified as algae. However, they possess a prokaryotic cell structure, and phylogenetically they belong to the Bacteria. This caused nomenclature problems as the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN; the "Botanical Code") differ from those of the International Code of Nomenclature of Prokaryotes (ICNP; the "Prokaryotic Code"). While the ICN recognises names validly published under the ICNP, Article 45(1) of the ICN has not yet been reciprocated in the ICNP. Different solutions have been proposed to solve the current problems. In 2012 a Special Committee on the harmonisation of the nomenclature of Cyanobacteria was appointed, but its activity has been minimal. Two opposing proposals to regulate cyanobacterial nomenclature were recently submitted, one calling for deletion of the cyanobacteria from the groups of organisms whose nomenclature is regulated by the ICNP, the second to consistently apply the rules of the ICNP to all cyanobacteria. Following a general overview of the current status of cyanobacterial nomenclature under the two codes we present five case studies of genera for which nomenclatural aspects have been discussed in recent years: Microcystis, Planktothrix, Halothece, Gloeobacter and Nostoc.
Collapse
|
25
|
Liaimer A, Jensen JB, Dittmann E. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L. Front Microbiol 2016; 7:1693. [PMID: 27847500 PMCID: PMC5088731 DOI: 10.3389/fmicb.2016.01693] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin.
Collapse
Affiliation(s)
- Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - John B. Jensen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
26
|
Phylogenetic signal of photobiont switches in the lichen genus Pseudocyphellaria s. l. follows a Brownian motion model. Symbiosis 2016. [DOI: 10.1007/s13199-016-0458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Arya P, Acharya V. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants. PLoS One 2016; 11:e0150634. [PMID: 26930396 PMCID: PMC4773052 DOI: 10.1371/journal.pone.0150634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain) P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC) and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR). In the present study, we have employed a genome-wide survey (using stringent computational analysis) of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte) which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria.
Collapse
Affiliation(s)
- Preeti Arya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur- 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur- 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
- * E-mail: ;
| |
Collapse
|
28
|
Chrismas NAM, Anesio AM, Sánchez-Baracaldo P. Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 2015; 6:1070. [PMID: 26528250 PMCID: PMC4602134 DOI: 10.3389/fmicb.2015.01070] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 01/15/2023] Open
Abstract
Cyanobacteria are major primary producers in the polar and alpine regions contributing significantly to nitrogen and carbon cycles in the cryosphere. Recent advancements in environmental sequencing techniques have revealed great molecular diversity of microorganisms in cold environments. However, there are no comprehensive phylogenetic analyses including the entire known diversity of cyanobacteria from these extreme environments. We present here a global phylogenetic analysis of cyanobacteria including an extensive dataset comprised of available small subunit (SSU) rRNA gene sequences of cyanobacteria from polar and high altitude environments. Furthermore, we used a large-scale multi-gene (135 proteins and 2 ribosomal RNAs) genome constraint including 57 cyanobacterial genomes. Our analyses produced the first phylogeny of cold cyanobacteria exhibiting robust deep branching relationships implementing a phylogenomic approach. We recovered several clades common to Arctic, Antarctic and alpine sites suggesting that the traits necessary for survival in the cold have been acquired by a range of different mechanisms in all major cyanobacteria lineages. Bayesian ancestral state reconstruction revealed that 20 clades each have common ancestors with high probabilities of being capable of surviving in cold environments.
Collapse
Affiliation(s)
- Nathan A M Chrismas
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol Bristol, UK
| | - Alexandre M Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol Bristol, UK
| | | |
Collapse
|
29
|
Kaasalainen U, Olsson S, Rikkinen J. Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc. PLoS One 2015; 10:e0131223. [PMID: 26098760 PMCID: PMC4476775 DOI: 10.1371/journal.pone.0131223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/29/2015] [Indexed: 01/16/2023] Open
Abstract
The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies.
