1
|
Krawczyk A, Gosiewski T, Zapała B, Kowalska-Duplaga K, Salamon D. Alterations in intestinal Archaea composition in pediatric patients with Crohn's disease based on next-generation sequencing - a pilot study. Gut Microbes 2023; 15:2276806. [PMID: 37955638 PMCID: PMC10653639 DOI: 10.1080/19490976.2023.2276806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Intestinal dysbiosis can lead to the induction of systemic immune-mediated inflammatory diseases, such as Crohn's disease Although archaea are part of the commensal microbiota, they are still one of the least studied microorganisms. The aim of our study was the standardization of the optimal conditions and primers for sequencing of the gut archaeome using Next Generation Sequencing, and evaluation of the differences between the composition of archaea in patients and healthy volunteers, as well as analysis of the changes that occur in the archaeome of patients depending on disease activity. Newly diagnosed patients were characterized by similar archeal profiles at every taxonomic level as in healthy individuals (the dominance of Methanobacteria at the class level, and Methanobrevibacter at the genus level). In turn, in patients previously diagnosed with Crohn's disease (both in active and remission phase), an increased prevalence of Thermoplasmata, Thermoprotei, Halobacteria (at the class level), and Halococcus, Methanospaera or Picrophilus (at the genus level) were observed. Furthermore, we have found a significant correlation between the patient's parameters and the individual class or species of Archaea. Our study confirms changes in archaeal composition in pediatric patients with Crohn's disease, however, only in long-standing disease. At the beginning of the disease, the archeal profile is similar to that of healthy people. However, in the chronic form of the disease, significant differences in the composition of archaeome begin to appear. It seems that some archaea may be a good indicator of the chronicity and activity of Crohn's disease.
Collapse
Affiliation(s)
- A. Krawczyk
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - T. Gosiewski
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - B. Zapała
- Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Krakow, Poland
- Jagiellonian University Hospital in Krakow, Krakow, Poland
| | - K. Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition,Jagiellonian University Medical College, Krakow, Poland
| | - D. Salamon
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Hu Y, Ma X, Li XX, Tan S, Cheng M, Hou J, Cui HL. Natrinema caseinilyticum sp. nov., Natrinema gelatinilyticum sp. nov., Natrinema marinum sp. nov., Natrinema zhouii sp. nov., extremely halophilic archaea isolated from marine environments and a salt mine. Extremophiles 2023; 27:9. [PMID: 37000350 DOI: 10.1007/s00792-023-01294-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Four extremely halophilic archaeal strains (ZJ2T, BND6T, DT87T, and YPL30T) were isolated from marine environments and a salt mine in China. The 16S rRNA and rpoB' gene sequence similarities among strains ZJ2T, BND6T, DT87T, YPL30T and the current species of Natrinema were 93.2-99.3% and 89.2-95.8%, respectively. Both phylogenetic and phylogenomic analyses revealed that strains ZJ2T, BND6T, DT87T, and YPL30T cluster with the Natrinema members. The overall genome-related indexes (ANI, isDDH, and AAI) among these four strains and the current species of genus Natrinema were 70-88%, 22-43% and 75-89%, respectively, clearly below the threshold values for species boundary. Strains ZJ2T, BND6T, DT87T, and YPL30T could be distinguished from the related species according to differential phenotypic characteristics. The major polar lipids of the four strains were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), sulfated mannosyl glucosyl diether (S-DGD-1), and disulfated mannosyl glucosyl diether (S2-DGD). The phenotypic, chemotaxonomic, phylogenetic and phylogenomic features indicated that strains ZJ2T (= CGMCC 1.18786 T = JCM 34918 T), BND6T (= CGMCC 1.18777 T = JCM 34909 T), DT87T (= CGMCC 1.18921 T = JCM 35420 T), and YPL30T (= CGMCC 1.15337 T = JCM 31113 T) represent four novel species of the genus Natrinema, for which the names, Natrinema caseinilyticum sp. nov., Natrinema gelatinilyticum sp. nov., Natrinema marinum sp. nov., and Natrinema zhouii sp. nov., are proposed.
Collapse
Affiliation(s)
- Yao Hu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Xue Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Shun Tan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Mu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
3
|
Fontana A, Falasconi I, Bellassi P, Fanfoni E, Puglisi E, Morelli L. Comparative Genomics of Halobacterium salinarum Strains Isolated from Salted Foods Reveals Protechnological Genes for Food Applications. Microorganisms 2023; 11:microorganisms11030587. [PMID: 36985161 PMCID: PMC10058572 DOI: 10.3390/microorganisms11030587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Archaeal cell factories are becoming of great interest given their ability to produce a broad range of value-added compounds. Moreover, the Archaea domain often includes extremophilic microorganisms, facilitating their cultivation at the industrial level under nonsterile conditions. Halophilic archaea are studied for their ability to grow in environments with high NaCl concentrations. In this study, nine strains of Halobacterium salinarum were isolated from three different types of salted food, sausage casings, salted codfish, and bacon, and their genomes were sequenced along with the genome of the collection strain CECT 395. A comparative genomic analysis was performed on these newly sequenced genomes and the publicly available ones for a total of 19 H. salinarum strains. We elucidated the presence of unique gene clusters of the species in relation to the different ecological niches of isolation (salted foods, animal hides, and solar saltern sediments). Moreover, genome mining at the single-strain level highlighted the metabolic potential of H. salinarum UC4242, which revealed the presence of different protechnological genes (vitamins and myo-inositol biosynthetic pathways, aroma- and texture-related features, and antimicrobial compounds). Despite the presence of genes of potential concern (e.g., those involved in biogenic amine production), all the food isolates presented archaeocin-related genes (halocin-C8 and sactipeptides).
