1
|
Sbissi I, Chouikhi F, Ghodhbane-Gtari F, Gtari M. Ecogenomic insights into the resilience of keystone Blastococcus Species in extreme environments: a comprehensive analysis. BMC Genomics 2025; 26:51. [PMID: 39833680 PMCID: PMC11748284 DOI: 10.1186/s12864-025-11228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The stone-dwelling genus Blastococcus plays a key role in ecosystems facing extreme conditions such as drought, salinity, alkalinity, and heavy metal contamination. Despite its ecological significance, little is known about the genomic factors underpinning its adaptability and resilience in such harsh environments. This study investigates the genomic basis of Blastococcus's adaptability within its specific microniches, offering insights into its potential for biotechnological applications. RESULTS Comprehensive pangenome analysis revealed that Blastococcus possesses a highly dynamic genetic composition, characterized by a small core genome and a large accessory genome, indicating significant genomic plasticity. Ecogenomic assessments highlighted the genus's capabilities in substrate degradation, nutrient transport, and stress tolerance, particularly on stone surfaces and archaeological sites. The strains also exhibited plant growth-promoting traits, enhanced heavy metal resistance, and the ability to degrade environmental pollutants, positioning Blastococcus as a candidate for sustainable agriculture and bioremediation. Interestingly, no correlation was found between the ecological or plant growth-promoting traits (PGPR) of the strains and their isolation source, suggesting that these traits are not linked to their specific environments. CONCLUSIONS This research highlights the ecological and biotechnological potential of Blastococcus species in ecosystem health, soil fertility improvement, and stress mitigation strategies. It calls for further studies on the adaptation mechanisms of the genus, emphasizing the need to validate these findings through wet lab experiments. This study enhances our understanding of microbial ecology in extreme environments and supports the use of Blastococcus in environmental management, particularly in soil remediation and sustainable agricultural practices.
Collapse
Affiliation(s)
- Imed Sbissi
- Institute of Arid Lands of Medenine, LR Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Microorganisms, University of Gabes, Gabes, Tunisia
| | - Farah Chouikhi
- Institute of Arid Lands of Medenine, LR Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Microorganisms, University of Gabes, Gabes, Tunisia
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia
- Higher Institute of Biotechnology in Sidi Thabet, La Manouba University, Ariana, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia.
| |
Collapse
|
2
|
Wang K, Liu Y, Cui X, Chen T, Liu G, Zhang W, Han Z, Zhang G. Blastococcus montanus sp. nov., a multi-stress-resistant and bacteriostatic-producing bacterium isolated from the Flaming Mountain, Xinjiang,China. Int J Syst Evol Microbiol 2024; 74. [PMID: 39570660 DOI: 10.1099/ijsem.0.006546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
A bacterial strain designated HT6-4T was isolated from soil samples collected from the Flaming Mountain, Xinjiang, PR China. The purpose of this study was to describe a novel species and its characteristics, through genome sequencing and analysis of the relationship between the members of the genus Blastococcus, and explore the antiradiation, antioxidation and antibacterial capabilities of strain HT6-4T. The polyphasic study confirmed the affiliation of strain HT6-4T with the genus Blastococcus. Strain HT6-4T was aerobic, Gram-stain-positive, non-budding, non-motile, catalase-positive and oxidase-negative. It grew at 10-37 °C, pH 5.0-8.0 and 0-4% (w/v) NaCl. Colonies were circular, smooth and bright orange in colour. In addition, strain HT6-4T was drought tolerant. The predominant menaquinone was MK-9, with MK-8 as the minor component. The polar lipids of strain HT6-4T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phospholipids, an unidentified aminolipid and two unidentified phospholipids. Whole-cell hydrolysates contain meso-diaminopimelic acid as the diagnostic diamino acid and ribose and galactose as diagnostic sugars. Its major fatty acids were iso-C16 : 0, C17 : 1 ω8c and C18 : 1 ω9c. The genome of strain HT6-4T was 4.30 Mb in the whole-genome shotgun project. The G+C content was 73.9 mol%. The phylogenetic analysis based on the 16S rRNA gene sequence showed that strain HT6-4T was closely related to Blastococcus jejuensis KST3-10T(97.9%), Blastococcus capsensis BMG 804T(97.8%), Blastococcus aggregatus DSM 4725T(97.5%), Blastococcus saxobsidens BC 444T(97.5%), Blastococcus xanthinilyticus BMG 862T(97.5%) and Blastococcus litoris GP-S2-8T(97.5%). The average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values among strain HT6-4T and B. jejuensis KST3-10T, B. capsensis BMG 804T, B. aggregatus DSM 4725T, B. saxobsidens BC 444T, B. xanthinilyticus BMG 862T and B. litoris GP-S2-8T were below the species delimitation thresholds. The genome of strain HT6-4T contained antiradiation genes, antioxidant genes and antibacterial genes. Based on its morphological, physiological and chemical taxonomic characteristics, strain HT6-4T (=KCTC 59234T =GDMCC 1.4386T) should be classified as a novel species of the genus Blastococcus with the proposed name Blastococcus montanus sp. nov.
