1
|
Kim B, Yang AI, Joe HI, Kim KH, Choe H, Joe SH, Jun MO, Shin NR. Genomic attributes and characterization of novel exopolysaccharide-producing bacterium Halomonas piscis sp. nov. isolated from jeotgal. Front Microbiol 2023; 14:1303039. [PMID: 38156007 PMCID: PMC10752968 DOI: 10.3389/fmicb.2023.1303039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
Halophilic bacterial strains, designated SG2L-4T, SB1M4, and SB2L-5, were isolated from jeotgal, a traditional Korean fermented food. Cells are Gram-stain-negative, aerobic, non-motile, rod-shaped, catalase-positive, and oxidase-negative. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain SG2L-4T is closely related to Halomonas garicola KACC 18117T with a similarity of 96.2%. The complete genome sequence of strain SG2L-4T was 3,227,066 bp in size, with a genomic G + C content of 63.3 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain SG2L-4T and H. garicola KACC 18117T were 90.5 and 40.7%, respectively. The optimal growth conditions for strain SG2L-4T were temperatures between 30 and 37°C, a pH value of 7, and the presence of 10% (w/v) NaCl. The polar lipids identified included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid, an unknown glycolipid, and an unknown polar lipid. The major cellular fatty acids were C16:0, summed features 8 (C18:1ω6c and/or C18:1ω7c), C19:0 cyclo ω8c, and summed features 3 (C16:1ω6c and/or C16:1ω7c). The predominant respiratory quinone was ubiquinone with nine isoprene units (Q-9). Based on the phenotypic, genotypic, and chemotaxonomic results, strain SG2L-4T represents a novel species within the genus Halomonas, for which the name Halomonas piscis sp. nov. is proposed. The type strain is SG2L-4T (=KCTC 92842T = JCM 35929T). Functional annotation of the genome of strain SG2L-4T confirmed the presence of exopolysaccharide synthesis protein (ExoD) and capsular polysaccharide-related genes. Strain SG2L-4T also exhibited positive results in Molisch's test, indicating the presence of extracellular carbohydrates and exopolysaccharides (EPS) production. These findings provide valuable insights into the EPS-producing capabilities of H. piscis sp. nov. isolated from jeotgal, contributing to understanding its potential roles in food and biotechnological applications.
Collapse
Affiliation(s)
- Bora Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Ah-In Yang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-In Joe
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Hyun Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Hanna Choe
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Sung-Hong Joe
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Min Ok Jun
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Na-Ri Shin
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
2
|
Woods DF, Kozak IM, O'Gara F. Genome analysis and phenotypic characterization of Halomonas hibernica isolated from a traditional food process with novel quorum quenching and catalase activities. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36099016 DOI: 10.1099/mic.0.001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional food processes can utilize bacteria to promote positive organoleptic qualities and increase shelf life. Wiltshire curing has a vital bacterial component that has not been fully investigated from a microbial perspective. During the investigation of a Wiltshire brine, a culturable novel bacterium of the genus Halomonas was identified by 16S rRNA gene (MN822133) sequencing and analysis. The isolate was confirmed as representing a novel species (Halomonas hibernica B1.N12) using a housekeeping (HK) gene phylogenetic tree reconstruction with the selected genes 16S rRNA, 23S rRNA, atpA, gyrB, rpoD and secA. The genome of the new isolate was sequenced and annotated and comparative genome analysis was conducted. Functional analysis revealed that the isolate has a unique phenotypic signature including high salt tolerance, a wide temperature growth range and substrate metabolism. Phenotypic and biochemical profiling demonstrated that H. hibernica B1.N12 possesses strong catalase activity which is an important feature for an industrial food processing bacterium, as it can promote an increased product shelf life and improve organoleptic qualities. Moreover, H. hibernica exhibits biocontrol properties based on its quorum quenching capabilities. Our work on this novel isolate advances knowledge on potential mechanistic interplays operating in complex microbial communities that mediate traditional food processes.
