1
|
Wu J, Zhang R, Sun Q, Feng Z, Handique U. Species Diversity of Pectobacterium spp. Causing Potato Aerial Stem Rot in China. PLANT DISEASE 2024; 108:2976-2982. [PMID: 38347734 DOI: 10.1094/pdis-01-24-0168-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Pectobacterium spp. are the primary causative agents of aerial stem rot in potatoes in China. A nationwide survey revealed the widespread occurrence of aerial stem rot in the northern, southern, and southwestern cultivation regions, with occurrence rates ranging from 1 to 60%. In total, 36 strains were isolated and identified at the species level using multilocus sequence analysis of six housekeeping genes (rpoS, proA, gapA, icdA, gyrA, and mdh). Genome sequencing was conducted on one representative strain for each species, and further confirmation of their identities was achieved through average nucleotide identity and in silico digital DNA-DNA hybridization analysis. Five Pectobacterium species were identified, namely, P. atrosepticum, P. brasiliense, P. carotovorum, P. polaris, and P. punjabense, with P. atrosepticum and P. brasiliense being the most widely distributed. Pathogenicity tests demonstrated that, among the strains isolated in this study and those obtained from other studies, P. atrosepticum and P. brasiliense are also the most virulent species. To the best of our knowledge, this is the first nationwide study describing the diversity and distribution of Pectobacterium spp. affecting potatoes in China. The information gathered will be utilized for disease diagnosis and the development of pathogen-specific integrated pest management strategies to protect potato production.
Collapse
Affiliation(s)
- Jian Wu
- Inner Mongolia Potato Engineering & Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering & Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Qinghua Sun
- Inner Mongolia Potato Engineering & Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Zhiwen Feng
- Inner Mongolia Potato Engineering & Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Utpal Handique
- Inner Mongolia Potato Engineering & Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Ma X, Zhang X, Stodghill P, Rioux R, Shrestha S, Babler B, Rivedal H, Frost K, Hao J, Secor G, Swingle B. Analysis of soft rot Pectobacteriaceae population diversity in US potato growing regions between 2015 and 2022. Front Microbiol 2024; 15:1403121. [PMID: 39351298 PMCID: PMC11439646 DOI: 10.3389/fmicb.2024.1403121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Soft rot Pectobacteriaceae (SRP) bacteria are globally dispersed pathogens that cause significant economic loss in potato and other crops. Our understanding of the SRP species diversity has expanded in recent years due to advances and adoption of whole-genome sequence technologies. There are currently 34 recognized SRP species that belong to the Dickeya and Pectobacterium genera. Methods We used whole-genome sequencing based analysis to describe the current distribution and epidemiology of SRP isolated from diseased potato samples obtained from commercial potato cropping systems in the United States. Our primary objectives in the present study were to: (1) identify the species of these SRP isolates recovered from potato samples across 14 states in the US, (2) describe the variation among SRP isolates from various US locations and track their temporal changes, and (3) evaluate the evolutionary relationships among these SRP isolates to deduce their source. We collected 118 SRP strains from diseased potato plants and tubers in 14 states between 2015 and 2022. Results We identified three Dickeya and eight Pectobacterium species from diseased potato samples. Dickeya dianthicola, Pectobacterium parmentieri, P. carotovorum, and P. versatile appeared to be the predominant species, constituting 83% of the isolates. Furthermore, all D. dianthicola strains studied here as well as 90% of US D. dianthicola isolates sequenced to date exhibit significant clonality. Discussion The prevalence of this specific group of D. dianthicola, temporally and geographically, aligns with the occurrence of blackleg and soft rot outbreaks in the northeastern US after 2014. The genomic diversity observed in P. parmentieri implies multiple introductions to the US from at least four distinct sources, earlier than the arrival of the predominant group of D. dianthicola. In contrast, P. carotovorum and P. versatile appear to be widespread, long-term endemic strains in the US.
Collapse
Affiliation(s)
- Xing Ma
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Xiuyan Zhang
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Paul Stodghill
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, United States
| | - Renee Rioux
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Smita Shrestha
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brooke Babler
- Wisconsin Seed Potato Certification Program, Department of Plant Pathology, University of Wisconsin-Madison, Middleton, WI, United States
| | - Hannah Rivedal
- Forage Seed and Cereal Research Unit, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR, United States
| | - Kenneth Frost
- Department of Botany and Plant Pathology and Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Gary Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, United States
| |
Collapse
|
3
|
Vasilyeva AA, Evseev PV, Ignatov AN, Dzhalilov FSU. Pectobacterium punjabense Causing Blackleg and Soft Rot of Potato: The First Report in the Russian Federation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2144. [PMID: 39124263 PMCID: PMC11313954 DOI: 10.3390/plants13152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Phytopathogenic bacteria of the genus Pectobacterium are responsible for several diseases that affect potato (Solanum tuberosum L.) production worldwide, including blackleg and tuber soft rot. These bacteria are highly diverse, with over 17 different species currently identified. However, some of the recently described species, such as Pectobacterium punjabense, are still poorly understood. In this study, we focused on P. punjabense isolates collected from diseased potato tubers in Russia in 2021. Whole-genome sequencing was used to characterise the genomic diversity of the pathogen and determine the biochemical profiles of the isolated bacteria. The ability of these isolates to cause soft rot symptoms was tested. A comparative assessment of the potential pathogenicity of the Pectobacterium isolates was conducted by infecting potato tubers and measuring the accumulation of biomass in a liquid medium during cultivation at different temperatures. A TaqMan qPCR assay was developed for the highly sensitive and specific characterisation of P. punjabense strains, which can be used in diagnostic systems. This is the first report on P. punjabense causing potato disease in the Russian Federation.
Collapse
Affiliation(s)
- Anna A. Vasilyeva
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
| | - Peter V. Evseev
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexandr N. Ignatov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
| |
Collapse
|
4
|
Tang WC, Wang LH, Chan JJ, Goh RP, Wu YF, Chu CC. Inter- and Intra-Specific Variations in Phenotypic Traits of Pectobacterium Strains Isolated from Diverse Eudicots and Monocots in Taiwan. PLANT DISEASE 2024; 108:2410-2421. [PMID: 38506909 DOI: 10.1094/pdis-10-23-2130-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Pectobacterium spp. are phytopathogenic bacteria whose phylogeny has been continuously revised throughout the years. Previous studies on Pectobacterium's phenotypic diversity often analyzed strains obtained from specific crops or adopted outdated Pectobacterium classification systems. Therefore, a current perspective on trait variations in Pectobacterium species or strains infecting more diverse plant species is limited. This study conducted phylogenetic and phenotypic analyses on strains isolated from eight eudicot and four monocot families in Taiwan. Phylogenetic analysis on 78 strains identified six recognized species, namely, P. brasiliense, P. aroidearum, P. actinidiae, P. colocasium, P. carotovorum, and P. versatile. Among these, the first two were the most predominant species. Patterns suggesting varying host preferences among bacterial species were detected; most P. aroidearum strains were isolated from monocots, whereas P. brasiliense and P. actinidiae tended to exhibit preferences for eudicots. Physiological tests and Biolog analyses conducted on representative strains of each species revealed great within-species phenotypic variations. Despite these strain-level variations, a combination of indole production and phosphatase activity tests was capable of distinguishing all representative strains of P. brasiliense from those of other identified species. Inoculation assays on potato, bok choy, calla lily, and onion showed inter- and intra-specific heterogeneities in the tested strains' maceration potentials. Virulence patterns across Pectobacterium species and strains differed depending on the inoculated host. Altogether, the findings from this work expand the understanding of Pectobacterium's phenotypic diversity and provide implications for pathogen identification and management.