Collapse
Affiliation(s)
- Kexin Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, PR China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, PR China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xiaowen Cui
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, PR China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, PR China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, PR China
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, PR China
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Zhiyong Han
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, PR China
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
3
|
Nouioui I, Boldt J, Zimmermann A, Makitrynskyy R, Pötter G, Jando M, Döppner M, Kirstein S, Neumann-Schaal M, Gomez-Escribano JP, Nübel U, Mast Y. Biotechnological and pharmaceutical potential of twenty-eight novel type strains of Actinomycetes from different environments worldwide. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100290. [PMID: 39497933 PMCID: PMC11533595 DOI: 10.1016/j.crmicr.2024.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Actinomycetes are a prolific source of bioactive natural compounds many of which are used as antibiotics or other drugs. In this study we investigated the genomic and biochemical diversity of 32 actinobacterial strains that had been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures decades ago. Genome-based phylogeny and in silico DNA-DNA hybridization supported the assignment of these strains to 26 novel species and two novel subspecies and a reclassification of a Streptomyces species. These results were consistent with the biochemical, enzymatic, and chemotaxonomic features of the strains. Most of the strains showed antimicrobial activities against a range of Gram-positive and Gram-negative bacteria, and against yeast. Genomic analysis revealed the presence of numerous unique biosynthetic gene clusters (BGCs) encoding for potential novel antibiotic and anti-cancer compounds. Strains DSM 41636T and DSM 61640T produced the antibiotic compounds A33853 and SF2768, respectively. Overall, this reflects the significant pharmaceutical and biotechnological potential of the proposed novel type strains and underlines the role of prokaryotic systematics for drug discovery. In order to compensate for the gender gap in naming prokaryotic species, we propose the eponyms for all newly described species to honour female scientists.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Judith Boldt
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Alina Zimmermann
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Roman Makitrynskyy
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Gabriele Pötter
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Marlen Jando
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meike Döppner
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Sarah Kirstein
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Juan Pablo Gomez-Escribano
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Ulrich Nübel
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Institut für Mikrobiologie, Rebenring 56, 38106 Braunschweig, Germany
| | - Yvonne Mast
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Institut für Mikrobiologie, Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Takabe YJ, Allen E, Allen L, McCarthy R, Varma A, Bace M, Sharma P, Porter C, Yan L, Wu R, Bouchard RJ, Yendamuri S. Rothia in Nonsmall Cell Lung Cancer is Associated With Worse Survival. J Surg Res 2024; 296:106-114. [PMID: 38271794 DOI: 10.1016/j.jss.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The microbiome is known to play a significant role in cancer biology; however, few studies have elucidated its relationship with Nonsmall Cell Lung Cancer (NSCLC) patient outcomes. We hypothesized that there are specific microorganisms that are closely related with NSCLC patient survival. METHODS Total of 647 NSCLC (Adenocarcinoma and Squamous Cell Carcinoma combined) patients in The Cancer Genome Atlas (TCGA) were analyzed using the R software. RESULTS A Volcano Plot was analyzed with the patients divided into Short and Long Survivors by overall survival of 0.9 years, and we found that a bacterium Rothia was significantly abundant in Short Survivors, and Blastococcus, Leptospira, and Haematobacter in Long Survivors, but presence of Rothia alone was associated with overall survival. The age, race, subtype, and sex were not significantly different by the presence of Rothia in NSCLC. Unexpectedly, Rothia-positive NSCLC was associated with less cell proliferation by gene set enrichment analysis, Mki67 expression, proliferation score, with less fraction altered and homologous recombination deficiency, and with high infiltration of stromal cells, indicating favorable oncological characteristics. Further, Rothia-positive tumors were associated with significantly higher infiltration of CD8 T cells, CD4 T cells, Monocytes, and NK cells, and high interferon-gamma response, T-cell receptor richness, cytolytic activity, indicating favorable tumor immune microenvironment. CONCLUSIONS NSCLC with Rothia was associated with worse survival but also with favorable oncological characteristics such as less cell proliferation and favorable tumor immune microenvironment. We cannot help but speculate that Rothia in NSCLC is associated with mortality unrelated to oncological characteristics.
Collapse
Affiliation(s)
- Yamato J Takabe
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Nichols High School, Buffalo, New York; Yale University, New Haven, Connecticut
| | | | | | | | | | | | | | | | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
5
|
Hezbri K, Kammoun I, Sbissi I, Klenk HP, Montero-Calasanz MDC, Ghodhbane-Gtari F, Gtari M. Blastococcus brunescens sp. nov., a member of the Geodermatophilaceae isolated from sandstone collected from the Sahara Desert in Tunisia. Int J Syst Evol Microbiol 2024; 74. [PMID: 38568050 DOI: 10.1099/ijsem.0.006317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The taxonomic position of strain BMG 8361T, isolated from sandstone collected in the Sahara Desert of Southern Tunisia, was refined through a polyphasic taxonomic investigation. Colonies of BMG 8361T were pale-orange coloured, irregular with a dry surface and produced a diffusible pink or brown pigment depending on media. The Gram-positive cells were catalase-positive and oxidase-negative. The strain exhibited growth at 10-40 °C and pH values ranging from 5.5 to 9.0, with optima at 28-35 °C and pH 6.5-8.0. Additionally, BMG 8361T demonstrated the ability to grow in the presence of up to 1 % NaCl (w/v) concentration. The peptidoglycan of the cell wall contained meso-diaminopimelic acid, glucose, galactose, xylose, ribose, and rhamnose. The predominant menaquinones consisted of MK-9(H4) and MK-9. The main polar lipids were phosphatidylcholine, phosphatidylinositol, glycophosphatidylinositol, diphosphatidylglycerol, phosphatidylethanolamine, and two unidentified lipids. Major cellular fatty acids were iso-C16 : 0, iso-C16 : 1 h, and C17 : 1 ω8c. Phylogenetic analyses based on both the 16S rRNA gene and whole-genome sequences assigned strain BMG 8361T within the genus Blastococcus. The highest pairwise sequence similarity observed in the 16S rRNA gene was 99.5 % with Blastococcus haudaquaticus AT 7-14T. However, when considering digital DNA-DNA hybridization and average nucleotide identity, the highest values, 48.4 and 86.58 %, respectively, were obtained with Blastococcus colisei BMG 822T. These values significantly undershoot the recommended thresholds for establishing new species, corroborating the robust support for the distinctive taxonomic status of strain BMG 8361T within the genus Blastococcus. In conjunction with the phenotyping results, this compelling evidence leads to the proposal of a novel species we named Blastococcus brunescens sp. nov. with BMG 8361T (=DSM 46845T=CECT 8880T) as the type strain.