Collapse
Affiliation(s)
- David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona M Kozak
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Kazemi E, Tarhriz V, Amoozegar MA, Hejazi MS. Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought. Int J Syst Evol Microbiol 2020; 71. [PMID: 33269997 DOI: 10.1099/ijsem.0.004578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, slightly halophilic bacterium, designated TBZ202T, was isolated from water of Urmia Lake, in the Azerbaijan region of north-west Iran. The strain was facultatively anaerobic, Gram-stain-negative, rod-shaped and motile. Colonies were creamy, circular, convex and shiny. It grew at NaCl concentrations of 0-12 % (w/v) (optimum 3-5 % w/v), at temperatures of 20-45 °C (optimum 30 °C) and at pH 5.0-10.0 (optimum pH 7.0). Based on the 16S rRNA gene sequence, strain TBZ202T belongs to the genus Halomonas in the Halomonadaceae and the most closely related species are Halomonas gudaonensis CGMCC 1.6133T (98.6 % similarity), Halomonas ventosae Al12T (96.8 %) and Halomonas rambilicola RS-16T (96.6%). The G+C content was 67.9 % and the digital DNA-DNA hybridization and average nucleotide identity values with H. gudaonensis were 35.8 and 83.8 %, respectively, indicating that the isolate differs from all species described. The major fatty acids were C18 : 1 ω7c, C16 : 0 and C16 : 1 ω7c. The only respiratory quinone detected was Q-9 and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid and three unknown phospholipids. On the basis of a polyphasic taxonomic analysis, the isolate is considered to represent a novel species of the genus Halomonas, for which the name Halomonas azerbaijanica sp. nov. is proposed. The type strain is TBZ202T (=KCTC 62817T=CECT 9693T).
Collapse
Affiliation(s)
- Elham Kazemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Navarro-Torre S, Carro L, Rodríguez-Llorente ID, Pajuelo E, Caviedes MÁ, Igual JM, Klenk HP, Montero-Calasanz MDC. Halomonas radicis sp. nov., isolated from Arthrocnemum macrostachyum growing in the Odiel marshes(Spain) and emended descriptions of Halomonas xinjiangensis and Halomonas zincidurans. Int J Syst Evol Microbiol 2020; 70:220-227. [DOI: 10.1099/ijsem.0.003742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - Lorena Carro
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - Miguel Ángel Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - José M. Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences (SNES), Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | |
Collapse
|
5
|
Jiang S, Ma C, Peng Q, Huo D, Li W, Zhang J. Microbial Profile and Genetic Polymorphism of Predominant Species in Some Traditional Fermented Seafoods of the Hainan Area in China. Front Microbiol 2019; 10:564. [PMID: 30984126 PMCID: PMC6448011 DOI: 10.3389/fmicb.2019.00564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Fermented fish, fermented shrimp and fermented crab are traditionally prepared seafoods that are commonly consumed in the Hainan area in China. We studied the microbial diversity and metabolic pathways in traditional fermented seafoods using high-throughput sequencing technology, and based on our previous research, we also compared the differences between fermented seafood and fermented vegetables. The alpha diversity of fermented seafood was higher than that of fermented vegetables and attained the highest level in fermented shrimp. The dominant genera in fermented seafood were different from those of fermented vegetables. Furthermore, we analyzed the 16S rDNA gene polymorphisms (SNPs) of the same dominant species (Lactobacillus plantarum and Lactobacillus fermentum) in two fermented environments, which showed that most of the mutations occurred in fermented vegetables and that fermenting environment might be the major factor for these mutations. This research provides us with new insights into beneficial microbial resources in regard to microbial diversity and genetic polymorphisms and lays a foundation for the subsequent development and utilization of beneficial microorganisms.