Collapse
Affiliation(s)
- Wen-Chien Tang
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Liang-Hsuan Wang
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Jiun-Jie Chan
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Reun-Ping Goh
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yea-Fang Wu
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, Tainan 71246, Taiwan
| | - Chia-Ching Chu
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| |
Collapse
|
5
|
Sawada H, Someya N, Morohoshi T, Ono M, Satou M. Pectobacterium araliae sp. nov., a pathogen causing bacterial soft rot of Japanese angelica tree in Japan. Int J Syst Evol Microbiol 2024; 74. [PMID: 38625720 DOI: 10.1099/ijsem.0.006326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Phytopathogenic bacteria (MAFF 302110T and MAFF 302107) were isolated from lesions on Japanese angelica trees affected by bacterial soft rot in Yamanashi Prefecture, Japan. The strains were Gram-reaction-negative, facultatively anaerobic, motile with peritrichous flagella, rod-shaped, and non-spore-forming. The genomic DNA G+C content was 51.1 mol % and the predominant cellular fatty acids included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 2 (comprising any combination of C12 : 0 aldehyde, an unknown fatty acid with an equivalent chain length of 10.928, C16 : 1 iso I, and C14 : 0 3OH), and C12 : 0. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences, along with phylogenomic analysis utilizing whole-genome sequences, consistently placed these strains within the genus Pectobacterium. However, their phylogenetic positions did not align with any known species within the genus. Comparative studies involving average nucleotide identity and digital DNA-DNA hybridization with the closely related species indicated values below the thresholds employed for the prokaryotic species delineation (95-96 % and 70 %, respectively), with the highest values observed for Pectobacterium polonicum DPMP315T (92.10 and 47.1 %, respectively). Phenotypic characteristics, cellular fatty acid composition, and a repertoire of secretion systems could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic, and genotypic data obtained in this study show that MAFF 302110T/MAFF 302107 represent a novel species of the genus Pectobacterium, for which we propose the name Pectobacterium araliae sp. nov., designating MAFF 302110T (=ICMP 25161T) as the type strain.
Collapse
Affiliation(s)
- Hiroyuki Sawada
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobutaka Someya
- Institute for Plant Protection, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Tomohiro Morohoshi
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Mitsuaki Ono
- Yamanashi Agritechnology Center (retired), 1100 Shimoimai, Kai, Yamanashi 400-0105, Japan
| | - Mamoru Satou
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
6
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Mainello-Land AM, Bibi S, Gugino B, Bull CT. Multilocus sequence and phenotypic analysis of Pectobacterium and Dickeya type strains for identification of soft rot Pectobacteriaceae from symptomatic potato stems and tubers in Pennsylvania. Syst Appl Microbiol 2024; 47:126476. [PMID: 38113702 DOI: 10.1016/j.syapm.2023.126476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Outbreaks of potato blackleg and soft rot caused by Pectobacterium species and more recently Dickeya species across the U.S. mid-Atlantic region have caused yield loss due to poor emergence as well as losses from stem and tuber rot. To develop management strategies for soft rot diseases, we must first identify which members of the soft rot Pectobacteriaceae are present in regional potato plantings. However, the rapidly expanding number of soft rot Pectobacteriaceae species and the lack of readily available comparative data for type strains of Pectobacterium and Dickeya hinder quick identification. This manuscript provides a comparative analysis of soft rot Pectobacteriaceae and a comprehensive comparison of type strains from this group using rep-PCR, MLSA and 16S sequence analysis, as well as phenotypic and physiological analyses using Biolog GEN III plates. These data were used to identify isolates cultured from symptomatic potato stems collected between 2016 and 2018. The isolates were characterized for phenotypic traits and by sequence analysis to identify the bacteria from potatoes with blackleg and soft rot symptoms in Pennsylvania potato fields. In this survey, P. actinidiae, P. brasiliense, P. polonicum, P. polaris, P. punjabense, P. parmentieri, and P. versatile were identified from Pennsylvania for the first time. Importantly, the presence of P. actinidiae in Pennsylvania represents the first report of this organism in the U.S. As expected, P. carotorvorum and D. dianthicola were also isolated. In addition to a resource for future work studying the Dickeya and Pectobacterium associated with potato blackleg and soft rot, we provide recommendations for future surveys to monitor for quarantine or emerging soft rot Pectobacteriace regionally.
Collapse
Affiliation(s)
- Amanda M Mainello-Land
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaheen Bibi
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Beth Gugino
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
8
|
Hong SM, Ten LN, Park KT, Back CG, Waleron M, Kang IK, Lee SY, Jung HY. Pectobacterium jejuense sp. nov. Isolated from Cucumber Stem Tissue. Curr Microbiol 2023; 80:308. [PMID: 37528256 DOI: 10.1007/s00284-023-03419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
A single Pectobacterium-like strain named 13-115T was isolated from a specimen of diseased cucumber stem tissue collected on Jeju Island, South Korea. The strain presented a rod-like shape and was negative for Gram staining. When grown on R2A medium at 25 °C, strain 13-115T formed round, convex and white colonies. This strain showed growth at temperatures ranging from 10 to 30 °C and tolerated a pH range of 6-9. The strain could also tolerate NaCl concentrations up to 5%. Analysis of the 16S rRNA gene sequence revealed that strain 13-115T exhibited similarity of over 99% with Pectobacterium brasiliense, P. carotovorum, P. polaris, and P. parvum. By conducting multilocus sequence analyses using dnaX, leuS, and recA genes, a separate phylogenetic lineage was discovered between strain 13-115T and other members of the genus Pectobacterium. Moreover, the strain showed relatively low in silico DNA-DNA hybridization (<60.6%) and average nucleotide identity (ANI) (<94.9%) values with recognized Pectobacterium species. The isolate has a genome size of 5,069,478 bp and a genomic G + C content of 52.04 mol%. Major fatty acids identified in the strain included C16:0 (28.99%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c; 28.85%), and C18:1 ω7c (19.01%). Pathogenicity assay confirmed that the novel strain induced soft rot symptoms in cucumber plants and Koch's postulates were fulfilled. Molecular analysis and phenotypic data indicated that strain 13-115T could be classified as a new species within the Pectobacterium genus, which has been named Pectobacterium jejuense. The type strain is 13-115T (= KCTC 92800T = JCM 35940T).
Collapse
Affiliation(s)
- Soo-Min Hong
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Leonid N Ten
- Institute of Plant Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoung-Taek Park
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chang-Gi Back
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Malgorzata Waleron
- Intercollegiate Faculty of Biotechnology UG and MUG, 58 Abrahama Street, 80-307, Gdansk, Poland
| | - In-Kyu Kang
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Institute of Plant Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Cigna J, Robic K, Dewaegeneire P, Hélias V, Beury A, Faure D. Efficacy of Soft-Rot Disease Biocontrol Agents in the Inhibition of Production Field Pathogen Isolates. Microorganisms 2023; 11:microorganisms11020372. [PMID: 36838337 PMCID: PMC9961933 DOI: 10.3390/microorganisms11020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The Dickeya and Pectobacterium bacterial species cause blackleg and soft-rot diseases on potato plants and tubers. Prophylactic actions are essential to conserve a high quality of seed potato tubers. Biocontrol approaches are emerging, but we need to know how efficient biocontrol agents are when facing the natural diversity of pathogens. In this work, we sampled 16 production fields, which were excluded from the seed tuber certification scheme, as well as seven experimental parcels, which were planted with seed tubers from those production fields. We collected and characterized 669 Dickeya and Pectobacterium isolates, all characterized using nucleotide sequence of the gapA gene. This deep sampling effort highlighted eleven Dickeya and Pectobacterium species, including four dominant species namely D. solani, D. dianthicola, P. atrosepticum and P. parmentieri. Variations in the relative abundance of pathogens revealed different diversity patterns at a field or parcel level. The Dickeya-enriched patterns were maintained in parcels planted with rejected seed tubers, suggesting a vertical transmission of the pathogen consortium. Then, we retained 41 isolates representing the observed species diversity of pathogens and we tested each of them against six biocontrol agents. From this work, we confirmed the importance of prophylactic actions to discard contaminated seed tubers. We also identified a couple of biocontrol agents of the Pseudomonas genus that were efficient against a wide range of pathogen species.