Collapse
Affiliation(s)
- Karima Hezbri
- University of Carthage, National Institute of Applied Sciences and Technology, USCR Molecular Bacteriology and Genomics, Carthage, Tunisia
| | - Ikram Kammoun
- University of Carthage, National Institute of Applied Sciences and Technology, USCR Molecular Bacteriology and Genomics, Carthage, Tunisia
| | - Imed Sbissi
- Arid Regions Institute, LR Pastoral Ecology, Medenine, Tunisia
| | - Hans-Peter Klenk
- Newcastle University, School of Natural and Environmental Sciences, Newcastle upon Tyne, UK
| | | | - Faten Ghodhbane-Gtari
- University of Carthage, National Institute of Applied Sciences and Technology, USCR Molecular Bacteriology and Genomics, Carthage, Tunisia
- University of La Manouba, Higher Institute of Biotechnology of Sidi-Thabet, Manouba, Tunisia
| | - Maher Gtari
- University of Carthage, National Institute of Applied Sciences and Technology, USCR Molecular Bacteriology and Genomics, Carthage, Tunisia
| |
Collapse
|
6
|
Kammoun I, Hezbri K, Sbissi I, Del Carmen Montero-Calasanz M, Klenk HP, Gtari M, Ghodhbane-Gtari F. Blastococcus carthaginiensis sp. nov., isolated from a monument sampled in Carthage, Tunisia. Int J Syst Evol Microbiol 2023; 73. [PMID: 37994907 DOI: 10.1099/ijsem.0.006178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
A comprehensive polyphasic investigation was conducted to elucidate the taxonomic position of an actinobacterium, designated BMG 814T, which was isolated from the historic ruins of Carthage city in Tunisia. It grew as pink-orange pigmented colonies and displayed versatile growth capabilities, thriving within a temperature range of 20-40 °C, across a pH spectrum ranging from pH 5.5 to 10 and in the presence of up to 4 % NaCl. Chemotaxonomic investigations unveiled specific cell components, including diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, an unidentified aminoglycophospholipid, six unidentified aminolipids, two unidentified phospholipids and one unidentified lipid in its polar lipid profile. Furthermore, galactose, glucose and ribose were identified as the primary cell-wall sugars. Major menaquinones identified were MK-9(H4), MK-9(H2) and MK-9, while major fatty acids comprised iso-C15 : 0, iso-C16 : 0, C17 : 1 ω8c and C18 : 1 ω9c. Through phylogenetic analysis based on the 16S rRNA gene sequence, the strain was positioned within the genus Blastococcus, with Blastococcus capsiensis BMG 804T showing the closest relationship (99.1 %). In light of this, draft genomes for both strains, BMG 814T and BMG 804T, were sequenced in this study, and comparative analysis revealed that strain BMG 814T exhibited digital DNA-DNA hybridization and average nucleotide identity values below the recommended thresholds for demarcating new species with all available genomes of type strains of validly names species. Based on the polyphasic taxonomy assessment, strain BMG 814T (=DSM 46848T=CECT 8878T) was proposed as the type strain of a novel species named Blastococcus carthaginiensis sp. nov.
Collapse
Affiliation(s)
- Ikram Kammoun
- USCR Bactériologie Moléculaire Génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Carthage, Tunisia
| | - Karima Hezbri
- USCR Bactériologie Moléculaire Génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Carthage, Tunisia
| | - Imed Sbissi
- LR Écologie Pastorale, Institut des Régions Arides, Médenine, Tunisia
| | | | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Maher Gtari
- USCR Bactériologie Moléculaire Génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Carthage, Tunisia
| | - Faten Ghodhbane-Gtari
- USCR Bactériologie Moléculaire Génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Carthage, Tunisia
- Institut supérieur de Biotechnologie de Sidi Thabet, Université La Manouba, Manouba, Tunisia
| |
Collapse
|
7
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Corrigendum: Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2023; 13:1100319. [PMID: 36741890 PMCID: PMC9897311 DOI: 10.3389/fmicb.2022.1100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 01/22/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2022.975365.].
