1
|
Zhu GX, Chen X, Wu YJ, Wang HL, Lu CM, Wang XM, Zhang Y, Liu ZC, He JB, Tang SK, Cao YR. Mycolicibacterium arseniciresistens sp. nov., isolated from lead-zinc mine tailing, and reclassification of two Mycobacterium species as Mycolicibacterium palauense comb. nov. and Mycolicibacterium grossiae comb. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38197783 DOI: 10.1099/ijsem.0.006221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
A Gram-positive, acid-fast, aerobic, rapidly growing and non-motile strain was isolated from lead-zinc mine tailing sampled in Lanping, Yunnan province, Southwest China. 16S rRNA gene sequence analysis showed that the most closely related species of strain KC 300T was Mycolicibacterium litorale CGMCC 4.5724T (98.47 %). Additionally, phylogenomic and specific conserved signature indel analysis revealed that strain KC 300T should be a member of genus Mycolicibacterium, and Mycobacterium palauense CECT 8779T and Mycobacterium grossiae DSM 104744T should also members of genus Mycolicibacterium. The genome size of strain KC 300T was 6.2 Mb with an in silico DNA G+C content of 69.2 mol%. Chemotaxonomic characteristics of strain KC 300T were also consistent with the genus Mycolicibacterium. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values, as well as phenotypic, physiological and biochemical characteristics, support that strain KC 300T represents a new species within the genus Mycolicibacterium, for which the name Mycolicibacterium arseniciresistens sp. nov. is proposed, with the type strain KC 300T (=CGMCC 1.19494T=JCM 35915T). In addition, we reclassified Mycobacterium palauense and Mycobacterium grossiae as Mycolicibacterium palauense comb. nov. and Mycolicibacterium grossiae comb. nov., respectively.
Collapse
Affiliation(s)
- Guo-Xing Zhu
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Xiu Chen
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Ya-Jie Wu
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Hai-Long Wang
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Chun-Mei Lu
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Xiao-Ming Wang
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Yue Zhang
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Zi-Chao Liu
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Jiang-Bo He
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| | - Shu-Kun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan, PR China
- Yunnan Key Laboratory of Fermented Vegetables, Honghe, Yunnan, PR China
| | - Yan-Ru Cao
- College of Agriculture and Life Sciences & School of Medicine, Kunming University, Kunming, Yunnan, PR China
| |
Collapse
|
2
|
Hamed KA, Tillotson G. A narrative review of nontuberculous mycobacterial pulmonary disease: microbiology, epidemiology, diagnosis, and management challenges. Expert Rev Respir Med 2023; 17:973-988. [PMID: 37962332 DOI: 10.1080/17476348.2023.2283135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) are a diverse group of mycobacterial species that are ubiquitous in the environment. They are opportunistic pathogens that can cause a range of diseases, especially in individuals with underlying structural lung disease or compromised immune systems. AREAS COVERED This paper provides an in-depth analysis of NTM infections, including microbiology, environmental sources and transmission pathways, risk factors for disease, epidemiology, clinical manifestations and diagnostic approaches, guideline-based treatment recommendations, drugs under development, and management challenges. EXPERT OPINION Future approaches to the management of NTM pulmonary disease will require therapies that are well tolerated, can be taken for a shorter time period and perhaps less frequently, have few drug-drug interactions, and are active against the various strains of pathogens. As the numbers of infections increase, such therapies will be welcomed by clinicians and patients.
Collapse
|
3
|
Sarhan MS, Wurst C, Tzankov A, Bircher AJ, Wittig H, Briellmann T, Augsburger M, Hotz G, Zink A, Maixner F. A nontuberculous mycobacterium could solve the mystery of the lady from the Franciscan church in Basel, Switzerland. BMC Biol 2023; 21:9. [PMID: 36747166 PMCID: PMC9903526 DOI: 10.1186/s12915-022-01509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In 1975, the mummified body of a female has been found in the Franciscan church in Basel, Switzerland. Molecular and genealogic analyses unveiled her identity as Anna Catharina Bischoff (ACB), a member of the upper class of post-reformed Basel, who died at the age of 68 years, in 1787. The reason behind her death is still a mystery, especially that toxicological analyses revealed high levels of mercury, a common treatment against infections at that time, in different body organs. The computed tomography (CT) and histological analysis showed bone lesions in the femurs, the rib cage, and the skull, which refers to a potential syphilis case. RESULTS Although we could not detect any molecular signs of the syphilis-causing pathogen Treponema pallidum subsp. pallidum, we realized high prevalence of a nontuberculous mycobacterium (NTM) species in brain tissue sample. The genome analysis of this NTM displayed richness of virulence genes and toxins, and similarity to other infectious NTM, known to infect immunocompromised patients. In addition, it displayed potential resistance to mercury compounds, which might indicate a selective advantage against the applied treatment. This suggests that ACB might have suffered from an atypical mycobacteriosis during her life, which could explain the mummy's bone lesion and high mercury concentrations. CONCLUSIONS The study of this mummy exemplifies the importance of employing differential diagnostic approaches in paleopathological analysis, by combining classical anthropological, radiological, histological, and toxicological observations with molecular analysis. It represents a proof-of-concept for the discovery of not-yet-described ancient pathogens in well-preserved specimens, using de novo metagenomic assembly.