Collapse
Affiliation(s)
- Ulla Kaasalainen
- Department of Geobiology, University of Göttingen, Göttingen, Germany
- * E-mail:
| | - Sanna Olsson
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jouko Rikkinen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 2015; 65:663-675. [DOI: 10.1099/ijs.0.070078-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nostoc
is a common and well-studied genus of cyanobacteria and, according to molecular phylogeny, is a polyphyletic group. Therefore, revisions of this genus are urged in an attempt to clarify its taxonomy. Novel strains isolated from underexplored environments and assigned morphologically to the genus
Nostoc
are not genetically related to the ‘true Nostoc’ group. In this study, four strains isolated from biofilms collected in Antarctica and five strains originated from Brazilian mangroves were evaluated. Despite their morphological similarities to other morphotypes of
Nostoc
, these nine strains differed from other morphotypes in ecological, physiological and genetic aspects. Based on the phylogeny of the 16S rRNA gene, the Antarctic sequences were grouped together with the sequences of the Brazilian mangrove isolates and Nostoc sp. Mollenhauer 1 : 1-067 in a well-supported cluster (74 % bootstrap value, maximum-likelihood). This novel cluster was separated phylogenetically from the ‘true Nostoc’ clade and from the clades of the morphologically similar genera Mojavia and Desmonostoc. The 16S rRNA gene sequences generated in this study exhibited 96 % similarity to sequences from the nostocacean genera mentioned above. Physiologically, these nine strains showed the capacity to grow in a salinity range of 1–10 % NaCl, indicating their tolerance of saline conditions. These results provide support for the description of a new genus, named Halotia gen. nov., which is related morphologically to the genera
Nostoc
, Mojavia and Desmonostoc. Within this new genus, three novel species were recognized and described based on morphology and internal transcribed spacer secondary structures: Halotia branconii sp. nov., Halotia longispora sp. nov. and Halotia wernerae sp. nov., under the provisions of the International Code of Nomenclature for Algae, Fungi and Plants.
Collapse
|
31
|
Pereira AL, Vasconcelos V. Classification and phylogeny of the cyanobiont Anabaena azollae Strasburger: an answered question? Int J Syst Evol Microbiol 2014; 64:1830-1840. [PMID: 24737795 DOI: 10.1099/ijs.0.059238-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiosis Azolla-Anabaena azollae, with a worldwide distribution in pantropical and temperate regions, is one of the most studied, because of its potential application as a biofertilizer, especially in rice fields, but also as an animal food and in phytoremediation. The cyanobiont is a filamentous, heterocystic cyanobacterium that inhabits the foliar cavities of the pteridophyte and the indusium on the megasporocarp (female reproductive structure). The classification and phylogeny of the cyanobiont is very controversial: from its morphology, it has been named Nostoc azollae, Anabaena azollae, Anabaena variabilis status azollae and recently Trichormus azollae, but, from its 16S rRNA gene sequence, it has been assigned to Nostoc and/or Anabaena, and from its phycocyanin gene sequence, it has been assigned as non-Nostoc and non-Anabaena. The literature also points to a possible co-evolution between the cyanobiont and the Azolla host, since dendrograms and phylogenetic trees of fatty acids, short tandemly repeated repetitive (STRR) analysis and restriction fragment length polymorphism (RFLP) analysis of nif genes and the 16S rRNA gene give a two-cluster association that matches the two-section ranking of the host (Azolla). Another controversy surrounds the possible existence of more than one genus or more than one species strain. The use of freshly isolated or cultured cyanobionts is an additional problem, since their morphology and protein profiles are different. This review gives an overview of how morphological, chemical and genetic analyses influence the classification and phylogeny of the cyanobiont and future research.