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,*Correspondence: Maria del Carmen Montero-Calasanz ✉
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
8
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2022; 13:975365. [PMID: 36439792 PMCID: PMC9686282 DOI: 10.3389/fmicb.2022.975365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of genomic information into microbial systematics along with physiological and chemotaxonomic parameters provides for a reliable classification of prokaryotes. In silico analysis of chemotaxonomic traits is now being introduced to replace characteristics traditionally determined in the laboratory with the dual goal of both increasing the speed of the description of taxa and the accuracy and consistency of taxonomic reports. Genomics has already successfully been applied in the taxonomic rearrangement of Geodermatophilaceae (Actinomycetota) but in the light of new genomic data the taxonomy of the family needs to be revisited. In conjunction with the taxonomic characterisation of four strains phylogenetically located within the family, we conducted a phylogenetic analysis of the whole proteomes of the sequenced type strains and established genotype-phenotype correlations for traits related to chemotaxonomy, cell morphology and metabolism. Results indicated that the four isolates under study represent four novel species within the genus Blastococcus. Additionally, the genera Blastococcus, Geodermatophilus and Modestobacter were shown to be paraphyletic. Consequently, the new genera Trujillonella, Pleomorpha and Goekera were proposed within the Geodermatophilaceae and Blastococcus endophyticus was reclassified as Trujillonella endophytica comb. nov., Geodermatophilus daqingensis as Pleomorpha daqingensis comb. nov. and Modestobacter deserti as Goekera deserti comb. nov. Accordingly, we also proposed emended descriptions of Blastococcus aggregatus, Blastococcus jejuensis, Blastococcus saxobsidens and Blastococcus xanthilyniticus. In silico chemotaxonomic results were overall consistent with wet-lab results. Even though in silico discriminatory levels varied depending on the respective chemotaxonomic trait, this approach is promising for effectively replacing and/or complementing chemotaxonomic analyses at taxonomic ranks above the species level. Finally, interesting but previously overlooked insights regarding morphology and ecology were revealed by the presence of a repertoire of genes related to flagellum synthesis, chemotaxis, spore production and pilus assembly in all representatives of the family. A rich carbon metabolism including four different CO2 fixation pathways and a battery of enzymes able to degrade complex carbohydrates were also identified in Blastococcus genomes.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
9
|
Exploration of bacterial diversity in leaves and rhizosphere soil of flood affected and unaffected apricot trees. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Louati M, Hezbri K, Montero-Calasanz MDC, Rohde M, Göker M, Ghodhbane-Gtari F, Klenk HP, Nouioui I, Gtari M. Blastococcus tunisiensis sp. nov., isolated from limestone collected in Tunisia. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new actinobacterium strain, designated BMG 823T, was isolated from a limestone sample collected in Tunisia. Its taxonomic position was scrutinized using a polyphasic approach. Colonies of strain BMG 823T were pink orange-coloured, regular and had a moist surface. Cells are Gram-stain-positive, catalase-negative and oxidase-negative. The strain grew at pH 5.5–9, 10–40 °C and in presence of up to 4 % NaCl (w/v). Chemotaxonomically, strain BMG 823T was characterized by cell-wall type III containing meso-diaminopimelic acid as diamino acid, glucose, ribose and rhamnose as whole-cell sugars, MK-9(H4) as predominant menaquinone, and phosphatidylcholine, diphosphadidylglycerol, phosphatidethanolamine, phosphatidylcholine, phosphatidylinositol, unidentified glycolipid, unidentified aminophospholipids and unidentified glycophospholipid as major polar lipids. The fatty acid profile consisted of iso-C16 : 0 and iso-C17 : 1
ω9. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain BMG 823T within the genus
Blastococcus
and separated it from all type strains of validly published species. Comparison of 16S rRNA gene sequence similarity, digital DNA–DNA hybridization and average nucleotide identity indicated that strain BMG 823T was most closely related to
Blastococcus litoris
DSM 106127T and
Blastococcus colisei
BMG 822T with pairwise values well below the species differentiation thresholds. The distinct phenotypic and genotypic features of strain BMG 823T (=DSM 46838T=CECT 8881T) within the genus
Blastococcus
warrant its recognition as the type strain for the new species for which we propose the name Blastococcus tunisiensis sp. nov.
Collapse
Affiliation(s)
- Moussa Louati
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, USCR Bactériologie Moléculaire & génomique, 1080 Tunis Cedex, Tunisia
| | - Karima Hezbri
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, USCR Bactériologie Moléculaire & génomique, 1080 Tunis Cedex, Tunisia
| | - Maria del Carmen Montero-Calasanz
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- IFAPA Las Torres- Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Cra. Sevilla-Cazalla, km 12.2., 41200, Alcalá del Río, Seville, Spain
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Faten Ghodhbane-Gtari
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, USCR Bactériologie Moléculaire & génomique, 1080 Tunis Cedex, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Imen Nouioui
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Maher Gtari
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, USCR Bactériologie Moléculaire & génomique, 1080 Tunis Cedex, Tunisia
| |
Collapse
|
11
|
Responses of Cyanobacterial Crusts and Microbial Communities to Extreme Environments of the Stratosphere. Microorganisms 2022; 10:microorganisms10061252. [PMID: 35744770 PMCID: PMC9230428 DOI: 10.3390/microorganisms10061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
How microbial communities respond to extreme conditions in the stratosphere remains unclear. To test this effect, cyanobacterial crusts collected from Tengger Desert were mounted to high balloons and briefly exposed (140 min) to high UV irradiation and low temperature in the stratosphere at an altitude of 32 km. Freezing and thawing treatments were simulated in the laboratory in terms of the temperature fluctuations during flight. Microbial community composition was characterized by sequencing at the level of DNA and RNA. After exposure to the stratosphere, the RNA relative abundances of Kallotenue and Longimicrobium increased by about 2-fold, while those of several dominant cyanobacteria genera changed slightly. The RNA relative abundances of various taxa declined after freezing, but increased after thawing, whereas cyanobacteria exhibited an opposite change trend. The DNA and RNA relative abundances of Nitrososphaeraceae were increased by 1.4~2.3-fold after exposure to the stratosphere or freezing. Exposure to stratospheric environmental conditions had little impact on the total antioxidant capacity, photosynthetic pigment content, and photosynthetic rate, but significantly increased the content of exopolysaccharides by 16%. The three treatments (stratospheric exposure, freezing, and thawing) increased significantly the activities of N-acetyl-β-D-glucosidase (26~30%) and β-glucosidase (14~126%). Our results indicated cyanobacterial crust communities can tolerate exposure to the stratosphere. In the defense process, extracellular organic carbon degradation and transformation play an important role. This study makes the first attempt to explore the response of microbial communities of cyanobacterial crusts to a Mars-like stratospheric extreme environment, which provides a new perspective for studying the space biology of earth communities.