Collapse
Affiliation(s)
- Mohamed S Sarhan
- Eurac Research - Institute for Mummy Studies, 39100, Bolzano, Italy.
| | - Christina Wurst
- Eurac Research - Institute for Mummy Studies, 39100, Bolzano, Italy
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Andreas J Bircher
- Department of Allergology, University Hospital Basel, 4031, Basel, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Holger Wittig
- Department of Biomedical Engineering, Institute of Forensic Medicine, University of Basel, 4056, Basel, Switzerland
| | - Thomas Briellmann
- Citizen Science Basel; formerly Institute of Forensic Medicine, Forensic Chemistry and Toxicology, University of Basel, 4056, Basel, Switzerland
| | - Marc Augsburger
- University Center of Legal Medicine, Lausanne, Geneva, Switzerland
| | - Gerhard Hotz
- Natural History Museum Basel, 4051, Basel, Switzerland
- Integrative Prehistory and Archaeological Science, University of Basel, 4056, Basel, Switzerland
| | - Albert Zink
- Eurac Research - Institute for Mummy Studies, 39100, Bolzano, Italy
| | - Frank Maixner
- Eurac Research - Institute for Mummy Studies, 39100, Bolzano, Italy.
| |
Collapse
|
4
|
Cheng Y, Lei W, Wang X, Tian Z, Liu H, Yang J, Lu S, Lai XH, Pu J, Huang Y, Zhang S, Yang C, Lian X, Bai Y, Wan K, Wang S, Xu J. Mycolicibacterium baixiangningiae sp. nov. and Mycolicibacterium mengxianglii sp. nov., two new rapidly growing mycobacterial species. Int J Syst Evol Microbiol 2021; 71. [PMID: 34878372 DOI: 10.1099/ijsem.0.005019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four bacterial strains (LJ126T/S18 and Z-34T/S20) recovered from faecal samples of Tibetan antelopes on the Qinghai-Tibet Plateau of China were analysed using a polyphasic approach. All four isolates were aerobic, short rod-shaped, non-motile, Gram-stain-positive, acid-fast and fast-growing. Phylogenetic analyses based upon 16S rRNA and whole-genome sequences showed that the two pair of strains formed two distinct branches within the evolutionary radiation of the genus Mycolicibacterium. Strains LJ126T/S18 and Z-34T/S20 were most closely related to Mycolicibacterium austroafricanum CCUG 37667T, Mycobacterium aurum NCTC 10437T, Mycobacterium pyrenivorans DSM 44605T, Mycobacterium monacense JCM 15658T, Mycolicibacterium sarraceniae JCM 30395T, Mycolicibacterium tokaiense JCM 6373T and Mycobacterium murale JCM 13392T, but readily distinguished from the known species by a combination of chemotaxonomic and phenotypic features and by low average nucleotide identity values (74.4-84.9 %). Consequently, the two strain pairs are considered to represent different novel species of Mycolicibacterium for which the names Mycolicibacterium baixiangningiae sp. nov. and Mycolicibacterium mengxianglii sp. nov. are proposed, with LJ126T (=CGMCC 1.1992T=KCTC 49535T) and Z-34T (=CGMCC 1.1993T=DSM 106172T) as the respective type strains.