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Correspondence: (A.F.); (L.M.)
| | - Irene Falasconi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Paolo Bellassi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
- Correspondence: (A.F.); (L.M.)
| |
Collapse
|
4
|
Udomsil N, Pongjanla S, Rodtong S, Tanasupawat S, Yongsawatdigul J. Extremely halophilic strains of
Halobacterium salinarum
as a potential starter culture for fish sauce fermentation. J Food Sci 2022; 87:5375-5389. [DOI: 10.1111/1750-3841.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Natteewan Udomsil
- Food Technology Program School of Interdisciplinary Studies Mahidol University Kanchanaburi Campus Kanchanaburi Thailand
| | - Sirinya Pongjanla
- School of Food Technology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Sureelak Rodtong
- School of Preclinical Sciences, Institute of ScienceSuranaree University of Technology Nakhon RatchasimaThailand
- Microbial Cultures Research Center for Food and Bioplastics Production Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Somboon Tanasupawat
- Department of Microbiology, Faculty of Pharmaceutical Sciences Chulalongkorn University Bangkok Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
- Microbial Cultures Research Center for Food and Bioplastics Production Suranaree University of Technology Nakhon Ratchasima Thailand
| |
Collapse
|
5
|
Bao CX, Li SY, Xin YJ, Hou J, Cui HL. Natrinema halophilum sp. nov., Natrinema salinisoli sp. nov., Natrinema amylolyticum sp. nov. and Haloterrigena alkaliphila sp. nov., four extremely halophilic archaea isolated from salt mine, saline soil and salt lake. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005385] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four halophilic archaeal strains, YPL8T, SLN56T, LT61T and KZCA68T, were isolated from a salt mine, saline soil and a salt lake located in different regions of China. Sequence similarities of 16S rRNA and rpoB′ genes among strains YPL8T, SLN56T, LT61T and the current members of
Natrinema
were 94.1–98.2 % and 89.3–95.1 %, respectively, while these values among strain KZCA68T and the current members of
Haloterrigena
were 97.2–97.4 % and 91.7–91.9 %, respectively. The average nucleotide identity, in silico DNA–DNA hybridization and average amino acid identity values among these four strains and their closely related species were all lower than the threshold values for species boundary. All four strains were unable to hydrolyse casein, gelatin, or Tween 80. Strain YPL8T contained phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), sulfated mannosyl glucosyl diether (S-DGD-1), disulfated mannosyl glucosyl diether (S2-DGD) and sulfated mannosyl glucosyl diether-phosphatidic acid (S-DGD-PA). Strain SLN56T contained PA, PG, phosphatidylglycerol sulphate (PGS), PGP-Me, S-DGD-1, S2-DGD and S-DGD-PA. Strain LT61T contained PA, PG, PGS, PGP-Me, S-DGD-1 and S2-DGD. The phospholipids of strain KZCA68T were PA, PG and PGP-Me. These results showed that strains YPL8T (=CGMCC 1.13883T=JCM 31181T), SLN56T (=CGMCC 1.14945T=JCM 30832T) and LT61T (=CGMCC 1.14942T=JCM 30668T) represent novel species of the genus
Natrinema
, for which the names, Natrinema halophilum sp. nov., Natrinema salinisoli sp. nov. and Natrinema amylolyticum sp. nov. are proposed. Strain KZCA68T (=CGMCC 1.17211T=JCM 34158T) represents a novel species of
Haloterrigena
, for which the name Haloterrigena alkaliphila sp. nov. is proposed.
Collapse
Affiliation(s)
- Chen-Xi Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Si-Ya Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yu-Jie Xin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
6
|
de la Haba RR, Minegishi H, Kamekura M, Shimane Y, Ventosa A. Phylogenomics of Haloarchaea: The Controversy of the Genera Natrinema-Haloterrigena. Front Microbiol 2021; 12:740909. [PMID: 34690986 PMCID: PMC8530250 DOI: 10.3389/fmicb.2021.740909] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
The haloarchaeal genera Natrinema and Haloterrigena were described almost simultaneously by two different research groups and some strains studied separately were described as different species of these genera. Furthermore, the description of additional species were assigned to either Natrinema or Haloterrigena, mainly on the basis of the phylogenetic comparative analysis of single genes (16S rRNA gene and more recently rpoB’ gene), but these species were not adequately separated or assigned to the corresponding genus. Some studies suggested that the species of these two genera should be unified into a single genus, while other studies indicated that the genera should remain but some of the species should be reassigned. In this study, we have sequenced or collected the genomes of the type strains of species of Natrinema and Haloterrigena and we have carried out a comparative genomic analysis in order to clarify the controversy related to these two genera. The phylogenomic analysis based on the comparison of 525 translated single-copy orthologous genes and the Overall Genome Relatedness Indexes (i.e., AAI, POCP, ANI, and dDDH) clearly indicate that the species Haloterrigena hispanica, Haloterrigena limicola, Haloterrigena longa, Haloterrigena mahii, Haloterrigena saccharevitans, Haloterrigena thermotolerans, and Halopiger salifodinae should be transferred to the genus Natrinema, as Natrinema hispanicum, Natrinema limicola, Natrinema longum, Natrinema mahii, Natrinema saccharevitans, Natrinema thermotolerans, and Natrinema salifodinae, respectively. On the contrary, the species Haloterrigena turkmenica, Haloterrigena salifodinae, and Haloterrigena salina will remain as the only representative species of the genus Haloterrigena. Besides, the species Haloterrigena daqingensis should be reclassified as a member of the genus Natronorubrum, as Natronorubrum daqingense. At the species level, Haloterrigena jeotgali and Natrinema ejinorense should be considered as a later heterotypic synonyms of the species Haloterrigena (Natrinema) thermotolerans and Haloterrigena (Natrinema) longa, respectively. Synteny analysis and phenotypic features also supported those proposals.