Collapse
|
12
|
Nejidat A, Diaz-Reck D, Gelfand I, Zaady E. Persistence and spread of tetracycline resistance genes and microbial community variations in the soil of animal corrals in a semi-arid planted forest. FEMS Microbiol Ecol 2021; 97:6323997. [PMID: 34279614 DOI: 10.1093/femsec/fiab106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/15/2021] [Indexed: 11/14/2022] Open
Abstract
At the spring, goat and sheep herds are transferred to planted forests, in a semi-arid region in the northern Negev Desert, Israel, to reduce herbaceous biomass and, fire risk. The herds are held overnight in corrals for about 4 months, enriching the soil with organic matter and nitrogen. This research examined the effect of these enrichments on soil bacterial community structure (BCS) and the abundance of tetracycline resistance genes (TRGs) in active and abandoned corrals (1-10-years-old). Based on 16S rRNA gene sequences, the Proteobacteria and Actinobacteria phyla dominated the soil of all corrals. The Actinobacteria were less abundant in the active and 1-year-old corrals (23-26%) than in the other corrals and the control (33-38%). A principal component analysis showed that, the BCS in the active and the 1-year-old abandoned corrals was significantly different from that in the older corrals and the control. The Firmicutes phylum constituted 28% of the BCS in the active corrals, 12.5% in the 1-year-old corrals and 2% in the older corrals and the control. In contrast, the Acidobacteria phylum was hardly detected in the active and 1-year-old abandoned corrals and constituted 10% of the BCS in the older corrals. Genes conferring resistance to tetracycline were detected in high numbers. The tetG and tetW genes were detected in the active and abandoned corrals (1-10 years). The tetQ gene was detected only in the active and 1-year-old abandoned corrals. None of the genes were detected in the control soil. The three genes were detected outside an active corral, in the downstream section of an ephemeral tributary. The results prove that abandoned and unobserved periodic animal corrals are an environmental reservoir for TRGs.
Collapse
Affiliation(s)
- Ali Nejidat
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Damiana Diaz-Reck
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-G urion 84990, Israel
| | - Ilya Gelfand
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Eli Zaady
- Department of Natural Resources, Gilat Research Center, Agriculture Research Organization, Mobile, Post Negev 8531100, Israel
| |
Collapse
|
13
|
Draft Genome Sequences of Blastococcus sp. Clones TML/M2B and TML/C7B, with Different Motilities, Isolated in a Laboratory. Microbiol Resour Announc 2021; 10:10/12/e00121-21. [PMID: 33766900 PMCID: PMC7996459 DOI: 10.1128/mra.00121-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Two novel Blastococcus sp. clones, TML/M2B and TML/C7B, with 2 stable different growth phenotypes, were isolated from a laboratory tissue culture. The draft genome sequences generated through genomic sequencing of clones TML/M2B and TML/C7B contain 4 and 2 contigs, respectively. The respective genome sizes are 4.10 Mb and 4.11 Mb, with GC contents of 74.17% and 74.14%. Two novel Blastococcus sp. clones, TML/M2B and TML/C7B, with 2 different stable growth phenotypes, were isolated from a laboratory tissue culture. The draft genome sequences generated through genomic sequencing of clones TML/M2B and TML/C7B contain 4 and 2 contigs, respectively. The respective genome sizes are 4.10 Mb and 4.11 Mb, with G+C contents of 74.17% and 74.14%, respectively.