Collapse
Affiliation(s)
- Ana L Pereira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Vitor Vasconcelos
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
32
|
Magain N, Sérusiaux E. Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLoS One 2014; 9:e89876. [PMID: 24587091 PMCID: PMC3933699 DOI: 10.1371/journal.pone.0089876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/27/2014] [Indexed: 11/23/2022] Open
Abstract
Lichen symbioses in the Pannariaceae associate an ascomycete and either cyanobacteria alone (usually Nostoc; bipartite thalli) or green algae and cyanobacteria (cyanobacteria being located in dedicated structures called cephalodia; tripartite thalli) as photosynthetic partners (photobionts). In bipartite thalli, cyanobacteria can either be restricted to a well-delimited layer within the thallus ('pannarioid' thalli) or spread over the thallus that becomes gelatinous when wet ('collematoid' thalli). We studied the collematoid genera Kroswia and Physma and an undescribed tripartite species along with representatives of the pannarioid genera Fuscopannaria, Pannaria and Parmeliella. Molecular inferences from 4 loci for the fungus and 1 locus for the photobiont and statistical analyses within a phylogenetic framework support the following: (a) several switches from pannarioid to collematoid thalli occured and are correlated with photobiont switches; the collematoid genus Kroswia is nested within the pannarioid genus Fuscopannaria and the collematoid genus Physma is sister to the pannarioid Parmeliella mariana group; (b) Nostoc associated with collematoid thalli in the Pannariaceae are related to that of the Collemataceae (which contains only collematoid thalli), and never associated with pannarioid thalli; Nostoc associated with pannarioid thalli also associate in other families with similar morphology; (c) ancestors of several lineages in the Pannariaceae developed tripartite thalli, bipartite thalli probably resulting from cephalodia emancipation from tripartite thalli which eventually evolved and diverged, as suggested by the same Nostoc present in the collematoid genus Physma and in the cephalodia of a closely related tripartite species; Photobiont switches and cephalodia emancipation followed by divergence are thus suspected to act as evolutionary drivers in the family Pannariaceae.
Collapse
Affiliation(s)
- Nicolas Magain
- Evolution and Conservation Biology Unit, University of Liège, Liège, Belgium
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology Unit, University of Liège, Liège, Belgium
| |
Collapse
|
33
|
Silva CSP, Genuário DB, Vaz MGMV, Fiore MF. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 2014; 37:100-12. [PMID: 24461713 DOI: 10.1016/j.syapm.2013.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/23/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches.
Collapse
Affiliation(s)
- Caroline Souza Pamplona Silva
- University of São Paulo, Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of Cyanobacteria, 13400-970 Piracicaba, São Paulo, Brazil
| | - Diego Bonaldo Genuário
- University of São Paulo, Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of Cyanobacteria, 13400-970 Piracicaba, São Paulo, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- University of São Paulo, Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of Cyanobacteria, 13400-970 Piracicaba, São Paulo, Brazil
| | - Marli Fátima Fiore
- University of São Paulo, Center for Nuclear Energy in Agriculture, Laboratory of Molecular Ecology of Cyanobacteria, 13400-970 Piracicaba, São Paulo, Brazil.
| |
Collapse
|
34
|
Genuário DB, Corrêa DM, Komárek J, Fiore MF. Characterization of freshwater benthic biofilm-forming Hydrocoryne (Cyanobacteria) isolates from Antarctica. JOURNAL OF PHYCOLOGY 2013; 49:1142-1153. [PMID: 27007634 DOI: 10.1111/jpy.12124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 08/27/2013] [Indexed: 06/05/2023]
Abstract
The aims of this work were to study cyanobacterial isolates resembling the genus Hydrocoryne using a combination of morphology and phylogeny of 16S rRNA and nifH sequences and to investigate genes involved in cyanotoxin and protease inhibitor production. Four new cyanobacterial strains, isolated from biofilm samples collected from King George Island, Antarctica, were studied. In terms of morphology, these new strains share traits similar to true Anabaena morphotypes (benthic ones), whereas phylogenetic analysis of their 16S rRNA gene sequences grouped them with the sequence of the type species Hydrocoryne spongiosa (H. Schwabe ex Bornet and Flahault 1886-1888), but not with sequences of the type species from the genus Anabaena. This cluster is the sister group of Anabaena morphotypes isolated only from the Gulf of Finland. In addition, this cluster is related to two other clusters formed by sequences of Anabaena isolated from different sites. Partial nifH genes were sequenced from two strains and the phylogenetic tree revealed that the Antarctic nifH sequences clustered with sequences from Anabaena. Furthermore, two strains were tested, using PCR with specific primers, for the presence of genes involved in cyanotoxins (microcystin and saxitoxin) and protease inhibitor (aeruginosin, and cyanopeptolin). Only cyanopeptolin was amplified using PCR. These four Hydrocoryne strains are the first to be isolated and sequenced from Antarctica, which improves our knowledge on this poorly defined cyanobacterial genus.