Collapse
Affiliation(s)
- Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Hiroaki Minegishi
- Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University, Kawagoe, Japan
| | | | - Yasuhiro Shimane
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Coker OO, Wu WKK, Wong SH, Sung JJY, Yu J. Altered Gut Archaea Composition and Interaction With Bacteria Are Associated With Colorectal Cancer. Gastroenterology 2020; 159:1459-1470.e5. [PMID: 32569776 DOI: 10.1053/j.gastro.2020.06.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Changes in the intestinal microbiota have been associated with development and progression of colorectal cancer (CRC). Archaea are stable components of the microbiota, but little is known about their composition or contribution to colorectal carcinogenesis. We analyzed archaea in fecal microbiomes of 2 large cohorts of patients with CRC. METHODS We performed shotgun metagenomic analyses of fecal samples from 585 participants (184 patients with CRC, 197 patients with adenomas, and 204 healthy individuals) from discovery (165 individuals) and validation (420 individuals) cohorts. Assignment of taxonomies was performed by exact k-mer alignment against an integrated microbial reference genome database. RESULTS Principal component analysis of archaeomes showed distinct clusters in fecal samples from patients with CRC, patients with adenomas, and control individuals (P < .001), indicating an alteration in the composition of enteric archaea during tumorigenesis. Fecal samples from patients with CRC had significant enrichment of halophilic and depletion of methanogenic archaea. The halophilic Natrinema sp. J7-2 increased progressively in samples from control individuals, to patients with adenomas, to patients with CRC. Abundances of 9 archaea species that were enriched in fecal samples from patients with CRC distinguished them from control individuals with areas under the receiver operating characteristic curve of 0.82 in the discovery cohort and 0.83 in the validation cohort. An association between archaea and bacteria diversities was observed in fecal samples from control individuals but not from patients with CRC. Archaea that were enriched in fecal samples from patients with CRC had an extensive mutual association with bacteria that were enriched in the same samples and exclusivity with bacteria that were lost from these samples. CONCLUSIONS Archaeomes of fecal samples from patients with CRC are characterized by enrichment of halophiles and depletion of methanogens. Studies are needed to determine whether associations between specific archaea and bacteria species in samples from patients with CRC contribute to or are a response to colorectal tumorigenesis.
Collapse
Affiliation(s)
- Olabisi Oluwabukola Coker
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China SAR
| | - William Ka Kai Wu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China SAR; Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China SAR
| | - Sunny Hei Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China SAR
| | - Joseph J Y Sung
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China SAR
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China SAR.
| |
Collapse
|
8
|
Relative abundance of halophilic archaea and bacteria in diverse salt-fermented fish products. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ghanmi F, Carré-Mlouka A, Zarai Z, Mejdoub H, Peduzzi J, Maalej S, Rebuffat S. The extremely halophilic archaeon Halobacterium salinarum ETD5 from the solar saltern of Sfax (Tunisia) produces multiple halocins. Res Microbiol 2019; 171:80-90. [PMID: 31560985 DOI: 10.1016/j.resmic.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/09/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
The extremely halophilic archaeon Halobacterium salinarum strain ETD5 was previously isolated from the solar saltern of Sfax (Tunisia) and shown to encode and express halocin S8. The Hbt. salinarum ETD5 culture supernatant was shown here to exhibit high antimicrobial activity against several halophilic archaea and bacteria of different genera, showing a cross-domain inhibition. The antimicrobial activity was destroyed by proteases, thus pointing to halocins. A bioguided purification procedure was applied using two chromatography steps and antimicrobial assays directed against Halorubrum chaoviator ETR14. In-gel screening assay showed the presence of two antimicrobial bands of approximately 8 and 14 kDa, for which characterization was investigated by N-terminal sequencing and mass spectrometry. The full-length form of halocin S8 that contains 81 amino acids and differs from the 36 amino acid short-length halocin S8 previously described from an uncharacterized haloarchaeon S8a, was identified in the 8 kDa halocin band. A novel halocin that we termed halocin S14 was found in the 14 kDa band. It exhibits amino acid sequence identities with the N-terminally truncated region of the archaeal Mn-superoxide dismutase. These results show that Hbt. salinarum ETD5 produces multiple halocins, a feature that had not been described until now in the domain Archaea.