Collapse
|
14
|
Tarlachkov SV, Shevchuk TV, Montero-Calasanz MDC, Starodumova IP. Diversity of rhodopsins in cultivated bacteria of the family Geodermatophilaceae associated with non-aquatic environments. Bioinformatics 2020; 36:1668-1672. [PMID: 31711117 DOI: 10.1093/bioinformatics/btz840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION A small amount of research is focused on investigation of rhodopsins in cultivated bacteria isolated from non-aquatic environments. Furthermore, the abundance of these proteins in strains from hot and arid habitats was not reported previously. Since there is an insignificant amount of such isolates, the enigmatic role of the rhodopsins in dry ecological niches is still poorly understood. The members of the family Geodermatophilaceae could be used as interesting objects to search for new rhodopsin genes that will provide novel insights into versatility and importance of these proteins in non-aquatic conditions. RESULTS This is the first report of the abundance of different rhodopsins in cultivated bacteria isolated from hot and arid ecological niches. A total of 31 rhodopsin genes were identified in 51 analyzed genomes of strains belonging to the family Geodermatophilaceae. Overall, 88% of the strains harbouring rhodopsins are isolated from non-aquatic environments. It was found that 82% of strains belonging to the genus Geodermatophilus have at least one gene as compared to 38% of strains of other genera which contain rhodopsins. Analysis of key amino acids revealed two types of the studied proteins: DTE type (putative proton pump) and NDQ type (putative sodium pump). Proton pumps were divided into two subtypes (DTEW and DTEF) according to phylogenetic analysis and the presence of highly conserved tryptophan or phenylalanine at position 182. Among all studied rhodopsins DTEF subtype is the most unique one, identified only in this family. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sergey V Tarlachkov
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research.,Department of Plant Molecular Biology and Biotechnology, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Taras V Shevchuk
- Department of Plant Molecular Biology and Biotechnology, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria Del Carmen Montero-Calasanz
- Plant and Microbial Biology Research Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Irina P Starodumova
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research
| |
Collapse
|
15
|
Montero-Calasanz MDC, Yaramis A, Nouioui I, Igual JM, Spröer C, Castro JF, Schumann P, Klenk HP, Urzì C. Modestobacter italicus sp. nov., isolated from Carrara marble quarry and emended descriptions of the genus Modestobacter and the species Modestobacter marinus, Modestobacter multiseptatus, Modestobacter roseus and Modestobacter versicolor. Int J Syst Evol Microbiol 2019; 69:1537-1545. [DOI: 10.1099/ijsem.0.003282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Adnan Yaramis
- 1School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Imen Nouioui
- 1School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - José Mariano Igual
- 2Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Cathrin Spröer
- 3Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jean Franco Castro
- 4Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago, Chile
| | - Peter Schumann
- 3Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- 1School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Clara Urzì
- 5Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
16
|
Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, Bieda J, Maymon E, Pacora P, Fettweis JM, Buck GA, Jefferson KK, Strauss JF, Erez O, Hassan SS. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am J Obstet Gynecol 2019; 220:267.e1-267.e39. [PMID: 30832984 PMCID: PMC6733039 DOI: 10.1016/j.ajog.2018.10.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The human placenta has been traditionally viewed as sterile, and microbial invasion of this organ has been associated with adverse pregnancy outcomes. Yet, recent studies that utilized sequencing techniques reported that the human placenta at term contains a unique microbiota. These conclusions are largely based on the results derived from the sequencing of placental samples. However, such an approach carries the risk of capturing background-contaminating DNA (from DNA extraction kits, polymerase chain reaction reagents, and laboratory environments) when low microbial biomass samples are studied. OBJECTIVE To determine whether the human placenta delivered at term in patients without labor who undergo cesarean delivery harbors a resident microbiota ("the assemblage of microorganisms present in a defined niche or environment"). STUDY DESIGN This cross-sectional study included placentas from 29 women who had a cesarean delivery without labor at term. The study also included technical controls to account for potential background-contaminating DNA, inclusive in DNA extraction kits, polymerase chain reaction reagents, and laboratory environments. Bacterial profiles of placental tissues and background technical controls were characterized and compared with the use of bacterial culture, quantitative real-time polymerase chain reaction, 16S ribosomal RNA gene sequencing, and metagenomic surveys. RESULTS (1) Twenty-eight of 29 placental tissues had a negative culture for microorganisms. The microorganisms retrieved by culture from the remaining sample were likely contaminants because corresponding 16S ribosomal RNA genes were not detected in the same sample. (2) Quantitative real-time polymerase chain reaction did not indicate greater abundances of bacterial 16S ribosomal RNA genes in placental tissues than in technical controls. Therefore, there was no evidence of the presence of microorganisms above background contamination from reagents in the placentas. (3) 16S ribosomal RNA gene sequencing did not reveal consistent differences in the composition or structure of bacterial profiles between placental samples and background technical controls. (4) Most of the bacterial sequences obtained from metagenomic surveys of placental tissues were from cyanobacteria, aquatic bacteria, or plant pathogens, which are microbes unlikely to populate the human placenta. Coprobacillus, which constituted 30.5% of the bacterial sequences obtained through metagenomic sequencing of placental samples, was not identified in any of the 16S ribosomal RNA gene surveys of these samples. These observations cast doubt as to whether this organism is really present in the placenta of patients at term not in labor. CONCLUSION With the use of multiple modes of microbiologic inquiry, a resident microbiota could not be identified in human placentas delivered at term from women without labor. A consistently significant difference in the abundance and/or presence of a microbiota between placental tissue and background technical controls could not be found. All cultures of placental tissue, except 1, did not yield bacteria. Incorporating technical controls for potential sources of background-contaminating DNA for studies of low microbial biomass samples, such as the placenta, is necessary to derive reliable conclusions.
Collapse
Affiliation(s)
- Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI.
