1
|
Jia W, Wang S, He X, Zhao X. Different factors drive the assembly of pine and Panax notoginseng-associated microbiomes in Panax notoginseng-pine agroforestry systems. Front Microbiol 2022; 13:1018989. [PMID: 36452920 PMCID: PMC9702986 DOI: 10.3389/fmicb.2022.1018989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 09/06/2024] Open
Abstract
Land-use conversion affects the composition and assembly of plant-associated microbiomes, which in turn affects plant growth, development, and ecosystem functioning. However, agroforestry systems, as sustainable land types, have received little attention regarding the dynamics of different plant-associated microbes. In this study, we used high-throughput sequencing technology to analyze the assembly mechanisms and the driving factors of pine- and Panax notoginseng (P.n.)-associated microbiomes during the conversion of different pine forests (Pinus kesiya var. langbianensis and Pinus armandii) into P.n.-pine agroforestry systems. The results showed that the conversion of pure pine forest into P.n.-pine agroforestry systems significantly altered the diversity of pine-associated fungi rather than the community structure, and the community structure of P.n.-associated fungi rather than the diversity. Additionally, plant-associated fungi were more responsive to land-use change than bacteria. Main effect analysis revealed that compartment rather than genotype was the driving factor of pine- and P.n.-associated microbiomes, but P.n. cultivation also significantly affected the assembly of pine-associated microbiomes. In addition, there was a transfer of P.n. endophytes to pine trees in agroforestry systems and the beneficial microbiomes (Massilia, Marmoricola, Herbaspirillum, etc.) were enlarged in pine roots. Therefore, the diversity of the assembly mechanisms of P.n.- and pine-associated microbiomes played an important role in the P.n.--pine agroforestry systems and were the basis for the sustainable development of the P.n.--pine agroforestry systems.
Collapse
Affiliation(s)
- Weijia Jia
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| | - Shu Wang
- Ministry of Education Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Xiahong He
- Ministry of Education Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Xiaoyan Zhao
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
2
|
Jiang Y, Li W, Fan D. Biotransformation of Ginsenoside Rb1 to Ginsenoside CK by Strain XD101: a Safe Bioconversion Strategy. Appl Biochem Biotechnol 2021; 193:2110-2127. [PMID: 33629278 DOI: 10.1007/s12010-021-03485-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Ginsenoside Rb1 is the main predominant component in Panax species. In this study, an eco-friendly and convenient preparation method for ginsenoside CK has been established, and five strains of β-glucosidase-producing microorganisms were screened out from the soil of a Panax notoginseng planting field using Esculin-R2A agar. Aspergillus niger XD101 showed that it has excellent biocatalytic activity for ginsenosides; one of the isolates can convert ginsenoside Rb1 to CK using extracellular enzyme from the mycelium. Mycelia of A. niger were cultivated in wheat bran media at 30 °C for 11 days. By the removal of mycelia from cultured broth, enzyme salt fractionation by ammonium sulfate (70%, v/v) precipitation, and dialysis, sequentially, crude enzyme preparations from fermentation liquid supernatant were obtained. The enzymatic transformed Rb1 as the following pathways: Rb1→Rd→F2→CK. The optimized reaction conditions are at reaction time of 72 h, in the range of pH 4-5, and temperature of 50-60 °C. Active minor ginsenosides can be obtained by a specific bioconversion via A. niger XD101 producing the ginsenoside-hydrolyzing β-glucosidase. In addition, the crude enzyme can be resulted in producing ginsenoside CK via conversion of ginsenoside Rb1 at high conversion yield (94.4%). FDA generally regarded, A.niger as safe microorganism. Therefore, these results indicate that A. niger XD10 may provide an alternative method to prepare ginsenoside CK without food safety issues in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yunyun Jiang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, China
| | - Weina Li
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
3
|
Lee SA, Le VV, Ko SR, Lee N, Oh HM, Ahn CY. Mucilaginibacter inviolabilis sp. nov., isolated from the phycosphere of Haematococcus lacustris NIES 144 culture. Int J Syst Evol Microbiol 2021; 71. [PMID: 33502297 DOI: 10.1099/ijsem.0.004668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterial strain, designated HC2T, was isolated from the phycosphere of Haematococcus lacustris NIES 144 culture. Strain HC2T was able to grow at pH 4.5-8.0, at 4-32 °C and in the presence of 0-2 % (w/v) NaCl. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain HC2T was affiliated to the genus Mucilaginibacter and shared the highest sequence similarity with Mucilaginibacter lappiensis ANJKI2T (98.20 %) and Mucilaginibacter sabulilitoris SMS-12T (98.06 %). Strain HC2T contained summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 0 as the major fatty acids (>10.0 %). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, two unidentified aminolipids and four unidentified lipids. The respiratory quinone was menaquinone 7 (MK-7). The genomic DNA G+C content was 42.0 %. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain HC2T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter inviolabilis sp. nov. is proposed. The type strain is HC2T (=KCTC 82084T=JCM 34116T).