Collapse
Affiliation(s)
- Diego Bonaldo Genuário
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13400-970, Brazil
| | - Débora Machado Corrêa
- Botany Department, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Jiří Komárek
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, Třeboň, CZ-37982, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 35, České Budějovice, CZ-37005, Czech Republic
| | - Marli Fátima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13400-970, Brazil
| |
Collapse
|
35
|
Molecular identification and ultrastructural and phylogenetic studies of cyanobacteria from association with the white sea hydroid Dynamena pumila (L., 1758). BIOMED RESEARCH INTERNATIONAL 2013; 2013:760681. [PMID: 23762857 PMCID: PMC3674649 DOI: 10.1155/2013/760681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
Abstract
Three new cyanobacterial strains, that have been previously purified from the hydroid Dynamena pumila (L., 1758), isolated from the White Sea, were studied using scanning and transmission electron microscopy methods and were characterized by using almost complete sequence of the 16S rRNA gene, internal transcribed spacer 16S-23S rRNA, and part of the gene for 23S rRNA. The full nucleotide sequences of the rRNA gene clusters were deposited to GenBank (HM064496.1, GU265558.1, JQ259187.1). Comparison of rRNA gene cluster sequences of Synechococcus cyanobacterium 1Dp66E-1, Oscillatoriales cyanobacterium 2Dp86E, and Nostoc sp. 10Dp66E with all sequences present at the GenBank shows that these cyanobacterial strains do not have 100% identity with any organisms investigated previously. Furthermore, for the first time heterotrophic bacterium, associated with Nostoc sp. 10Dp66E, was identified as a member of the new phylum Gemmatimonadetes, genus of Gemmatimonas (GenBank accession number is JX437625.1). Phylogenetic analysis showed that cyanobacterium Synechococcus sp. 1Dp66E-1 forms the unique branch and belongs to a cluster of Synechococcus, including freshwater and sea strains. Oscillatoriales cyanobacterium 2Dp86E belongs to a cluster of Leptolyngbya strains. Isolate Nostoc sp. 10Dp66E forms unique branch and belongs to a cluster of the genus Nostoc, with the closest relative of Nostoc commune isolates.
Collapse
|
36
|
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. ANNALS OF BOTANY 2013; 111:743-67. [PMID: 23478942 PMCID: PMC3631332 DOI: 10.1093/aob/mct048] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. SCOPE Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. CONCLUSIONS Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.
Collapse
Affiliation(s)
- Carole Santi
- Université de Perpignan, Via Domitia, Avenue Paul Alduy, 66100 Perpignan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
37
|
|
38
|
Honegger R, Edwards D, Axe L. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. THE NEW PHYTOLOGIST 2013; 197:264-275. [PMID: 23110612 DOI: 10.1111/nph.12009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/20/2012] [Indexed: 05/12/2023]
Abstract
Lichenization is assumed to be a very ancient mode of fungal nutrition, but fossil records are rare. Here we describe two fragments of exceptionally preserved, probably charred, lichen thalli with internal stratification. Cyanolichenomycites devonicus has a cyanobacterial and Chlorolichenomycites salopensis a unicellular, presumably green algal photobiont. Fruiting bodies are missing. Cyanolichenomycites devonicus forms asexual spores in a pycnidium. All specimens were examined with scanning electron microscopy techniques. The fossils were extracted by maceration. Extant lichens and free-living cyanobacteria were either experimentally charcoalified for comparison or conventionally prepared. Based on their septate hyphal structure, both specimens are tentatively interpreted as representatives of the Pezizomycotina (Ascomycota). Their presence in 415 million yr (Myr) old rocks from the Welsh Borderland predates existing Late Cretaceous records of pycnidial conidiomata by some 325 Myr and Triassic records of lichens with broadly similar organization by some 195 Myr. These fossils represent the oldest known record of lichens with symbionts and anatomy as typically found in morphologically advanced taxa today. The latter does not apply to Winfrenatia reticulata, the enigmatic crustose lichen fossil from the Lower Devonian, nor to presumed lichen-like organisms such as the Cambrian Farghera robusta or to the Lower Devonian Spongiophyton minutissimum.