Collapse
Affiliation(s)
- Jérémy Cigna
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
- Correspondence: (J.C.); (D.F.)
| | - Kévin Robic
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
- Institute for Integrative Biology of the Cell (I2BC), Paris-Saclay University, CEA, CNRS, 91190 Gif-sur-Yvette, France
| | | | - Valérie Hélias
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
| | - Amélie Beury
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), Paris-Saclay University, CEA, CNRS, 91190 Gif-sur-Yvette, France
- Correspondence: (J.C.); (D.F.)
| |
Collapse
|
10
|
Fitriana Y, Tampubolon DAT, Suharjo R, Lestari P, Swibawa IG. Lysinabacillus fusiformis and Paenibacillus alvei Obtained from the Internal of Nasutitermes Termites Revealed Their Ability as Antagonist of Plant Pathogenic Fungi. THE PLANT PATHOLOGY JOURNAL 2022; 38:449-460. [PMID: 36221917 PMCID: PMC9561155 DOI: 10.5423/ppj.oa.03.2022.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/13/2023]
Abstract
This study was performed to reveal phenotypic characters and identity of symbiont bacteria of Nasutitermes as well as investigate their potential as antagonist of plant pathogenic fungi. Isolation of the symbiont bacteria was carried out from inside the heads and the bodies of soldier and worker termite which were collected from 3 locations of nests. Identification was performed using phenotypic test and sequence of 16S ribosomal DNA (16S rDNA). Antagonistic capability was investigated in the laboratory against 3 phytopathogenic fungi i.e., Phytophthora capsici, Ganoderma boninense, and Rigidoporus microporus. Totally, 39 bacterial isolates were obtained from inside the heads and the bodies of Nasutitermes. All the isolates showed capability to inhibit growth of P. capsici, however, 34 isolates showed capability to inhibit growth of G. boninense and 32 isolates showed capability to inhibit growth of R. microporus. Two bacterial strains (IK3.1P and 1B1.2P) which showed the highest percentage of inhibition were further identified based on their sequence of 16S rDNA. The result showed that 1K3.1P strain was placed in the group of type strain and reference strains of Lysinibacillus fusiformis meanwhile 1B1.2P strain was grouped within type strain and reference strains Paenibacillus alvei. The result of this study supply valuable information on the role of symbiont bacteria of Nasutitermes, which may support the development of the control method of the three above-mentioned phytopathogenic fungi.
Collapse
Affiliation(s)
- Yuyun Fitriana
- Department of Plant Protection, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| | - Desi Apriani Teresa Tampubolon
- Department of Agrotechnology, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| | - Radix Suharjo
- Department of Plant Protection, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| | - Puji Lestari
- Department of Plant Protection, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| | - I Gede Swibawa
- Department of Plant Protection, Faculty of Agriculture, University of Lampung, Jl. Prof. Sumantri Brojonegoro I, Bandar Lampung 35145,
Indonesia
| |
Collapse
|
11
|
Loc M, Milošević D, Ivanović Ž, Ignjatov M, Budakov D, Grahovac J, Grahovac M. Genetic Diversity of Pectobacterium spp. on Potato in Serbia. Microorganisms 2022; 10:microorganisms10091840. [PMID: 36144442 PMCID: PMC9503840 DOI: 10.3390/microorganisms10091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Pectobacterium is a diverse genus which comprises of multiple destructive bacterial species which cause soft rot/blackleg/wilt disease complex in a wide variety of crops by employing high levels of virulence factors. During the 2018, 2019 and 2020 potato growing seasons, numerous outbreaks of bacterial wilt, stem blackleg and tuber soft rot were recorded, and symptomatic plant samples from ten localities in the Province of Vojvodina (Serbia) were collected and analysed. Bacterial soft-rot pathogens were detected in 63 samples using genus and species-specific primers. Through 16S rRNA Sanger sequencing of 19 representative isolates, the identity of P. brasiliense (73.7%), P. punjabense (15.8%), and P. carotovorum (10.5%) species were revealed. To further validate the identification, genotypic profiling of Pectobacterium strains using rep-PCR (ERIC, BOX, REP) was conducted for 25 selected isolates and the phylogenetic assessment based on four selected housekeeping genes (gyrA, recA, rpoA, and rpoS). Physiological and biochemical properties were analysed using basic microbiological tests and VITEK® 2 GN card, and pathogenicity was confirmed on cv. VR808 and cv. Desiree potato tubers and plants. This study confirmed the distinctiveness of the newly described P. punjabense in Serbia as well as the high diversity of Pectobacterium brasiliense and Pectobacterium carotovorum species in Serbia.
Collapse
Affiliation(s)
- Marta Loc
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Dragana Milošević
- Laboratory for Seed Testing, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21101 Novi Sad, Serbia
| | - Žarko Ivanović
- Department of Plant Diseases, Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia
| | - Maja Ignjatov
- Laboratory for Seed Testing, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21101 Novi Sad, Serbia
| | - Dragana Budakov
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | - Mila Grahovac
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
12
|
Lactic Acid Bacteria as Biocontrol Agents against Potato (Solanum tuberosum L.) Pathogens. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biological control offers an alternative to chemical pesticides, which are inconsistent with the global trend of “going green”. Biological control includes various approaches, from natural predators to biologically produced molecules. This article focuses on the selection of lactic acid bacteria (LAB) as biological control agents against potato pathogens. The scope included evaluating the antimicrobial activity of 100 LAB strains against ten phytopatogens (Pectobacterium carotovorum, Streptomyces scabiei, Fusarium oxysporum, Fusarium sambucinum, Alternaria solani, Alternaria, tenuissima, Alternaria alternata, Phoma exigua, Rhizoctonia solani, Colletotrichum coccodes) by cross-streak plate method. HPLC determined the metabolic profiles for the most active LAB strains, and lactic acid, acetic acid, propionic acid and ethanol were found in the largest quantities. The strain Lactiplantibacillus plantarum KB2 LAB 03 was finally selected and cultured on supplemented acid whey. After the selection in laboratory tests, the strain KB2 LAB 03 was assessed in situ on seed potatoes against phytopathogens. The test showed a 40–90% reduction of eight potato pathogens infestation; only F. sambucinum and F. oxysporum were not inhibited at all. L. plantarum KB2 LAB 03 was proposed as the potential biocontrol agent for the potato protection against phytopathogens.