Collapse
Affiliation(s)
- Fadoua Ghanmi
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM) UMR 7245 CNRS-MNHN, Muséum national d'Histoire naturelle, Centre national de la Recherche scientifique (CNRS), CP 54, 57 rue Cuvier, 75005, Paris, France; Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, Faculty of Sciences, BP 1171, Tunisia.
| | - Alyssa Carré-Mlouka
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM) UMR 7245 CNRS-MNHN, Muséum national d'Histoire naturelle, Centre national de la Recherche scientifique (CNRS), CP 54, 57 rue Cuvier, 75005, Paris, France.
| | - Zied Zarai
- Laboratory of Plant Biotechnology, Sfax Faculty of Sciences, University of Sfax-Tunisia, Faculty of Sciences, BP 1171, Tunisia.
| | - Hafedh Mejdoub
- Laboratory of Plant Biotechnology, Sfax Faculty of Sciences, University of Sfax-Tunisia, Faculty of Sciences, BP 1171, Tunisia.
| | - Jean Peduzzi
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM) UMR 7245 CNRS-MNHN, Muséum national d'Histoire naturelle, Centre national de la Recherche scientifique (CNRS), CP 54, 57 rue Cuvier, 75005, Paris, France.
| | - Sami Maalej
- Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, Faculty of Sciences, BP 1171, Tunisia.
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM) UMR 7245 CNRS-MNHN, Muséum national d'Histoire naturelle, Centre national de la Recherche scientifique (CNRS), CP 54, 57 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
10
|
Novel haloarchaeon Natrinema thermophila having the highest growth temperature among haloarchaea with a large genome size. Sci Rep 2018; 8:7777. [PMID: 29773867 PMCID: PMC5958107 DOI: 10.1038/s41598-018-25887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Environmental temperature is one of the most important factors for the growth and survival of microorganisms. Here we describe a novel extremely halophilic archaeon (haloarchaea) designated as strain CBA1119T isolated from solar salt. Strain CBA1119T had the highest maximum and optimal growth temperatures (66 °C and 55 °C, respectively) and one of the largest genome sizes among haloarchaea (5.1 Mb). It also had the largest number of strain-specific pan-genome orthologous groups and unique pathways among members of the genus Natrinema in the class Halobacteria. A dendrogram based on the presence/absence of genes and a phylogenetic tree constructed based on OrthoANI values highlighted the particularities of strain CBA1119T as compared to other Natrinema species and other haloarchaea members. The large genome of strain CBA1119T may provide information on genes that confer tolerance to extreme environmental conditions, which may lead to the discovery of other thermophilic strains with potential applications in industrial biotechnology.
Collapse
|
11
|
Singh A, Singh AK. Haloarchaea: worth exploring for their biotechnological potential. Biotechnol Lett 2017; 39:1793-1800. [PMID: 28900776 DOI: 10.1007/s10529-017-2434-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Halophilic archaea are unique microorganisms adapted to survive under high salt conditions and biomolecules produced by them may possess unusual properties. Haloarchaeal metabolites are stable at high salt and temperature conditions that are useful for industrial applications. Proteins and enzymes of this group of archaea are functional under salt concentrations at which bacterial counterparts fail to be active. Such properties makes haloarchaeal enzymes suitable for salt-based applications and their use under dehydrating conditions. For example, bacteriorhodopsin or the purple membrane protein present in halophilic archaea has the most recognizable applications in photoelectric devices, artificial retinas, holograms etc. Haloarchaea are also useful for bioremediation of polluted hypersaline areas. Polyhydroxyalkanoates and exopolysccharides produced by these microorganisms are biodegradable and have the potential to replace commercial non-degradable plastics and polymers. Moreover, halophilic archaea have excellent potential to be used as drug delivery systems and for nanobiotechnology by virtue of their gas vesicles and S-layer glycoproteins. Despite of possible applications of halophilic archaea, laboratory-to-industrial transition of these potential candidates is yet to be established.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India.
| | - Anil K Singh
- Department of Biotechnology, Shree M & N. Virani Science College, Rajkot, 360005, Gujarat, India
| |
Collapse
|
12
|
Rasooli M, Naghoni A, Amoozegar MA, Mirfeizi L, Moshtaghi Nikou M, Shahzadeh Fazeli SA, Minegishi H, Ventosa A. Natrinema soli sp. nov., a novel halophilic archaeon isolated from a hypersaline wetland. Int J Syst Evol Microbiol 2017. [PMID: 28650314 DOI: 10.1099/ijsem.0.001909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extremely halophilic archaeon, designated strain 5-3T, was isolated from a soil sample of Meighan wetland in Iran. Strain 5-3T was strictly aerobic, catalase-positive and oxidase-negative. Cells were Gram-stain-negative, non-motile and ovoid. Colonies of strain 5-3T were cream-coloured. The isolate showed optimum growth at 4.0 M NaCl, 40 °C and pH 7.0. The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two unknown phospholipids and three glycolipids (including one that was chromatographically identical to S2-DGD). The major respiratory quinone was menaquinone MK-8. The G+C content of the genomic DNA was 61.5 mol%. The closest relative was Natrinema salaciae JCM 17869T with 97.3 % similarity in the orthologous 16S rRNA gene sequence. Analysis of 16S rRNA and rpoB' gene sequences indicated that strain 5-3T is a member of the genus Natrinema in the family Natrialbaceae and forms a distinct cluster. On the basis of phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, a novel species of the family Natrialbaceae, Natrinema soli sp. nov., is proposed. The type strain is 5-3T (=IBRC-M 11063T=LMG 29247T).