Collapse
Affiliation(s)
- Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ve Van Le
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nakyeong Lee
- School of Chemical & Biomolecular Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hee-Mock Oh
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Zhou Z, Dong Y, Xia X, Wu S, Huang Y, Liao S, Wang G. Mucilaginibacter terrenus sp. nov., isolated from manganese mine soil. Int J Syst Evol Microbiol 2019; 69:3074-3079. [PMID: 31334699 DOI: 10.1099/ijsem.0.003592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain ZH6T is a Gram-stain-negative, rod-shaped, aerobic bacterium isolated from manganese mine soil. Strain ZH6T had highest 16S rRNA gene sequence similarities to Mucilaginibacter yixingensis YX-36T (96.9 %) and Mucilaginibacter psychrotolerans NH7-4T (96.8 %). The genome size of strain ZH6T was 4.61 Mb with a DNA G+C content of 44.0 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain ZH6T and M. yixingensis DSM 26809T were 70.6 and 19.2 %, respectively. Strain ZH6T had menaquinone-7 as a major quinone and main cellular fatty acids of iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The polar lipids of strain ZH6T were a phosphatidylethanolamine, an unidentified glycolipid, an unidentified phospholipid, three unidentified aminophospholipids and four unidentified lipids. Based on the phenotypic, chemotaxonomic and phylogenetic results, strain ZH6T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacterterrenus sp. nov., is proposed. The type strain is ZH6T (=CCTCC AB 2018373T=KCTC 72075T).
Collapse
Affiliation(s)
- Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yixuan Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yeting Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuijiao Liao
- State Key Laboratory of Agricultural Microbiology, College of Basic Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
5
|
Zhang Z, Sun F, Chen Y, Yao L, Chen Z, Tian W. Mucilaginibacter endophyticus sp. nov., an endophytic polysaccharide-producing bacterium isolated from a stem of Miscanthus sinensis. Antonie Van Leeuwenhoek 2019; 112:1087-1094. [PMID: 30707396 DOI: 10.1007/s10482-019-01242-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 11/29/2022]
Abstract
In this study, a Gram-negative, rod-shaped, endophytic bacterial strain (RS1T) capable of producing large amounts of exopolysaccharides was isolated from a stem of Miscanthus sinensis. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain RS1T is closely related to Mucilaginibacter kameinonensis NBRC 102645T (98.72%), followed by Mucilaginibacter gossypiicola Gh-48T (97.56%) and Mucilaginibacter oryzae DSM 19975T (97.36%). The DNA G + C content of strain RS1T was determined to be 42.80 mol%. ANIb and GGDC values from genomic comparison between the genomes of strain RS1T and the related reference species were less than 95% and 70%, respectively. The major cellular fatty acids (more than 10% of total fatty acids) were identified as iso-C15: 0, C16:0, iso-C17:0-3OH and summed feature 3 (C16: 1ω7c and/or iso-C15:02-OH). The only isoprenoid quinone detected was MK-7. Based on the physiological, genotypic and genomic characteristics, strain RS1T is concluded to represent a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter endophyticus sp. nov. is proposed (type strain RS1T = KCTC 62785T = GDMCC 1.1414T).
Collapse
Affiliation(s)
- Zhendong Zhang
- Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, 441053, People's Republic of China
| | - Feng Sun
- Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Yan Chen
- Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Lunguang Yao
- Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Zhaojin Chen
- Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, People's Republic of China.
| |
Collapse
|
6
|
Wei JC, Sun LN, Yuan ZX, Hou XT, Yang ED, Cao YY. Mucilaginibacter rubeus sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2017; 67:3099-3104. [DOI: 10.1099/ijsem.0.002101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jie-Chao Wei
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Le-Ni Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhuo-Xin Yuan
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Xue-Ting Hou
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - En-Dong Yang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Yuan-Yuan Cao
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
7
|
Mucilaginibacter craterilacus sp. nov., isolated from sediment soil of a crater lake. Int J Syst Evol Microbiol 2017; 67:2891-2896. [DOI: 10.1099/ijsem.0.002043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|