Collapse
|
13
|
Smoktunowicz M, Jonca J, Stachowska A, May M, Waleron MM, Waleron M, Waleron K. The International Trade of Ware Vegetables and Orna-Mental Plants—An Underestimated Risk of Accelerated Spreading of Phytopathogenic Bacteria in the Era of Globalisation and Ongoing Climatic Changes. Pathogens 2022; 11:pathogens11070728. [PMID: 35889973 PMCID: PMC9319320 DOI: 10.3390/pathogens11070728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria of the genus Pectobacterium are globally occurring pathogens that infect a broad spectrum of plants. The plant cell wall degrading enzymes allow them to cause diseases like soft rot and blackleg. Worldwide trade and exchange of plant material together with the accompanying microorganisms contributed to the rapid spread and consequently the acquisition of new traits by bacteria. The 161 pectinolytic strains were isolated from symptomless vegetables and ornamental plants acquired from Polish and foreign local food markets. All strains except four Dickeya isolates were identified as belonging to the Pectobacterium genus by PCR with species-specific primers and recA gene sequencing. The newly isolated bacteria were assigned to eight species, P. versatile (50 strains), P. carotovorum (33), P. brasiliense (27), P. atrosepticum (19), P. parmentieri (12), P. polaris (11), P. parvum (3) and P. odoriferum (2). ERIC PCR and phenotypic characteristics revealed high heterogeneity among P. carotovorum, P. brasiliense and P. versatile isolates. Moreover, a subset of the newly isolated strains was characterised by high tolerance to changing environmental conditions such as salinity, pH and water availability. These bacteria can effectively macerate the tissues of various plants, including potato, chicory and orchid. Our results indicate that Pectobacterium strains isolated from internationally traded, symptomless vegetables and ornamental plants have high potential for adaptation to adverse environmental conditions and to infect various host plants. These features may contribute to the success of the genus Pectobacterium in spreading between different climatic zones and facilitate the colonisation of different ecological niches.
Collapse
Affiliation(s)
- Magdalena Smoktunowicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | - Joanna Jonca
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
| | - Aneta Stachowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
| | - Michal May
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
| | - Michal Mateusz Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
| | - Malgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
- Correspondence: (M.W.); (K.W.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
- Correspondence: (M.W.); (K.W.)
| |
Collapse
|
14
|
Mulema J, Day R, Nunda W, Akutse KS, Bruce AY, Gachamba S, Haukeland S, Kahuthia-Gathu R, Kibet S, Koech A, Kosiom T, Miano DW, Momanyi G, Murungi LK, Muthomi JW, Mwangi J, Mwangi M, Mwendo N, Nderitu JH, Nyasani J, Otipa M, Wambugu S, Were E, Makale F, Doughty L, Edgington S, Rwomushana I, Kenis M. Prioritization of invasive alien species with the potential to threaten agriculture and biodiversity in Kenya through horizon scanning. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractInvasive alien species (IAS) rank among the most significant drivers of species extinction and ecosystem degradation resulting in significant impacts on socio-economic development. The recent exponential spread of IAS in most of Africa is attributed to poor border biosecurity due to porous borders that have failed to prevent initial introductions. In addition, countries lack adequate information about potential invasions and have limited capacity to reduce the risk of invasions. Horizon scanning is an approach that prioritises the risks of potential IAS through rapid assessments. A group of 28 subject matter experts used an adapted methodology to assess 1700 potential IAS on a 5-point scale for the likelihood of entry and establishment, potential socio-economic impact, and impact on biodiversity. The individual scores were combined to rank the species according to their overall potential risk for the country. Confidence in individual and overall scores was recorded on a 3-point scale. This resulted in a priority list of 120 potential IAS (70 arthropods, 9 nematodes, 15 bacteria, 19 fungi/chromist, 1 viroid, and 6 viruses). Options for risk mitigation such as full pest risk analysis and detection surveys were suggested for prioritised species while species for which no immediate action was suggested, were added to the plant health risk register and a recommendation was made to regularly monitor the change in risk. By prioritising risks, horizon scanning guides resource allocation to interventions that are most likely to reduce risk and is very useful to National Plant Protection Organisations and other relevant stakeholders.
Collapse
|
15
|
Insights into complex infection by two Pectobacterium species causing potato blackleg and soft rot. Microbiol Res 2022; 261:127072. [DOI: 10.1016/j.micres.2022.127072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/02/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022]
|
16
|
Zhou J, Hu M, Hu A, Li C, Ren X, Tao M, Xue Y, Chen S, Tang C, Xu Y, Zhang L, Zhou X. Isolation and Genome Analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, Two New Pathogens of Taro. FRONTIERS IN PLANT SCIENCE 2022; 13:852750. [PMID: 35557713 PMCID: PMC9088014 DOI: 10.3389/fpls.2022.852750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Bacterial soft rot is one of the most destructive diseases of taro (Colocasia esculenta) worldwide. In recent years, frequent outbreaks of soft rot disease have seriously affected taro production and became a major constraint to the development of taro planting in China. However, little is known about the causal agents of this disease, and the only reported pathogens are two Dickeya species and P. carotovorum. In this study, we report taro soft rot caused by two novel Pectobacterium strains, LJ1 and LJ2, isolated from taro corms in Ruyuan County, Shaoguan City, Guangdong Province, China. We showed that LJ1 and LJ2 fulfill Koch's postulates for taro soft rot. The two pathogens can infect taro both individually and simultaneously, and neither synergistic nor antagonistic interaction was observed between the two pathogens. Genome sequencing of the two strains indicated that LJ1 represents a novel species of the genus Pectobacterium, for which the name "Pectobacterium colocasium sp. nov." is proposed, while LJ2 belongs to Pectobacterium aroidearum. Pan-genome analysis revealed multiple pathogenicity-related differences between LJ1, LJ2, and other Pectobacterium species, including unique virulence factors, variation in the copy number and organization of Type III, IV, and VI secretion systems, and differential production of plant cell wall degrading enzymes. This study identifies two new soft rot Pectobacteriaceae (SRP) pathogens causing taro soft rot in China, reports a new case of co-infection of plant pathogens, and provides valuable resources for further investigation of the pathogenic mechanisms of SRP.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Anqun Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Ren
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Min Tao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shanshan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chongzhi Tang
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
| | - Yiwu Xu
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
- Qingyuan Agricultural Science and Technology Service Co., Ltd., Qingyuan, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Ossowska K, Motyka-Pomagruk A, Kaczyńska N, Kowalczyk A, Sledz W, Lojkowska E, Kaczyński Z. Heterogenicity within the LPS Structure in Relation to the Chosen Genomic and Physiological Features of the Plant Pathogen Pectobacterium parmentieri. Int J Mol Sci 2022; 23:ijms23042077. [PMID: 35216191 PMCID: PMC8879369 DOI: 10.3390/ijms23042077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pectobacterium parmentieri is a pectinolytic plant pathogenic bacterium causing high economic losses of cultivated plants. The highly devastating potential of this phytopathogen results from the efficient production of plant cell wall-degrading enzymes, i.e., pectinases, cellulases and proteases, in addition to the impact of accessory virulence factors such as motility, siderophores, biofilm and lipopolysaccharide (LPS). LPS belongs to pathogen-associated molecular patterns (PAMPs) and plays an important role in plant colonization and interaction with the defense systems of the host. Therefore, we decided to investigate the heterogeneity of O-polysaccharides (OPS) of LPS of different strains of P. parmentieri, in search of an association between the selected genomic and phenotypic features of the strains that share an identical structure of the OPS molecule. In the current study, OPS were isolated from the LPS of two P. parmentieri strains obtained either in Finland in the 1980s (SCC3193) or in Poland in 2013 (IFB5432). The purified polysaccharides were analyzed by utilizing 1D and 2D NMR spectroscopy (1H, DQF-COSY, TOCSY, ROESY, HSQC, HSQC-TOCSY and HMBC) in addition to chemical methods. Sugar and methylation analyses of native polysaccharides, absolute configuration assignment of constituent monosaccharides and NMR spectroscopy data revealed that these two P. parmentieri strains isolated in different countries possess the same structure of OPS with a very rare residue of 5,7-diamino-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (pseudaminic acid) substituted in the position C-8: →3)-β-d-Galf-(1→3)-α-d-Galp-(1→8)-β-Pse4Ac5Ac7Ac-(2→6)-α-d-Glcp-(1→6)-β-d-Glcp-(1→. The previous study indicated that three other P. parmentieri strains, namely IFB5427, IFB5408 and IFB5443, exhibit a different OPS molecule than SCC3193 and IFB5432. The conducted biodiversity-oriented assays revealed that the P. parmentieri IFB5427 and IFB5408 strains possessing the same OPS structure yielded the highest genome-wide similarity, according to average nucleotide identity analyses, in addition to the greatest ability to macerate chicory tissue among the studied P. parmentieri strains. The current research demonstrated a novel OPS structure, characteristic of at least two P. parmentieri strains (SCC3193 and IFB5432), and discussed the observed heterogenicity in the OPS of P. parmentieri in a broad genomic and phenotype-related context.