Collapse
Affiliation(s)
- Mehrnoosh Rasooli
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Ali Naghoni
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Leila Mirfeizi
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | | | - Seyed Abolhassan Shahzadeh Fazeli
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran.,Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Hiroaki Minegishi
- Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University, Kawagoe-shi, Saitama, Japan
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
13
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
14
|
Halocin C8: an antimicrobial peptide distributed among four halophilic archaeal genera: Natrinema, Haloterrigena, Haloferax, and Halobacterium. Extremophiles 2017; 21:623-638. [DOI: 10.1007/s00792-017-0931-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/24/2017] [Indexed: 11/26/2022]
|
15
|
Nkamga VD, Henrissat B, Drancourt M. Archaea: Essential inhabitants of the human digestive microbiota. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2016.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Cheng H, Huo YY, Hu J, Xu XW, Wu M. High quality draft genome sequence of an extremely halophilic archaeon Natrinema altunense strain AJ2 T. Stand Genomic Sci 2017; 12:25. [PMID: 28265340 PMCID: PMC5333441 DOI: 10.1186/s40793-017-0237-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
Natrinema altunense strain AJ2T, a halophilic archaeal strain, was isolated from a high-altitude (3884 m) salt lake in Xinjiang, China. This strain requires at least 1.7 M NaCl to grow and can grow anaerobically in the presence of nitrate. To understand the genetics underlying its extreme phenotype, we de novo assembled the entire genome sequence of AJ2T (=CGMCC 1.3731T=JCM 12890T). We assembled 3,774,135 bp of a total of 4.4 Mb genome in only 20 contigs and noted its high GC content (64.6%). Subsequently we predicted the gene content and generated genome annotation to identify the relationship between the epigenetic characteristics and genomic features. The genome sequence contains 52 tRNA genes, 3 rRNA genes and 4,462 protein-coding genes, 3792 assigned as functional or hypothetical proteins in nr database. This Whole Genome Shotgun project was deposited in DDBJ/EMBL/GenBank under the accession JNCS00000000. We performed a Bayesian (Maximum-Likelihood) phylogenetic analysis using 16S rRNA sequence and obtained its relationship to other strains in the Natrinema and Haloterrigena genera. We also confirmed the ANI value between every two species of Natrinema and Haloterrigena genera. In conclusion, our analysis furthered our understanding of the extreme-environment adapted strain AJ2T by characterizing its genome structure, gene content and phylogenetic placement. Our detailed case study will contribute to our overall understanding of why Natrinema strains can survive in such a high-altitude salt lake.
Collapse
Affiliation(s)
- Hong Cheng
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012 People’s Republic of China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Ying-Yi Huo
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012 People’s Republic of China
| | - Jing Hu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Xue-Wei Xu
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012 People’s Republic of China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
17
|
Chaikaew S, Powtongsook S, Boonpayung S, Benjakul S, Visessanguan W. Enhanced production of histamine dehydrogenase by Natrinema gari BCC 24369 in a non-sterile condition. J GEN APPL MICROBIOL 2016; 61:232-40. [PMID: 26782653 DOI: 10.2323/jgam.61.232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The production of histamine dehydrogenase (HADH) by Natrinema gari BCC 24369, a halophilic archeaon isolated from fish sauce, was optimized and scaled up under a non-sterile condition. Through statistical design by Plackett-Burman design (PBD), casamino acid, NaCl, MgSO4·7H2O and FeCl2·4H2O were identified as the significant medium compositions influencing HADH production. Central composite design (CCD) was employed to identify the optimal values of individual composition yielding the maximum HADH production. The analysis indicated that the optimal medium was composed of 15 g/l casamino acid, 75 g/l MgSO4·7H2O, 273 g/l NaCl, 2.5 mg/l FeCl2·4H2O, 10 g/l yeast extract, 5 g/l sodium glutamate and 5 g/l KCl. Based on the one-factor-at-a-time (OFAT) method, the optimum initial pH of the culture medium and the incubation temperature for HADH production were 7.5 and 37 °C, respectively. The production of HADH under optimal conditions was 2.2-fold higher than that under un-optimized conditions. Owing to the halophilic nature of Nnm. gari BCC 24369, a more economical and eco-friendlier HADH production was developed under a completely non-sterile condition. In a 16-l batch cultivation of Nnm. gari BCC 24369, HADH productivity under a non-sterile condition (858 ± 12 U/g cell biomass) was comparable to that under a sterile condition (878 ± 15 U/g cell biomass). These results demonstrate the feasibility and simplicity of HADH production using Nnm. gari BCC 24369 under a non-sterile condition without compromising enzyme yield and any changes in Km value.