Collapse
Affiliation(s)
- Yanpeng Cheng
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Wenjing Lei
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Zhi Tian
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Haican Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Sihui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Caixin Yang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xingxing Lian
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yibo Bai
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Kanglin Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Suping Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Xu
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, PR China
| |
Collapse
|
5
|
Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms 2020; 8:microorganisms8091380. [PMID: 32916931 PMCID: PMC7563442 DOI: 10.3390/microorganisms8091380] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored. This work hinges current understandings of NTM, approaching their biology and heterogeneity from several angles and reinforcing the complexity of these microorganisms often associated with a multiplicity of diseases, including pulmonary, soft-tissue, or milliary. In addition to emphasizing the cornerstones of knowledge involving these bacteria, we identify research gaps that need to be addressed, stressing out the need for decision-makers to recognize NTM infection as a public health issue that has to be tackled, especially when considering an increasingly susceptible elderly and immunocompromised population in developed countries, as well as in low- or middle-income countries, where NTM infections are still highly misdiagnosed and neglected.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-500-000 (ext. 22461)
| |
Collapse
|
6
|
Dahl JL, Gatlin III W, Tran PM, Sheik CS. Mycolicibacterium nivoides sp. nov isolated from a peat bog. Int J Syst Evol Microbiol 2019; 71:004438. [PMID: 33646934 PMCID: PMC8375421 DOI: 10.1099/ijsem.0.004438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/13/2020] [Indexed: 11/25/2022] Open
Abstract
A fast-growing, non-chromogenic, acid-fast-staining bacterium (DL90T) was isolated from a peat bog in northern Minnesota. On the basis of 16S rRNA gene sequence similarity (99.8 % identity with Mycolicibacterium septicum and 98 % with Mycolicibacterium peregrinum) and chemotaxonomic data (fatty acid content), strain DL90T represents a member of the genus Mycolicibacterium. Physiological tests (growth curves, biofilm formation, antibiotic sensitivity, colony morphologies and heat tolerance) and biochemical analysis (arylsulfatase activity and fatty acid profiles) distinguish DL90T from its closest relative M. septicum. Phylogenomic reconstruction of the 'Fortuitium-Vaccae' clade, digital DNA-DNA hybridization (DDH) values of 61 %, and average nucleotide identity (ANI) values of approximately 95 % indicate that DL90T is likely to be diverged from M. septicum. Thus, we propose that DL90T represents a novel species, given the name Mycolicibacterium nivoides with the type strain being isolate DL90T (=JCM 32796T=NCCB 100660T).
Collapse
Affiliation(s)
- John L. Dahl
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Wayne Gatlin III
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Phuong M. Tran
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Cody S. Sheik
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
7
|
Description of a novel species of fast growing mycobacterium: Mycobacterium kyogaense sp. nov., a scotochromogenic strain received as Mycobacterium vaccae. Int J Syst Evol Microbiol 2018; 68:3726-3734. [DOI: 10.1099/ijsem.0.003039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol 2018; 9:67. [PMID: 29497402 PMCID: PMC5819568 DOI: 10.3389/fmicb.2018.00067] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium, 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the "Tuberculosis-Simiae," "Terrae," "Triviale," "Fortuitum-Vaccae," and "Abscessus-Chelonae" clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the "Abscessus-Chelonae" clade forms the deepest branching lineage and does not form a monophyletic grouping with the "Fortuitum-Vaccae" clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies) provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species into the five described clades, we propose here division of the genus Mycobacterium into an emended genus Mycobacterium encompassing the "Tuberculosis-Simiae" clade, which includes all of the major human pathogens, and four novel genera viz. Mycolicibacterium gen. nov., Mycolicibacter gen. nov., Mycolicibacillus gen. nov. and Mycobacteroides gen. nov. corresponding to the "Fortuitum-Vaccae," "Terrae," "Triviale," and "Abscessus-Chelonae" clades, respectively. With the division of mycobacterial species into these five distinct groups, attention can now be focused on unique genetic and molecular characteristics that differentiate members of these groups.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, CA, Canada
| | | | | |
Collapse
|
9
|
Nouioui I, Carro L, Sangal V, Jando M, Igual JM, Goodfellow M, Klenk HP. Formal description of Mycobacterium neglectum sp. nov. and Mycobacterium palauense sp. nov., rapidly growing actinobacteria. Antonie van Leeuwenhoek 2018; 111:1209-1223. [PMID: 29404824 DOI: 10.1007/s10482-018-1029-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/25/2018] [Indexed: 02/05/2023]
Abstract
The taxonomic positions of two fast growing mycobacteria (CECT 8778T and CECT 8779T) were established using a polyphasic approach. The strains were shown to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Mycobacterium. Multi-locus sequence analyses (MLSA) show that strain CECT 8778T forms a well-supported clade together with the type strains of Mycobacterium aurum, Mycobacterium austroafricanum and Mycobacterium vanbaalenii while strain CECT 8779T presents as a distinct branch that is well separated from its near phylogenetic neighbours; it is also apparent from the MLSA genetic distances that these strains are most closely related to the type strains of Mycobacterium mageritense and M. vanbaalenii, respectively. Digital DNA:DNA hybridization and average nucleotide identity values between each of the strains and its close phylogenetic neighbour are below the 70 and 96% threshold values for definition of prokaryotic species; these results are underpinned by corresponding phenotypic data. Based upon the consensus of the phenotypic and phylogenetic analyses, it can be concluded that the two strains represent novel species within the genus Mycobacterium for which the following names are proposed: Mycobacterium neglectum sp. nov., with the type strain CECT 8778T (BN 3150T = DSM 44756T) and Mycobacterium palauense sp. nov., with the type strain CECT 8779T (= DSM 44914T).