Collapse
Affiliation(s)
- Karolina Ossowska
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
| | - Agata Motyka-Pomagruk
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Natalia Kaczyńska
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Agnieszka Kowalczyk
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
| | - Wojciech Sledz
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Ewa Lojkowska
- Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (N.K.); (W.S.); (E.L.)
| | - Zbigniew Kaczyński
- Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland; (K.O.); (A.K.)
- Correspondence:
| |
Collapse
|
18
|
Suárez MB, Diego M, Feria FJ, Martín-Robles MJ, Moreno S, Palomo JL. New PCR-Based Assay for the Identification of Pectobacterium carotovorum Causing Potato Soft Rot. PLANT DISEASE 2022; 106:676-684. [PMID: 34569833 DOI: 10.1094/pdis-08-21-1676-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soft rot on potato tuber is a destructive disease caused by pathogenic bacterial species of the genera Pectobacterium and Dickeya. Accurate identification of the causal agent is necessary to ensure adequate disease management because different species may have distinct levels of aggressiveness and host range. One of the most important potato pathogens is Pectobacterium carotovorum, a highly heterogeneous species capable of infecting multiple hosts. The complexity of this species, until recently divided into several subspecies, has made it difficult to develop precise diagnostic tests. This study proposes a PCR assay based on the new pair of primers Pcar1F/R to facilitate the identification of potato isolates of P. carotovorum according to the most recent taxonomic description of this species. The new primers were designed on a variable segment of the 16S rRNA gene and the intergenic spacer region of available DNA sequences from classical and recently established species in the genus Pectobacterium. The results of the PCR analysis of genomic DNA from 32 Pectobacterium and Dickeya strains confirmed that the Pcar1F/R primers have sufficient nucleotide differences to discriminate between P. carotovorum and other Pectobacterium species associated with damage to potato crops, with the exception of Pectobacterium versatile, which improves the specificity of the currently available primers. The proposed assay was originally developed as a conventional PCR but was later adapted to the real-time PCR format for application in combination with the existing real-time PCR test for the potato-specific pathogen Pectobacterium parmentieri. This should be useful for the routine diagnosis of potato soft rot.
Collapse
Affiliation(s)
- M Belén Suárez
- Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de, Salamanca, 37007 Salamanca, Spain
| | - Marta Diego
- Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
- Centro Regional de Diagnóstico (CRD), Junta de Castilla y León, 37340 Aldearrubia, Spain
| | - Francisco J Feria
- Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
- Centro Regional de Diagnóstico (CRD), Junta de Castilla y León, 37340 Aldearrubia, Spain
| | - Manuel J Martín-Robles
- Centro Regional de Diagnóstico (CRD), Junta de Castilla y León, 37340 Aldearrubia, Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, Universidad de Salamanca, Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | - Jose Luis Palomo
- Centro Regional de Diagnóstico (CRD), Junta de Castilla y León, 37340 Aldearrubia, Spain
| |
Collapse
|
19
|
Arizala D, Dobhal S, Babler B, Crockford AB, Rioux RA, Alvarez AM, Arif M. Development of a multiplex TaqMan qPCR targeting unique genomic regions for the specific and sensitive detection of Pectobacterium species and P. parmentieri. J Appl Microbiol 2022; 132:3089-3110. [PMID: 35026058 DOI: 10.1111/jam.15447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
AIM The newly defined species P. parmentieri has emerged as an aggressive pathogen that causes soft rot and blackleg diseases on potato and has been widely disseminated across the globe, jeopardizing the productivity and potato food safety. The implementation of a fast and accurate detection tool is imperative to control, monitor and prevent further spread of these pathogens. The objective of this work was to develop a specific and sensitive multiplex TaqMan qPCR to detect P. parmentieri and distinguish it from all known Pectobacterium species. A universal internal control (UIC) was included to enhance the reliability of the assay. METHODS AND RESULTS A comparative genomics approach was used to identify O-acetyltransferase and the XRE family transcriptional regulator as specific targets for primers/probe design for the detection of the Pectobacterium genus and P. parmentieri, respectively. Specificity was assessed with 35 and 25 strains included inclusivity and exclusivity panels, respectively, isolated from different geographic locations and sources. The assay specifically detected all 35 strains of Pectobacterium sp. and all 15 P. parmentieri strains. No cross-reactivity was detected during assay validation. Our assay detected up to 10 fg genomic DNA and 1 CFU ml-1 bacterial culture. No change in the detection threshold (1 CFU ml-1 ) was observed in spiked assays after adding host tissue to the reactions. The assay was validated with naturally and artificially infected host tissues and soil rhizosphere samples. All infected plant samples containing the target pathogens were accurately amplified. CONCLUSION The presented multiplex TaqMan qPCR diagnostic assay is highly specific, sensitive, reliable for the detection of Pectobacterium species and P. parmentieri with no false positives or false negatives. SIGNIFICANCE AND IMPACT The developed assay can be adopted for multiple purposes such as seed certification programs, surveillance, biosecurity, microbial forensics, quarantine, border protection, inspections, and epidemiology.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Brooke Babler
- Department of Plant Pathology, University of Wisconsin-Madison
| | | | - Renee A Rioux
- Department of Plant Pathology, University of Wisconsin-Madison
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu
| |
Collapse
|
20
|
Ge T, Jiang H, Tan EH, Johnson SB, Larkin RP, Charkowski AO, Secor G, Hao J. Pangenomic Analysis of Dickeya dianthicola Strains Related to the Outbreak of Blackleg and Soft Rot of Potato in the United States. PLANT DISEASE 2021; 105:3946-3955. [PMID: 34213964 DOI: 10.1094/pdis-03-21-0587-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dickeya dianthicola has caused an outbreak of blackleg and soft rot of potato in the eastern half of the United States since 2015. To investigate genetic diversity of the pathogen, a comparative analysis was conducted on genomes of D. dianthicola strains. Whole genomes of 16 strains from the United States outbreak were assembled and compared with 16 previously sequenced genomes of D. dianthicola isolated from potato or carnation. Among the 32 strains, eight distinct clades were distinguished based on phylogenomic analysis. The outbreak strains were grouped into three clades, with the majority of the strains in clade I. Clade I strains were unique and homogeneous, suggesting a recent incursion of this strain into potato production from alternative hosts or environmental sources. The pangenome of the 32 strains contained 6,693 genes, 3,377 of which were core genes. By screening primary protein subunits associated with virulence from all U.S. strains, we found that many virulence-related gene clusters, such as plant cell wall degrading enzyme genes, flagellar and chemotaxis related genes, two-component regulatory genes, and type I/II/III secretion system genes, were highly conserved but that type IV and type VI secretion system genes varied. The clade I strains encoded two clusters of type IV secretion systems, whereas the clade II and III strains encoded only one cluster. Clade I and II strains encoded one more VgrG/PAAR spike protein than did clade III. Thus, we predicted that the presence of additional virulence-related genes may have enabled the unique clade I strain to become predominant in the U.S. outbreak.