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI
| | - Jonathan M Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Ali Alhousseini
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Janine Bieda
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Eli Maymon
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Percy Pacora
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Jennifer M Fettweis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA; Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA; Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA
| | - Kimberly K Jefferson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Maternity Department "D" and Obstetrical Day Care Center, Division of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Sonia S Hassan
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| |
Collapse
|
17
|
Yang ZW, Asem MD, Li X, Li LY, Salam N, Alkhalifah DHM, Hozzein WN, Nie GX, Li WJ. Blastococcus deserti sp. nov., isolated from a desert sample. Arch Microbiol 2018; 201:193-198. [PMID: 30523376 DOI: 10.1007/s00203-018-1604-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/22/2018] [Accepted: 11/29/2018] [Indexed: 11/29/2022]
Abstract
A Gram-positive and aerobic actinobacterium, strain SYSU D8006T, was isolated from a desert sand sample collected from Gurbantunggut desert, China. Phenotypically, the strain was found to grow at 14-50 °C, pH 6.0-9.0 and in the presence of up to 4% (w/v) NaCl. The chemotaxonomic features of strain SYSU D8006T included menaquinone MK-9(H4) as the respiratory quinone, diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside as known polar lipids, iso-C15:0, iso-C16:0, C17:1ω8c and C18:1ω9c as the predominant fatty acids, and arabinose, galactose and glucose as the whole cell sugars. Strain SYSU D8006T shared the highest 16S rRNA gene sequence identity with Blastococcus jejuensis DSM 19597T (98.2%). Based on the analyses of the phenotypic, genotypic and phylogenetic characteristics, strain SYSU D8006T is characterized to represent a novel species of the genus Blastococcus, for which the name Blastococcus deserti sp. nov. is proposed. The type strain is SYSU D8006T (= CGMCC 1.15935T = KCTC 49026T = CPCC 204618T).
Collapse
Affiliation(s)
- Zi-Wen Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Mipeshwaree Devi Asem
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xin Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lan-Yu Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Dalal Hussien M Alkhalifah
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11564, Kingdom of Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
18
|
Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ. Blastococcus litoris sp. nov., isolated from sea-tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:3435-3440. [PMID: 30215596 DOI: 10.1099/ijsem.0.003004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-strain-positive, non-spore-forming bacterial strain, designated GP-S2-8T, was isolated from a sea-tidal flat sediment sample from Gopado, Republic of Korea. Cells were aerobic, catalase-negative, oxidase-positive, non-motile and cocci, occurring singly, in pairs or in tetrads, and often tending to form aggregates. The strain grew at 4-45 °C (optimum, 28-37 °C), at pH 4.0-11.0 (pH 7.0-9.0) and in the presence of 0-11 % (w/v) NaCl (0-3 %). Phylogenetic analyses based on 16S rRNA gene sequences represented that the isolate belongs to the genus Blastococcus. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. Whole-cell sugar analysis of strain GP-S2-8T revealed rhamnose, glucose and mannose as characteristic sugars. The predominant respiratory quinone was MK-9(H4) and the major fatty acids were iso-C16 : 0, iso-C16 : 1 H, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and iso-C14 : 0. The polar lipid profile included diphosphadidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, one unidentified glycophospholipid, two unidentified phospholipids and five unidentified lipids. The DNA G+C content was 74.2 mol%. DNA-DNA relatedness values between strain GP-S2-8T and type strains of the genus Blastococcus ranged from 14.6 to 48.6 %. On the basis of the phenotypic differences and DNA-DNA relatedness data, the isolate represents a new species of the genus Blastococcus, for which the name Blastococcuslitoris sp. nov. is proposed. The type strain is GP-S2-8T (=KCCM 43275T=JCM 32354T=DSM 106127T=KCTC 49078T).
Collapse
Affiliation(s)
- Dong Wan Lee
- 1Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hanbyul Lee
- 1Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Bong-Oh Kwon
- 2School of Earth and Environmental Science & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Seong Khim
- 2School of Earth and Environmental Science & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Un Hyuk Yim
- 3Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Beom Seok Kim
- 4Division of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jin Kim
- 1Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
19
|
Castro JF, Nouioui I, Sangal V, Choi S, Yang SJ, Kim BY, Trujillo ME, Riesco R, Montero-Calasanz MDC, Rahmani TPD, Bull AT, Sutcliffe IC, Asenjo JA, Andrews B, Goodfellow M. Blastococcus atacamensis sp. nov., a novel strain adapted to life in the Yungay core region of the Atacama Desert. Int J Syst Evol Microbiol 2018; 68:2712-2721. [PMID: 29969090 DOI: 10.1099/ijsem.0.002828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A polyphasic study was undertaken to establish the taxonomic status of a Blastococcus strain isolated from an extreme hyper-arid Atacama Desert soil. The isolate, strain P6T, was found to have chemotaxonomic and morphological properties consistent with its classification in the genus Blastococcus. It was shown to form a well-supported branch in the Blastococcus 16S rRNA gene tree together with the type strains of Blastococcus capsensis and Blastococcus saxobsidens and was distinguished from the latter, its close phylogenetic neighbour, by a broad range of phenotypic properties. The draft genome sequence of isolate P6T showed 84.6 % average nucleotide identity, 83.0 % average amino acid identity and a digital DNA-DNA hybridisation value of 27.8 % in comparison with the genome sequence of B. saxobsidens DSM 44509T, values consistent with its assignment to a separate species. Based on these data it is proposed that isolate P6T (NCIMB 15090T=NRRL B-65468T) be assigned to the genus Blastococcus as Blastococcus atacamensis sp. nov. Analysis of the whole genome sequence of B. atacamensis P6T, with 3778 open reading frames and a genome size of 3.9 Mb showed the presence of genes and gene clusters that encode for properties that reflect its adaptation to the extreme environmental conditions that prevail in Atacama Desert soils.