Collapse
Affiliation(s)
- Shuaiming Jiang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Chenchen Ma
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Qiannan Peng
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Dongxue Huo
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Wu Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Jiachao Zhang
- College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
6
|
Munson E, Carroll KC. An Update on the Novel Genera and Species and Revised Taxonomic Status of Bacterial Organisms Described in 2016 and 2017. J Clin Microbiol 2019; 57:e01181-18. [PMID: 30257907 PMCID: PMC6355528 DOI: 10.1128/jcm.01181-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recognition and acknowledgment of novel bacterial taxonomy and nomenclature revisions can impact clinical practice, disease epidemiology, and routine clinical microbiology laboratory operations. The Journal of Clinical Microbiology (JCM) herein presents its biannual report summarizing such changes published in the years 2016 and 2017, as published and added by the International Journal of Systematic and Evolutionary Microbiology Noteworthy discussion centers around descriptions of novel Corynebacteriaceae and an anaerobic mycolic acid-producing bacterium in the suborder Corynebacterineae; revisions within the Propionibacterium, Clostridium, Borrelia, and Enterobacter genera; and a major reorganization of the family Enterobacteriaceae. JCM intends to sustain this series of reports as advancements in molecular genetics, whole-genome sequencing, and studies of the human microbiome continue to produce novel taxa and clearer understandings of bacterial relatedness.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Xue M, Wen CQ, Liu L, Fang BZ, Salam N, Huang XM, Liu YF, Xiao M, Li WJ. Halomonas litopenaei sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from a shrimp hatchery. Int J Syst Evol Microbiol 2018; 68:3914-3921. [PMID: 30372409 DOI: 10.1099/ijsem.0.003090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain negative, moderately halophilic, exopolysaccharide-producing bacteria, designated strains SYSU ZJ2214T and SYSU XM8, were isolated from rearing water and larvae from shrimp hatcheries, respectively. Cells of the strains were aerobic, motile and short-rod-shaped. They grew at NaCl concentrations of 0.5-22 % (w/v), at 4-45 °C and at pH 6-9. Pairwise comparison of 16S rRNA gene sequences revealed that strains SYSU ZJ2214T and SYSU XM8 were most closely related to Halomonas denitrificans M29T (98.3 and 98.2 % similarity, respectively). Strains SYSU ZJ2214T and SYSU XM8 shared an average nucleotide identity of 99.9 % between them. The DNA G+C contents were calculated at 64.1 % for both strains from the draft genome information. The major cellular fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C12 : 0 3-OH, and the predominant respiratory quinone was ubiquinone Q-9. Their main polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, four unidentified phospholipids and three unidentified lipids. On the basis of phenotypic, genotypic and phylogenetic data, strains SYSU ZJ2214T and SYSU XM8 merit recognition as representatives of a novel species of the genus Halomonas, for which the name Halomonas litopenaei sp. nov. is proposed. The type strain is SYSU ZJ2214T (=NBRC 111829T=KCTC 42974T).
Collapse
Affiliation(s)
- Ming Xue
- 1Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China.,2State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Chong-Qing Wen
- 1Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China
| | - Lan Liu
- 2State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Bao-Zhu Fang
- 2State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Nimaichand Salam
- 2State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xue-Min Huang
- 1Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China
| | - Yang-Feng Liu
- 1Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, PR China
| | - Min Xiao
- 2State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- 3College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.,2State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| |
Collapse
|
8
|
Erdyneeva EB, Radnagurueva AA, Dunaevsky YE, Belkova NL, Namsaraev ZB, Lavrentieva EV. Aminopeptidase Activity of Haloalkalophilic Bacteria of the Genus Halomonas Isolated from the Soda-Saline Lakes in the Badain Jaran Desert. Microbiology (Reading) 2018; 87:538-548. [DOI: 10.1134/s0026261718040069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 07/26/2024] Open
|
9
|
Chen C, Anwar N, Wu C, Fu G, Wang R, Zhang C, Wu Y, Sun C, Wu M. Halomonas endophytica sp. nov., isolated from liquid in the stems of Populus euphratica. Int J Syst Evol Microbiol 2018; 68:1633-1638. [DOI: 10.1099/ijsem.0.002585] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Can Chen
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Nusratgul Anwar
- College of Life Sciences and Technology, Xinjiang University, Urumqi 830001, PR China
| | - Chen Wu
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310058, PR China
| | - Geyi Fu
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Ruijun Wang
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Choangya Zhang
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Yuehong Wu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Cong Sun
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Min Wu
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
| |
Collapse
|
10
|
Vahed SZ, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA, Jeon CO, Hejazi MS, Lee Y. Halomonas tabrizica sp. nov., a novel moderately halophilic bacterium isolated from Urmia Lake in Iran. Antonie van Leeuwenhoek 2018; 111:1139-1148. [DOI: 10.1007/s10482-018-1018-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/12/2018] [Indexed: 11/30/2022]
|