Collapse
Affiliation(s)
- Tongling Ge
- School of Food and Agriculture, University of Maine, Orono, ME 04469
| | - He Jiang
- School of Food and Agriculture, University of Maine, Orono, ME 04469
| | - Ek Han Tan
- School of Biology and Ecology, University of Maine, Orono, ME 04469
| | | | - Robert P Larkin
- USDA-ARS, New England Plant, Soil, and Water Laboratory, University of Maine, Orono, ME 04469
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Gary Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND58108
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469
| |
Collapse
|
21
|
Domingo R, Perez C, Klair D, Vu H, Candelario-Tochiki A, Wang X, Camson A, Uy JN, Salameh M, Arizala D, Dobhal S, Boluk G, Bingham JP, Ochoa-Corona F, Ali ME, Stack JP, Fletcher J, Odani J, Jenkins D, Alvarez AM, Arif M. Genome-informed loop-mediated isothermal amplification assay for specific detection of Pectobacterium parmentieri in infected potato tissues and soil. Sci Rep 2021; 11:21948. [PMID: 34753982 PMCID: PMC8578433 DOI: 10.1038/s41598-021-01196-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Pectobacterium parmentieri (formerly Pectobacterium wasabiae), which causes soft rot disease in potatoes, is a newly established species of pectinolytic bacteria within the family Pectobacteriaceae. Despite serious damage caused to the potato industry worldwide, no field-deployable diagnostic tests are available to detect the pathogen in plant samples. In this study, we aimed to develop a reliable, rapid, field-deployable loop-mediated isothermal amplification (LAMP) assay for the specific detection of P. parmentieri. Specific LAMP primers targeting the petF1 gene region, found in P. parmentieri but no other Pectobacterium spp., were designed and validated in silico and in vitro using extensive inclusivity (15 strains of P. parmentieri) and exclusivity (94 strains including all other species in the genus Pectobacterium and host DNA) panels. No false positives or negatives were detected when the assay was tested directly with bacterial colonies, and with infected plant and soil samples. Sensitivity (analytical) assays using serially diluted bacterial cell lysate and purified genomic DNA established the detection limit at 10 CFU/mL and 100 fg (18-20 genome copies), respectively, even in the presence of host crude DNA. Consistent results obtained by multiple users/operators and field tests suggest the assay's applicability to routine diagnostics, seed certification programs, biosecurity, and epidemiological studies.
Collapse
Affiliation(s)
- Ryan Domingo
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Cristian Perez
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Diksha Klair
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Huong Vu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Alika Candelario-Tochiki
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Amihan Camson
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jaclyn Nicole Uy
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mouauia Salameh
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Francisco Ochoa-Corona
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Md Emran Ali
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - James P Stack
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jacqueline Fletcher
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Jenee Odani
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Daniel Jenkins
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Anne M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
22
|
de Werra P, Debonneville C, Kellenberger I, Dupuis B. Pathogenicity and Relative Abundance of Dickeya and Pectobacterium Species in Switzerland: An Epidemiological Dichotomy. Microorganisms 2021; 9:microorganisms9112270. [PMID: 34835395 PMCID: PMC8624237 DOI: 10.3390/microorganisms9112270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Pectobacterium and Dickeya species are the causal agents of blackleg and soft rot diseases in potatoes. The main pathogenic species identified so far on potatoes are Dickeya dianthicola, Dickeya solani, Pectobacterium atrosepticum, Pectobacterium brasiliense, Pectobacterium carotovorum, and Pectobacterium parmentieri. Ten years ago, the most prevalent Soft Rot Pectobacteriaceae in Europe were the Dickeya species, P. atrosepticum and P. carotovorum, with some variations among countries. Since then, a drastic increase in the abundance of P. brasiliense has been observed in most European countries. This shift is difficult to explain without comparing the pathogenicity of all Dickeya and Pectobacterium species. The pathogenicity of all the above-mentioned bacterial species was assessed in field trials and in vitro tuber slice trials in Switzerland. Two isolates of each species were inoculated by soaking tubers of cv. Desiree in a suspension of 105 CFU/mL, before planting in the field. For all trials, the Dickeya species were the most virulent ones, but long-term strain surveys performed in Switzerland indicate that P. brasiliense is currently the most frequent species detected. Our results show that the pathogenicity of the species is not the main factor explaining the high prevalence of P. brasiliense and P. parmentieri in the Swiss potato fields.
Collapse
Affiliation(s)
- Patrice de Werra
- Plants and Plant Products, Varieties and Production Techniques, Agroscope, 1260 Nyon, Switzerland;
| | - Christophe Debonneville
- Plant Protection, Virology, Bacteriology and Phytoplasmology, Agroscope, 1260 Nyon, Switzerland; (C.D.); (I.K.)
| | - Isabelle Kellenberger
- Plant Protection, Virology, Bacteriology and Phytoplasmology, Agroscope, 1260 Nyon, Switzerland; (C.D.); (I.K.)
| | - Brice Dupuis
- Plants and Plant Products, Varieties and Production Techniques, Agroscope, 1260 Nyon, Switzerland;
- Correspondence:
| |
Collapse
|
23
|
Ben Moussa H, Pédron J, Bertrand C, Hecquet A, Barny MA. Pectobacterium quasiaquaticum sp. nov., isolated from waterways. Int J Syst Evol Microbiol 2021; 71. [PMID: 34633924 DOI: 10.1099/ijsem.0.005042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Through this study, we established the taxonomic status of seven strains belonging to the genus Pectobacterium (A477-S1-J17T, A398-S21-F17, A535-S3-A17, A411-S4-F17, A113-S21-F16, FL63-S17 and FL60-S17) collected from four different river streams and an artificial lake in south-east France between 2016 and 2017. Ecological surveys in rivers and lakes pointed out different repartition of strains belonging to this clade compared to the closest species, Pectobacterium aquaticum. The main phenotypic difference observed between these strains and the P. aquaticum type strain was strongly impaired growth with rhamnose as the sole carbon source. This correlates with three different forms of pseudogenization of the l-rhamnose/proton symporter gene rhaT in the genomes of strains belonging to this clade. Phylogenetic analysis using gapA gene sequences and multi locus sequence analysis of the core genome showed that these strains formed a distinct clade within the genus Pectobacterium closely related to P. aquaticum. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values showed a clear discontinuity between the new clade and P. aquaticum. However, the calculated values are potentially consistent with either splitting or merging of this new clade with P. aquaticum. In support of the split, ANI coverages were higher within this new clade than between this new clade and P. aquaticum. The split is also consistent with the range of observed ANI or dDDH values that currently separate several accepted species within the genus Pectobacterium. On the basis of these data,strains A477-S1-J17T, A398-S21-F17, A535-S3-A17, A411-S4-F17, A113-S21-F16, FL63-S17 and FL60-S17 represent a novel species of the genus Pectobacterium, for which the name Pectobacterium quasiaquaticum sp. nov. is proposed. The type strain is A477-S1-J17T (=CFBP 8805T=LMG 32181T).