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK.
| | - Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Marlen Jando
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Brunswick, Germany
| | - José Mariano Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
10
|
Practice Guidelines for Clinical Microbiology Laboratories: Mycobacteria. Clin Microbiol Rev 2018; 31:31/2/e00038-17. [PMID: 29386234 DOI: 10.1128/cmr.00038-17] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria are the causative organisms for diseases such as tuberculosis (TB), leprosy, Buruli ulcer, and pulmonary nontuberculous mycobacterial disease, to name the most important ones. In 2015, globally, almost 10 million people developed TB, and almost half a million patients suffered from its multidrug-resistant form. In 2016, a total of 9,287 new TB cases were reported in the United States. In 2015, there were 174,608 new case of leprosy worldwide. India, Brazil, and Indonesia reported the most leprosy cases. In 2015, the World Health Organization reported 2,037 new cases of Buruli ulcer, with most cases being reported in Africa. Pulmonary nontuberculous mycobacterial disease is an emerging public health challenge. The U.S. National Institutes of Health reported an increase from 20 to 47 cases/100,000 persons (or 8.2% per year) of pulmonary nontuberculous mycobacterial disease among adults aged 65 years or older throughout the United States, with 181,037 national annual cases estimated in 2014. This review describes contemporary methods for the laboratory diagnosis of mycobacterial diseases. Furthermore, the review considers the ever-changing health care delivery system and stresses the laboratory's need to adjust and embrace molecular technologies to provide shorter turnaround times and a higher quality of care for the patients who we serve.
Collapse
|
11
|
Nouioui I, Sangal V, Carro L, Teramoto K, Jando M, Montero-Calasanz MDC, Igual JM, Sutcliffe I, Goodfellow M, Klenk HP. Two novel species of rapidly growing mycobacteria: Mycobacterium lehmannii sp. nov. and Mycobacterium neumannii sp. nov. Int J Syst Evol Microbiol 2017; 67:4948-4955. [PMID: 29058645 DOI: 10.1099/ijsem.0.002350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two rapidly growing mycobacteria with identical 16S rRNA gene sequences were the subject of a polyphasic taxonomic study. The strains formed a well-supported subclade in the mycobacterial 16S rRNA gene tree and were most closely associated with the type strain of Mycobacterium novocastrense. Single and multilocus sequence analyses based on hsp65, rpoB and 16S rRNA gene sequences showed that strains SN 1900T and SN 1904T are phylogenetically distinct but share several chemotaxonomic and phenotypic features that are are consistent with their classification in the genus Mycobacterium. The two strains were distinguished by their different fatty acid and mycolic acid profiles, and by a combination of phenotypic features. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values for strains SN 1900T and SN 1904T were 61.0 % and 94.7 %, respectively; in turn, the corresponding dDDH and ANI values with M. novocastrense DSM 44203T were 41.4 % and 42.8 % and 89.3 % and 89.5 %, respectively. These results show that strains SN1900T and SN 1904T form new centres of taxonomic variation within the genus Mycobacterium. Consequently, strains SN 1900T (40T=CECT 8763T=DSM 43219T) and SN 1904T (2409T=CECT 8766T=DSM 43532T) are considered to represent novel species, for which the names Mycobacteriumlehmannii sp. nov. and Mycobacteriumneumannii sp. nov. are proposed. A strain designated as 'Mycobacteriumacapulsensis' was shown to be a bona fide member of the putative novel species, M. lehmannii.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Biology, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Lorena Carro
- School of Biology, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kanae Teramoto
- Advanced and Fundamental Technology Center, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Marlen Jando
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | | | - José Mariano Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Iain Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Michael Goodfellow
- School of Biology, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Hans-Peter Klenk
- School of Biology, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|