Collapse
Affiliation(s)
- Rosmarie Honegger
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Lindsey Axe
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| |
Collapse
|
39
|
Yamada S, Ohkubo S, Miyashita H, Setoguchi H. Genetic diversity of symbiotic cyanobacteria in Cycas revoluta (Cycadaceae). FEMS Microbiol Ecol 2012; 81:696-706. [PMID: 22537413 DOI: 10.1111/j.1574-6941.2012.01403.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 11/28/2022] Open
Abstract
The diversity of cyanobacterial species within the coralloid roots of an individual and populations of Cycas revoluta was investigated based on 16S rRNA gene sequences. Sixty-six coralloid roots were collected from nine natural populations of cycads on Kyushu and the Ryukyu Islands, covering the entire distribution range of the species. Approximately 400 bp of the 5'-end of 16S rRNA genes was amplified, and each was identified by denaturing gradient gel electrophoresis. Most coralloid roots harbored only one cyanobiont, Nostoc, whereas some contained two or three, representing cyanobiont diversity within a single coralloid root isolated from a natural habitat. Genotypes of Nostoc within a natural population were occasionally highly diverged and lacked DNA sequence similarity, implying genetic divergence of Nostoc. On the other hand, Nostoc genotypes showed no phylogeographic structure across the distribution range, while host cycads exhibited distinct north-south differentiation. Cycads may exist in symbiosis with either single or multiple Nostoc strains in natural soil habitats.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
40
|
Cuddy WS, Neilan BA, Gehringer MM. Comparative analysis of cyanobacteria in the rhizosphere and as endosymbionts of cycads in drought-affected soils. FEMS Microbiol Ecol 2012; 80:204-15. [PMID: 22224502 DOI: 10.1111/j.1574-6941.2011.01288.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 10/19/2011] [Accepted: 12/18/2011] [Indexed: 11/30/2022] Open
Abstract
Does the diversity of cyanobacteria in the cycad rhizosphere relate to the cyanobiont species found in the coralloid roots of these ancient plants? The aim of this study was to identify the diversity of soil cyanobacteria occurring in the immediate vicinity of 22 colonized coralloid roots belonging to members of the cycad genera: Macrozamia, Lepidozamia, Bowenia and Cycas. The majority of coralloid roots were sampled at depths > 10 cm below the soil surface. A total of 32 cyanobacterial isolates were cultured and their 16S rRNA gene partially sequenced. Phylogenetic analysis revealed nine operational taxonomic units of soil cyanobacteria comprising 30 Nostoc spp., a Tolypothrix sp. and a Leptolyngbya sp. Microscopy indicated that all isolates were unialgal and confirmed their genus identity. Rhizospheric diversity was compared to existing data on cyanobionts isolated at the same time from the cycad coralloid root. The same isolate was present in both the cycad coralloid root and rhizosphere at only six sites. Phylogenetic evidence indicates that most rhizosphere isolates were distinct from root cyanobionts. This weak relationship between the soil cyanobacteria and cycad cyanobionts might indicate that changes in the soil community composition are due to environmental factors.