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences-Paris, 4 place 7 Jussieu, F-75 252 Paris, France
| | - Jacques Pédron
- Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences-Paris, 4 place 7 Jussieu, F-75 252 Paris, France
| | - Claire Bertrand
- Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences-Paris, 4 place 7 Jussieu, F-75 252 Paris, France
| | - Amandine Hecquet
- Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences-Paris, 4 place 7 Jussieu, F-75 252 Paris, France
| | - Marie-Anne Barny
- Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences-Paris, 4 place 7 Jussieu, F-75 252 Paris, France
| |
Collapse
|
24
|
Chen C, Li X, Bo Z, Du W, Fu L, Tian Y, Cui S, Shi Y, Xie H. Occurrence, Characteristics, and PCR-Based Detection of Pectobacterium polaris Causing Soft Rot of Chinese Cabbage in China. PLANT DISEASE 2021; 105:2880-2887. [PMID: 33834854 DOI: 10.1094/pdis-12-20-2752-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial soft rot is an important disease of Chinese cabbage (Brassica rapa L. ssp. pekinensis) in China and many other countries. Four pectinolytic bacterial strains (WBC1, WBC6, WBC9, and WBC11) were isolated from soft-rotted Chinese cabbage in Beijing, China. Based on 16S rDNA and pmrA gene sequence analyses, multilocus sequence analysis (MLSA), and genomic average nucleotide identity (ANI) analysis, these four strains were identified as Pectobacterium polaris. This species, previously reported from potato in countries not including China, is a new soft rot pathogen of Chinese cabbage in China. Biochemical characteristics of these P. polaris strains tested by Biolog were mostly consistent with those of P. polaris NIBIO1006T. Their pathogenicity on Chinese cabbage is temperature dependent, with all four strains as well as the type strain exhibiting high pathogenicity at 23°C and 28°C. These four strains infected Lactuca sativa, Daucus carota, Solanum tuberosum, and Capsicum annuum by artificial inoculation. Specific polymerase chain reaction (PCR) and quantitative PCR (qPCR) primers for P. polaris were developed on the basis of its specific gene sequences (determined by genome comparison methods). Both PCR and qPCR detected not only genomic DNA of P. polaris but also the pathogen from diseased plant tissues even before external symptoms appeared. Their detection sensitivities were as low as 1 pg and 100 pg genomic DNA of P. polaris, respectively. To our knowledge, this study is the first to both report the emergence of P. polaris on Chinese cabbage in China and provide rapid and accurate PCR/qPCR-based detection systems specific for P. polaris.
Collapse
Affiliation(s)
- Changlong Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Xiaoying Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Zijing Bo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
- School of Life Sciences, University of Yantai, Shandong 264005, China
| | - Wenxiao Du
- School of Life Sciences, University of Yantai, Shandong 264005, China
| | - Lu Fu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Yu Tian
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Shuang Cui
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| | - Yanxia Shi
- School Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China
| |
Collapse
|
25
|
Quantitative Real-Time PCR Assay for the Detection of Pectobacterium parmentieri, a Causal Agent of Potato Soft Rot. PLANTS 2021; 10:plants10091880. [PMID: 34579412 PMCID: PMC8468878 DOI: 10.3390/plants10091880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Pectobacterium parmentieri is a plant-pathogenic bacterium, recently attributed as a separate species, which infects potatoes, causing soft rot in tubers. The distribution of P. parmentieri seems to be global, although the bacterium tends to be accommodated to moderate climates. Fast and accurate detection systems for this pathogen are needed to study its biology and to identify latent infection in potatoes and other plant hosts. The current paper reports on the development of a specific and sensitive detection protocol based on a real-time PCR with a TaqMan probe for P. parmentieri, and its evaluation. In sensitivity assays, the detection threshold of this protocol was 102 cfu/mL on pure bacterial cultures and 102–103 cfu/mL on plant material. The specificity of the protocol was evaluated against P. parmentieri and more than 100 strains of potato-associated species of Pectobacterium and Dickeya. No cross-reaction with the non-target bacterial species, or loss of sensitivity, was observed. This specific and sensitive diagnostic tool may reveal a wider distribution and host range for P. parmentieri and will expand knowledge of the life cycle and environmental preferences of this pathogen.
Collapse
|
26
|
Ma X, Stodghill P, Gao M, Perry KL, Swingle B. Identification of Pectobacterium versatile Causing Blackleg of Potato in New York State. PLANT DISEASE 2021; 105:2585-2594. [PMID: 33404272 DOI: 10.1094/pdis-09-20-2089-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soft rot bacteria classified in the Pectobacteriaceae (SRP), including Pectobacterium and Dickeya spp., are responsible for soft rot and blackleg diseases of potato. Since 2014, blackleg outbreaks caused by D. dianthicola have increased in the United States and Canada. Our previous study found that the most abundant causal organisms of blackleg disease in New York State were P. parmentieri and D. dianthicola, with the latter being the only Dickeya species reported. In the present study, we identified and characterized pathogenic SRP bacteria from 19 potato samples collected in New York State during the 2017 growing season. We used genome sequence comparison to determine the pathogens' species. We found eight P. versatile, one P. atrosepticum, two P. carotovorum, two P. parmentieri, and six D. dianthicola isolates in our 2017 SRP collection. This is the first time that P. versatile has been reported to cause potato blackleg disease in New York State. We determined the phylogenetic relationships between the SRP strains by using 151 single-copy orthologous gene sequences shared among the set of bacteria in our analysis, which provided better resolution than phylogenies constructed with the dnaX gene.
Collapse
Affiliation(s)
- Xing Ma
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Paul Stodghill
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, U.S. Department of Agriculture Agricultural Research Service, Ithaca, NY 14853, U.S.A
| | - Miao Gao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, and Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, U.S. Department of Agriculture Agricultural Research Service, Ithaca, NY 14853, U.S.A
| |
Collapse
|
27
|
Species of Dickeya and Pectobacterium Isolated during an Outbreak of Blackleg and Soft Rot of Potato in Northeastern and North Central United States. Microorganisms 2021; 9:microorganisms9081733. [PMID: 34442812 PMCID: PMC8401272 DOI: 10.3390/microorganisms9081733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
An outbreak of bacterial soft rot and blackleg of potato has occurred since 2014 with the epicenter being in the northeastern region of the United States. Multiple species of Pectobacterium and Dickeya are causal agents, resulting in losses to commercial and seed potato production over the past decade in the Northeastern and North Central United States. To clarify the pathogen present at the outset of the epidemic in 2015 and 2016, a phylogenetic study was made of 121 pectolytic soft rot bacteria isolated from symptomatic potato; also included were 27 type strains of Dickeya and Pectobacterium species, and 47 historic reference strains. Phylogenetic trees constructed based on multilocus sequence alignments of concatenated dnaJ, dnaX and gyrB fragments revealed the epidemic isolates to cluster with type strains of D. chrysanthemi, D. dianthicola, D. dadantii, P. atrosepticum, P. brasiliense, P. carotovorum, P. parmentieri, P. polaris, P. punjabense, and P. versatile. Genetic diversity within D. dianthicola strains was low, with one sequence type (ST1) identified in 17 of 19 strains. Pectobacterium parmentieri was more diverse, with ten sequence types detected among 37 of the 2015–2016 strains. This study can aid in monitoring future shifts in potato soft rot pathogens within the U.S. and inform strategies for disease management.
Collapse
|
28
|
Bartnik P, Jafra S, Narajczyk M, Czaplewska P, Czajkowski R. Pectobacterium parmentieri SCC 3193 Mutants with Altered Synthesis of Cell Surface Polysaccharides Are Resistant to N4-Like Lytic Bacteriophage ϕA38 (vB_Ppp_A38) but Express Decreased Virulence in Potato ( Solanum tuberosum L.) Plants. Int J Mol Sci 2021; 22:7346. [PMID: 34298965 PMCID: PMC8304393 DOI: 10.3390/ijms22147346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed.