Collapse
Affiliation(s)
- Jean Franco Castro
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Vartul Sangal
- 3Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Seonbin Choi
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Seung-Jo Yang
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Byung-Yong Kim
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Martha E Trujillo
- 5Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Raul Riesco
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | | | - Tara P D Rahmani
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alan T Bull
- 6School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Iain C Sutcliffe
- 3Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Juan A Asenjo
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Barbara Andrews
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Michael Goodfellow
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
20
|
Selective isolation and characterisation of novel members of the family Nocardiopsaceae and other actinobacteria from a marine sediment of Tioman Island. Antonie van Leeuwenhoek 2018; 111:727-742. [DOI: 10.1007/s10482-018-1042-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/06/2018] [Indexed: 11/26/2022]
|
21
|
Hezbri K, Nouioui I, Rohde M, Spröer C, Schumann P, Gtari M, Klenk HP, Montero-Calasanz MDC, Ghodhbane-Gtari F. Blastococcus xanthinilyticus sp. nov., isolated from monument. Int J Syst Evol Microbiol 2018; 68:1177-1183. [PMID: 29458502 DOI: 10.1099/ijsem.0.002646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, non-motile, coccoid, Gram-stain-positive actinobacterium, designated BMG 862T, was isolated from a marble sample collected from the Bulla Regia monument, Northern Tunisia. Its taxonomic position was determined using a polyphasic approach. Results from chemotaxonomic analyses showed MK-9(H4), MK-8(H4) and MK-9(H2) as the predominant menaquinones. The major polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, hydroxy-phosphatidylethanolamine and three unidentified phospholipids. The fatty acids consisted of significant amounts (≥10 %) of iso-C16 : 0, C17 : 1ω8c, iso-C15 : 0 and C16 : 1ω7c. Phylogenetic analysis on the basis of 16S rRNA gene sequence comparisons showed that strain BMG 862T belongs to the genus Blastococcus, being most closely related to Blastococcus saxobsidens (=DSM 44509T) (99.5 %) and Blastococcus capsensis (=DSM 46835T=CECT 8876T) (99.3 %). The genomic DNA G+C content of the organism was 74.7 mol%. Results of DNA-DNA hybridization and physiological tests allowed differentiation of strain BMG 862T from related species. The strain was also characterized by its ability to hydrolyse xanthine. On the basis of phenotypic and molecular characteristics, strain BMG 862T (=DSM 46842T=CECT 8884T) represents the type strain of a novel species of the genus Blastococcus, for which the name Blastococcus xanthinilyticus sp. nov. is proposed.
Collapse
Affiliation(s)
- Karima Hezbri
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Manfred Rohde
- Central Facility for Microscopy, HZI - Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord BP 676-1080 Tunis Cedex, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maria Del Carmen Montero-Calasanz
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| |
Collapse
|
22
|
Montero-Calasanz MDC, Meier-Kolthoff JP, Zhang DF, Yaramis A, Rohde M, Woyke T, Kyrpides NC, Schumann P, Li WJ, Göker M. Genome-Scale Data Call for a Taxonomic Rearrangement of Geodermatophilaceae. Front Microbiol 2017; 8:2501. [PMID: 29312207 PMCID: PMC5742155 DOI: 10.3389/fmicb.2017.02501] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
Geodermatophilaceae (order Geodermatophilales, class Actinobacteria) form a comparatively isolated family within the phylum Actinobacteria and harbor many strains adapted to extreme ecological niches and tolerant against reactive oxygen species. Clarifying the evolutionary history of Geodermatophilaceae was so far mainly hampered by the insufficient resolution of the main phylogenetic marker in use, the 16S rRNA gene. In conjunction with the taxonomic characterisation of a motile and aerobic strain, designated YIM M13156T and phylogenetically located within the family, we here carried out a phylogenetic analysis of the genome sequences now available for the type strains of Geodermatophilaceae and re-analyzed the previously assembled phenotypic data. The results indicated that the largest genus, Geodermatophilus, is not monophyletic, hence the arrangement of the genera of Geodermatophilaceae must be reconsidered. Taxonomic markers such as polar lipids and fatty-acids profile, cellular features and temperature ranges are indeed heterogeneous within Geodermatophilus. In contrast to previous studies, we also address which of these features can be interpreted as apomorphies of which taxon, according to the principles of phylogenetic systematics. We thus propose a novel genus, Klenkia, with the type species Klenkia marina sp. nov. and harboring four species formerly assigned to Geodermatophilus, G. brasiliensis, G. soli, G. taihuensis, and G. terrae. Emended descriptions of all species of Geodermatophilaceae are provided for which type-strain genome sequences are publicly available. Our study again demonstrates that the principles of phylogenetic systematics can and should guide the interpretation of both genomic and phenotypic data.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dao-Feng Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Adnan Yaramis
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Peter Schumann
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Markus Göker
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
23
|
Hezbri K, Nouioui I, Rohde M, Schumann P, Gtari M, Klenk HP, Montero-Calasanz MDC, Ghodhbane-Gtari F. Blastococcus colisei sp. nov, isolated from an archaeological amphitheatre. Antonie van Leeuwenhoek 2016; 110:339-346. [DOI: 10.1007/s10482-016-0804-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
|