Collapse
Affiliation(s)
- Siriporn Chaikaew
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University
| | | | | | | | | |
Collapse
|
18
|
Zhou D, Visessanguan W, Chaikaew S, Benjakul S, Oda K, Wlodawer A. Crystallization and preliminary crystallographic analysis of histamine dehydrogenase from Natrinema gari BCC 24369. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:942-5. [PMID: 25005094 DOI: 10.1107/s2053230x14011327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 05/16/2014] [Indexed: 11/11/2022]
Abstract
Histamine dehydrogenase (HADH) catalyzes the oxidative deamination of histamine, resulting in the production of imidazole acetaldehyde and an ammonium ion. The enzyme isolated from the newly identified halophilic archaeon Natrinema gari BCC 24369 is significantly different from the previously described protein from Nocardioides simplex. This newly identified HADH comprises three subunits with molecular weights of 49.0, 24.7 and 23.9 kDa, respectively, and is optimally active under high-salt conditions (3.5-5 M NaCl). As a step in the exploration of the unique properties of the protein, the HADH heterotrimer was purified and crystallized. Crystals were obtained using the sitting-drop vapor-diffusion method from a solution composed of 0.2 M calcium chloride dihydrate, 0.1 M HEPES pH 7.5, 28% PEG 400. Diffraction data were collected at -173°C to a resolution limit of 2.4 Å on the Southeast Regional Collaborative Access Team (SER-CAT) beamline 22-ID at the Advanced Photon Source, Argonne National Laboratory. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a=211.9, b=58.6, c=135.4 Å, β=103.0°. The estimated Matthews coefficient is 3.21 Å3 Da(-1), corresponding to 61.7% solvent content.
Collapse
Affiliation(s)
- Dongwen Zhou
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Siriporn Chaikaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kohei Oda
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
19
|
Chitin accelerates activation of a novel haloarchaeal serine protease that deproteinizes chitin-containing biomass. Appl Environ Microbiol 2014; 80:5698-708. [PMID: 25002433 DOI: 10.1128/aem.01196-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The haloarchaeon Natrinema sp. strain J7-2 has the ability to degrade chitin, and its genome harbors a chitin metabolism-related gene cluster that contains a halolysin gene, sptC. The sptC gene encodes a precursor composed of a signal peptide, an N-terminal propeptide consisting of a core domain (N*) and a linker peptide, a subtilisin-like catalytic domain, a polycystic kidney disease domain (PkdD), and a chitin-binding domain (ChBD). Here we report that the autocatalytic maturation of SptC is initiated by cis-processing of N* to yield an autoprocessed complex (N*-I(WT)), followed by trans-processing/degradation of the linker peptide, the ChBD, and N*. The resulting mature form (M(WT)) containing the catalytic domain and the PkdD showed optimum azocaseinolytic activity at 3 to 3.5 M NaCl, demonstrating salt-dependent stability. Deletion analysis revealed that the PkdD did not confer extra stability on the enzyme but did contribute to enzymatic activity. The ChBD exhibited salt-dependent chitin-binding capacity and mediated the binding of N*-I(WT) to chitin. ChBD-mediated chitin binding enhances SptC maturation by promoting activation of the autoprocessed complex. Our results also demonstrate that SptC is capable of removing proteins from shrimp shell powder (SSP) at high salt concentrations. Interestingly, N*-I(WT) released soluble peptides from SSP faster than did M(WT). Most likely, ChBD-mediated binding of the autoprocessed complex to chitin in SSP not only accelerates enzyme activation but also facilitates the deproteinization process by increasing the local protease concentration around the substrate. By virtue of these properties, SptC is highly attractive for use in preparation of chitin from chitin-containing biomass.
Collapse
|
20
|
Albuquerque L, Taborda M, La Cono V, Yakimov M, da Costa MS. Natrinema salaciae sp. nov., a halophilic archaeon isolated from the deep, hypersaline anoxic Lake Medee in the Eastern Mediterranean Sea. Syst Appl Microbiol 2012; 35:368-73. [DOI: 10.1016/j.syapm.2012.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
21
|
Feng J, Liu B, Zhang Z, Ren Y, Li Y, Gan F, Huang Y, Chen X, Shen P, Wang L, Tang B, Tang XF. The complete genome sequence of Natrinema sp. J7-2, a haloarchaeon capable of growth on synthetic media without amino acid supplements. PLoS One 2012; 7:e41621. [PMID: 22911826 PMCID: PMC3402447 DOI: 10.1371/journal.pone.0041621] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Natrinema sp. J7-2 is an extreme haloarchaeon capable of growing on synthetic media without amino acid supplements. Here we report the complete genome sequence of Natrinema sp. J7-2 which is composed of a 3,697,626-bp chromosome and a 95,989-bp plasmid pJ7-I. This is the first complete genome sequence of a member of the genus Natrinema. We demonstrate that Natrinema sp. J7-2 can use gluconate, glycerol, or acetate as the sole carbon source and that its genome encodes complete metabolic pathways for assimilating these substrates. The biosynthetic pathways for all 20 amino acids have been reconstructed, and we discuss a possible evolutionary relationship between the haloarchaeal arginine synthetic pathway and the bacterial lysine synthetic pathway. The genome harbors the genes for assimilation of ammonium and nitrite, but not nitrate, and has a denitrification pathway to reduce nitrite to N2O. Comparative genomic analysis suggests that most sequenced haloarchaea employ the TrkAH system, rather than the Kdp system, to actively uptake potassium. The genomic analysis also reveals that one of the three CRISPR loci in the Natrinema sp. J7-2 chromosome is located in an integrative genetic element and is probably propagated via horizontal gene transfer (HGT). Finally, our phylogenetic analysis of haloarchaeal genomes provides clues about evolutionary relationships of haloarchaea.