Collapse
Affiliation(s)
- William S Cuddy
- School of Biotechnology and Biomolecular Sciences and the Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
41
|
Adams DG, Duggan PS. Signalling in Cyanobacteria–Plant Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Hrouzek P, Tomek P, Lukešová A, Urban J, Voloshko L, Pushparaj B, Ventura S, Lukavský J, Stys D, Kopecký J. Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: is their cytotoxicity environmentally dependent? ENVIRONMENTAL TOXICOLOGY 2011; 26:345-358. [PMID: 20082446 DOI: 10.1002/tox.20561] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 11/06/2009] [Accepted: 11/15/2009] [Indexed: 05/28/2023]
Abstract
Extensive selection of cyanobacterial strains (82 isolates) belonging to the genus Nostoc, isolated from different climatic regions and habitats, were screened for both their secondary metabolite content and their cytotoxic effects to mammalian cell lines. The overall occurrence of cytotoxicity was found to be 33%, which corresponds with previously published data. However, the frequency differs significantly among strains, which originate from different climatic regions and microsites (particular localities). A large fraction of intensely cytotoxic strains were found among symbiotic strains (60%) and temperate and continental climatic isolates (45%); compared with the less significant incidences in strains originating from cold regions (36%), deserts (14%), and tropical habitats (9%). The cytotoxic strains were not randomly distributed; microsites that clearly had a higher occurrence of cytotoxicity were observed. Apparently, certain natural conditions lead to the selection of cytotoxic strains, resulting in a high cytotoxicity occurrence, and vice versa. Moreover, in strains isolated from a particular microsite, the cytotoxic effects were caused by different compounds. This result supports our hypothesis for the environmental dependence of cytotoxicity. It also contradicts the hypothesis that clonality and lateral gene transfer could be the reason for this phenomenon. Enormous variability in the secondary metabolites was detected within the studied Nostoc extracts. According to their molecular masses, only 26% of these corresponded to any known structures; thus, pointing to the high potential for the use of many terrestrial cyanobacteria in both pharmacology and biotechnology.
Collapse
Affiliation(s)
- Pavel Hrouzek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický Mlýn, 379 81 Třeboň, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mateo P, Perona E, Berrendero E, Leganés F, Martín M, Golubić S. Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers. FEMS Microbiol Ecol 2011; 76:185-98. [PMID: 21223333 DOI: 10.1111/j.1574-6941.2010.01040.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The diversity within the genus Nostoc is still controversial and more studies are needed to clarify its heterogeneity. Macroscopic species have been extensively studied and discussed; however, the microscopic forms of the genus, especially those from running waters, are poorly known and likely represented by many more species than currently described. Nostoc isolates from biofilms of two Spanish calcareous rivers were characterized comparing the morphology and life cycle in two culture media with different levels of nutrients and also comparing the 16S rRNA gene sequences. The results showed that trichome shape and cellular dimensions varied considerably depending on the culture media used, whereas the characteristics expressed in the course of the life cycle remained stable for each strain independent of the culture conditions. Molecular phylogenetic analysis confirmed the distinction between the studied strains established on morphological grounds. A balanced approach to the evaluation of diversity of Nostoc in the service of autecological studies requires both genotypic information and the evaluation of stable traits. The results of this study show that 16S rRNA gene sequence similarity serves as an important criterion for characterizing Nostoc strains and is consistent with stable attributes, such as the life cycle.
Collapse
Affiliation(s)
- Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Oren A. Cyanobacterial systematics and nomenclature as featured in the International Bulletin of Bacteriological Nomenclature and Taxonomy / International Journal of Systematic Bacteriology / International Journal of Systematic and Evolutionary Microbiology. Int J Syst Evol Microbiol 2010; 61:10-15. [PMID: 21097637 DOI: 10.1099/ijs.0.018838-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surprisingly few papers on cyanobacteria have been published in the International Bulletin of Bacteriological Nomenclature and Taxonomy / International Journal of Systematic Bacteriology / International Journal of Systematic and Evolutionary Microbiology (IBBNT/IJSB/IJSEM) during its 60 years of existence. The first papers featuring the group appeared in volume 28 and, in the 32 years that have passed since, 42 articles on cyanobacteria have been published in the journal. Very few of these papers deal with the description of new taxa and this is understandable in view of the current difficulty in validly publishing new names of cyanobacteria under the rules of the International Code of Nomenclature of Prokaryotes (ICNP). Other papers discuss the problems of the nomenclature of the group under the International Code of Botanical Nomenclature (ICBN)/ICNP and the ICBN. The largest group of articles on cyanobacteria consists of papers on systematics, in which isolates are compared using different approaches, without any implications for the nomenclature of the group under either Code. The fact that on average these papers have been highly cited shows that IJSEM and its predecessors have been an excellent framework for publications on cyanobacteria and should remain so in the future.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
45
|
Gehringer MM, Pengelly JJL, Cuddy WS, Fieker C, Forster PI, Neilan BA. Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: Macrozamia (Zamiaceae). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:811-822. [PMID: 20459320 DOI: 10.1094/mpmi-23-6-0811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The nitrogen-fixing cyanobacterium Nostoc is a commonly occurring terrestrial and aquatic cyanobacterium often found in symbiosis with a wide range of plant, algal, and fungal species. We investigated the diversity of cyanobacterial species occurring within the coralloid roots of different Macrozamia cycad species at diverse locations throughout Australia. In all, 74 coralloid root samples were processed and 56 endosymbiotic cyanobacteria were cultured. DNA was isolated from unialgal cultures and a segment of the 16S rRNA gene was amplified and sequenced. Microscopic analysis was performed on representative isolates. Twenty-two cyanobacterial species were identified, comprising mostly Nostoc spp. and a Calothrix sp. No correlation was observed between a cycad species and its resident cyanobiont species. The predominant cyanobacterium isolated from 18 root samples occurred over a diverse range of environmental conditions and within 14 different Macrozamia spp. Phylogenetic analysis indicated that endosymbionts were not restricted to previously described terrestrial species. An isolate clustering with Nostoc PCC7120, an aquatic strain, was identified. This is the first comprehensive study to identify the endosymbionts within a cycad genus using samples obtained from their natural habitats. These results indicate that there is negligible host specialization of cyanobacterial endosymbionts within the cycad genus Macrozamia in the wild.
Collapse
Affiliation(s)
- Michelle M Gehringer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Genuário DB, Silva-Stenico ME, Welker M, Beraldo Moraes LA, Fiore MF. Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc. Toxicon 2010; 55:846-54. [DOI: 10.1016/j.toxicon.2009.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
47
|
Zheng W, Bergman B, Chen B, Zheng S, Xiang G, Rasmussen U. Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis. THE NEW PHYTOLOGIST 2009; 181:53-61. [PMID: 19076717 DOI: 10.1111/j.1469-8137.2008.02644.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The nitrogen-fixing symbiosis between cyanobacteria and the water fern Azolla microphylla is, in contrast to other cyanobacteria-plant symbioses, the only one of a perpetual nature. The cyanobacterium is vertically transmitted between the plant generations, via vegetative fragmentation of the host or sexually within megasporocarps. In the latter process, subsets of the cyanobacterial population living endophytically in the Azolla leaves function as inocula for the new plant generations. Using electron microscopy and immunogold-labeling, the fate of the cyanobacterium during colonization and development of the megasporocarp was revealed. On entering the indusium chamber of the megasporocarps as small-celled motile cyanobacterial filaments (hormogonia), these differentiated into large thick-walled akinetes (spores) in a synchronized manner. This process was accompanied by cytoplasmic reorganizations and the release of numerous membrane vesicles, most of which contained DNA, and the formation of a highly structured biofilm. Taken together the data revealed complex adaptations in the cyanobacterium during its transition between plant generations.
Collapse
Affiliation(s)
- Weiwen Zheng
- Key laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, China, 350002;Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China, 350003;Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
| | - Birgitta Bergman
- Key laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, China, 350002;Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China, 350003;Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bin Chen
- Key laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, China, 350002;Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China, 350003;Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
| | - Siping Zheng
- Key laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, China, 350002;Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China, 350003;Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
| | - Guan Xiang
- Key laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, China, 350002;Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China, 350003;Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ulla Rasmussen
- Key laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, China, 350002;Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China, 350003;Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|