Collapse
Affiliation(s)
- Jie Feng
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Ziqian Zhang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yan Ren
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Yang Li
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fei Gan
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuping Huang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiangdong Chen
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ping Shen
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Bing Tang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
- * E-mail: (BT); (X-FT)
| | - Xiao-Feng Tang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
- * E-mail: (BT); (X-FT)
| |
Collapse
|
22
|
Cui HL, Yang X, Mou YZ. Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. Extremophiles 2011; 15:625-31. [PMID: 21901373 DOI: 10.1007/s00792-011-0393-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/22/2011] [Indexed: 11/29/2022]
Abstract
Halophilic archaeal strains R26(T) and R22 were isolated from the brown alga Laminaria produced at Dalian, Liaoning Province, China. Cells from the two strains were pleomorphic rods and Gram negative, and colonies were red pigmented. Strains R26(T) and R22 were able to grow at 20-50°C (optimum 37°C) in 1.4-5.1 M NaCl (optimum 3.1-4.3 M) at pH 5.5-9.5 (optimum pH 8.0-8.5) and neither strain required Mg(2+) for growth. Cells lyse in distilled water and the minimum NaCl concentration required to prevent cell lysis was 8% (w/v) for strain R26(T) and 12% (w/v) for strain R22. The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and minor phosphatidylglycerol sulfate; glycolipids were not detected. Phylogenetic analyses based on 16S rRNA genes and rpoB' genes revealed that strains R26(T) and R22 formed a distinct clade with the closest relative, Natronoarchaeum mannanilyticum. The DNA G+C content of strains R26(T) and R22 was 65.8 and 66.4 mol%, respectively. The DNA-DNA hybridization value between strains R26(T) and R22 was 89%. The phenotypic, chemotaxonomic and phylogenetic properties suggest that the strains R26(T) and R22 represent a novel species in a new genus within the family Halobacteriaceae, for which the name Salinarchaeum laminariae gen. nov., sp. nov. is proposed. The type strain is R26(T) (type strain R26(T) = CGMCC 1.10590(T) = JCM 17267(T), reference strain R22 = CGMCC 1.10589).
Collapse
Affiliation(s)
- Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Jingkou District, Zhenjiang, People's Republic of China.
| | | | | |
Collapse
|
23
|
Shimane Y, Hatada Y, Minegishi H, Mizuki T, Echigo A, Miyazaki M, Ohta Y, Usami R, Grant WD, Horikoshi K. Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 2010; 60:2529-2534. [DOI: 10.1099/ijs.0.016600-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain YSM-123T was isolated from commercial salt made from Japanese seawater in Niigata prefecture. Optimal NaCl and Mg2+ concentrations for growth were 4.0–4.5 M and 5 mM, respectively. The isolate was a mesophilic and slightly alkaliphilic haloarchaeon, whose optimal growth temperature and pH were 37 °C and pH 8.0–9.0. Phylogenetic analysis based on 16S rRNA gene sequence analysis suggested that strain YSM-123T is a member of the phylogenetic group defined by the family Halobacteriaceae, but there were low similarities to type strains of other genera of this family (≤90 %); for example, Halococcus (similarity <89 %), Halostagnicola (<89 %), Natronolimnobius (<89 %), Halobiforma (<90 %), Haloterrigena (<90 %), Halovivax (<90 %), Natrialba (<90 %), Natronobacterium (<90 %) and Natronococcus (<90 %). The G+C content of the DNA was 63 mol%. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, disulfated diglycosyl diether and an unknown glycolipid. On the basis of the data presented, we propose that strain YSM-123T should be placed in a new genus and species, Natronoarchaeum mannanilyticum gen. nov., sp. nov. The type strain of Natronoarchaeum mannanilyticum is strain YSM-123T (=JCM 16328T =CECT 7565T).
Collapse
Affiliation(s)
- Yasuhiro Shimane
- Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
- Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Yuji Hatada
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Hiroaki Minegishi
- Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
- Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
| | - Toru Mizuki
- Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
- Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
| | - Akinobu Echigo
- Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
- Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
| | - Masayuki Miyazaki
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Yukari Ohta
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Ron Usami
- Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
- Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
| | - William D. Grant
- Department of Infection, Immunity and Inflammation, University of Leicester, Room 144, Maurice Shock Medical Sciences Building, Leicester, UK
| | - Koki Horikoshi
- Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| |
Collapse
|
24
|
Wang S, Yang Q, Liu ZH, Sun L, Wei D, Zhang JZ, Song JZ, Yuan HF. Haloterrigena daqingensis sp. nov., an extremely haloalkaliphilic archaeon isolated from a saline–alkaline soil. Int J Syst Evol Microbiol 2010; 60:2267-2271. [DOI: 10.1099/ijs.0.013995-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A haloalkaliphilic archaeon, strain JX313T, was isolated from a saline–alkaline soil from Daqing, Heilongjiang Province, China. Its morphological, physiological and biochemical features and 16S rRNA gene sequence were determined. Colonies of the strain were orange–red and cells were non-motile cocci and Gram-stain-variable. The strain required at least 1.7 M NaCl for growth, with optimal growth occurring in 2.0–2.5 M NaCl. Growth was observed at 20–50 °C and pH 8.0–10.5, with optimal growth at 35 °C and pH 10.0. The G+C content of its genomic DNA was 59.3 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain JX313T is associated with the genera Haloterrigena and Natrinema and is most closely related to Haloterrigena salina XH-65T (96.2 % sequence similarity) and Haloterrigena hispanica FP1T (96.2 %). DNA–DNA hybridization experiments revealed that the relatedness of strain JX313T to type strains of related species of the genus Haloterrigena or Natrinema was less than 50 %. Furthermore, the cellular polar lipids of strain JX313T, identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and mannose-2,6-disulfate (1→2)-glucose glycerol diether (S2-DGD), were consistent with the polar lipid characteristics of the genus Haloterrigena. Therefore, phylogenetic analysis, phenotypic assessment and chemotaxonomic data showed that JX313T represents a novel species within the genus Haloterrigena, for which the name Haloterrigena daqingensis sp. nov. is proposed. The type strain is JX313T (=CGMCC 1.8909T =NBRC 105739T).
Collapse
Affiliation(s)
- Shuang Wang
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qian Yang
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Zhi-Hua Liu
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Lei Sun
- Soil Fertilizer and Environment Energy Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Dan Wei
- Soil Fertilizer and Environment Energy Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Jun-Zheng Zhang
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jin-Zhu Song
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Hai-Feng Yuan
- Nature and Ecology Institute, Heilongjiang Academy of Sciences, Harbin 150040, PR China
| |
Collapse
|
25
|
Oren A. Industrial and environmental applications of halophilic microorganisms. ENVIRONMENTAL TECHNOLOGY 2010; 31:825-834. [PMID: 20662374 DOI: 10.1080/09593330903370026] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In comparison with the thermophilic and the alkaliphilic extremophiles, halophilic microorganisms have as yet found relatively few biotechnological applications. Halophiles are involved in centuries-old processes such as the manufacturing of solar salt from seawater and the production of traditional fermented foods. Two biotechnological processes involving halophiles are highly successful: the production of beta-carotene by the green alga Dunaliella and the production of ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid), used as a stabilizer for enzymes and now also applied in cosmetic products, from moderately halophilic bacteria. The potential use of bacteriorhodopsin, the retinal protein proton pump of Halobacterium, in optoelectronic devices and photochemical processes is being explored, and may well lead to commercial applications in the near future. Demand for salt-tolerant enzymes in current manufacturing or related processes is limited. Other possible uses of halophilic microorganisms such as treatment of saline and hypersaline wastewaters, and the production of exopolysaccharides, poly-beta-hydroxyalkanoate bioplastics and biofuel are being investigated, but no large-scale applications have yet been reported.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
26
|
|
27
|
Namwong S, Tanasupawat S, Kudo T, Itoh T. Haloarcula salaria sp. nov. and Haloarcula tradensis sp. nov., isolated from salt in Thai fish sauce. Int J Syst Evol Microbiol 2010; 61:231-236. [PMID: 20207809 DOI: 10.1099/ijs.0.021790-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two red-pigmented, strictly aerobic, pleomorphic rod-shaped and extremely halophilic archaea, designated strains HST01-2R(T) and HST03(T), were isolated from salt in a fish sauce sample from Thailand. The novel strains grew optimally at 37 °C, pH 7.0, and in the presence of 20-25 % (w/v) NaCl. The DNA G+C contents of the isolates were 61.6-62.2 mol%. Phylogenetic analysis based on a comparison of 16S rRNA gene sequences revealed that strains HST01-2R(T) and HST03(T) were placed in the radiation of species of the genus Haloarcula. The chemotaxonomic properties of the two strains, i.e. the presence of MK-8 and MK-8(H(2)) as the major menaquinone components and C(20)C(20) derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a triglycosyl diether as major polar lipids, supported the assignment of the two strains to the genus Haloarcula. Nevertheless, several phenotypic features and the low DNA-DNA relatedness between the two strains and related species of the genus Haloarcula (13.4-46.9 %) enabled the strains to be distinguished from each other and from recognized species. Therefore, strains HST01-2R(T) and HST03(T) represent two novel species in the genus Haloarcula, for which the names Haloarcula salaria sp. nov. and Haloarcula tradensis sp. nov. are proposed, respectively. The type strains are HST01-2R(T) (=BCC 40029(T)=JCM 15759(T)=PCU 313(T)) and HST03(T) (=BCC 40030(T)=JCM 15760(T)=PCU 314(T)).
Collapse
Affiliation(s)
- Sirilak Namwong
- Department of Biotechnology, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
28
|
Tapingkae W, Tanasupawat S, Parkin KL, Benjakul S, Visessanguan W. Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Roh SW, Nam YD, Chang HW, Kim KH, Sung Y, Kim MS, Oh HM, Bae JW. Haloterrigena jeotgali sp. nov., an extremely halophilic archaeon from salt-fermented food. Int J Syst Evol Microbiol 2009; 59:2359-63. [DOI: 10.1099/ijs.0.008243-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|