Collapse
Affiliation(s)
- Przemyslaw Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
29
|
Xu P, Wang H, Qin C, Li Z, Lin C, Liu W, Miao W. Analysis of the Taxonomy and Pathogenic Factors of Pectobacterium aroidearum L6 Using Whole-Genome Sequencing and Comparative Genomics. Front Microbiol 2021; 12:679102. [PMID: 34276610 PMCID: PMC8282894 DOI: 10.3389/fmicb.2021.679102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Soft rot pectobacteria are devastating plant pathogens with a global distribution and a broad host range. Pectobacterium aroidearum L6, previously isolated from leaves of Syngonium podophyllum, is a pectolytic bacterial pathogen that causes typical soft rot on S. podophyllum. There is a shortage for genome data of P. aroidearum, which seriously hinders research on classification and pathogenesis of Pectobacterium. We present here the complete genome sequence of P. aroidearum L6. The L6 strain carries a single 4,995,896-bp chromosome with 53.10% G + C content and harbors 4,306 predicted protein-coding genes. We estimated in silico DNA-DNA hybridization and average nucleotide identity values in combination with the whole-genome-based phylogeny from 19 Pectobacterium strains including P. aroidearum L6. The results showed that L6 and PC1 formed a population distinct from other populations of the Pectobacterium genus. Phylogenetic analysis based on 16S rRNA and genome sequences showed a close evolutionary relationship among Pectobacterium species. Overall, evolutionary analysis showed that L6 was in the same branch with PC1. In comparison with 18 Pectobacterium spp. reference pathogens, strain L6 had 2,712 gene families, among which 1,632 gene families were identified as orthologous to those strains, as well as 1 putative unique gene family. We discovered 478 genes, 10.4% of the total of predicted genes, that were potentially related to pathogenesis using the Virulence Factors of Pathogenic Bacteria database. A total of 25 genes were related to toxins, 35 encoded plant cell-wall degrading enzymes, and 122 were involved in secretion systems. This study provides a foundation for a better understanding of the genomic structure of P. aroidearum and particularly offers information for the discovery of potential pathogenic factors and the development of more effective strategies against this pathogen.
Collapse
Affiliation(s)
- Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Huanwei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chunxiu Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Zengping Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chunhua Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
30
|
Pédron J, Schaerer S, Kellenberger I, Van Gijsegem F. Early Emergence of Dickeya solani Revealed by Analysis of Dickeya Diversity of Potato Blackleg and Soft Rot Causing Pathogens in Switzerland. Microorganisms 2021; 9:microorganisms9061187. [PMID: 34072830 PMCID: PMC8226965 DOI: 10.3390/microorganisms9061187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Blackleg and soft rot in potato caused by Pectobacterium and Dickeya enterobacteral genera are among the most destructive bacterial diseases in this crop worldwide. In Europe, over the last century, Pectobacterium spp. were the predominant causal agents of these diseases. As for Dickeya, before the large outbreak caused by D. solani in the 2000s, only D. dianthicola was isolated in Europe. The population dynamics of potato blackleg causing soft rot Pectobacteriaceae was, however, different in Switzerland as compared to that in other European countries with a high incidence (60 up to 90%) of Dickeya species (at the time called Erwinia chrysanthemi) already in the 1980s. To pinpoint what may underlie this Swiss peculiarity, we analysed the diversity present in the E. chrysanthemi Agroscope collection gathering potato isolates from 1985 to 2000s. Like elsewhere in Europe during this period, the majority of Swiss isolates belonged to D. dianthicola. However, we also identified a few isolates, such as D. chrysanthemi and D. oryzeae, two species that have not yet been reported in potatoes in Europe. Interestingly, this study allowed the characterisation of two "early" D. solani isolated in the 1990s. Genomic comparison between these early D. solani strains and strains isolated later during the large outbreak in the 2000s in Europe revealed only a few SNP and gene content differences, none of them affecting genes known to be important for virulence.
Collapse
Affiliation(s)
- Jacques Pédron
- Institute of Ecology and Environmental Sciences-Paris, Sorbonne Université, INRAE, 4 Place Jussieu, F-75252 Paris, France;
| | - Santiago Schaerer
- Agroscope Changins, Domaine de Recherche Protection des Végétaux, CH-1260 Nyon, Switzerland; (S.S.); (I.K.)
| | - Isabelle Kellenberger
- Agroscope Changins, Domaine de Recherche Protection des Végétaux, CH-1260 Nyon, Switzerland; (S.S.); (I.K.)
| | - Frédérique Van Gijsegem
- Institute of Ecology and Environmental Sciences-Paris, Sorbonne Université, INRAE, 4 Place Jussieu, F-75252 Paris, France;
- Correspondence:
| |
Collapse
|
31
|
Genome-Wide Analyses of the Temperature-Responsive Genetic Loci of the Pectinolytic Plant Pathogenic Pectobacterium atrosepticum. Int J Mol Sci 2021; 22:ijms22094839. [PMID: 34063632 PMCID: PMC8125463 DOI: 10.3390/ijms22094839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.
Collapse
|
32
|
Lu Q, Yan F, Liu Y, Li Q, Yang M, Liu P. Comparative Genomic Analyses Reveal Functional Insights Into Key Determinants of the Pathogenesis of Pectobacterium actinidiae in Kiwifruit. PHYTOPATHOLOGY 2021; 111:789-798. [PMID: 33245255 DOI: 10.1094/phyto-07-20-0287-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Gram-negative bacterial species Pectobacterium actinidiae causes summer canker in kiwifruit plants. However, little is known about its virulence factors and mechanisms of genetic adaptation. We aimed to identify the key determinants that control the virulence of P. actinidiae in kiwifruit by genomic and functional analyses. Analysis of four P. actinidiae isolates indicated low genetic variability with an average of 98.7% genome-level sequence similarity and 82% shared protein-coding gene content. Phylogenetic analysis, based on both bulk single nucleotide polymorphisms (SNPs) and single-copy genes, revealed that P. actinidiae strains cluster into a single clade, which is closely related to the clades of P. odoriferum (species with a completely different host range). Through comparison between these two clades of strains, 746 unique core orthologs/genes were clustered in the clades of P. actinidiae, especially key virulence determinants involved in the biosynthesis of secretion systems (type III, IV, and VI), iron, flagellar structure, and the quorum-sensing system. Our results provide insights into the pathogenomics underlying the genetic diversification and evolution of pathogenicity in P. actinidiae species.
Collapse
Affiliation(s)
- Qi Lu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Fuhua Yan
- Lishui Academy of Agricultural and Forestry Sciences, Lishui 323000, People's Republic of China
| | - Yuanyuan Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qiaohong Li
- Kiwifruit Breeding and Utilization Key Laboratory, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, People's Republic of China
| | - Meng Yang
- School of Horticulture, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
33
|
Petrzik K, Kmoch M, Brázdová S, Ševčík R. Complete genome sequences of novel Berlinvirus and novel Certrevirus lytic for Pectobacterium sp. causing soft rot and black leg disease of potato. Virus Genes 2021; 57:302-305. [PMID: 33914264 DOI: 10.1007/s11262-021-01838-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022]
Abstract
Two novel dsDNA bacteriophages named Pectobacterium virus CB251 (PcCB251) and Pectobacterium virus CB7V (PcCB7V) targeting plant pathogen Pectobacterium parmentieri have been isolated and sequenced. The PcCB251 genome consists of 40,557 bp with G+C content of 48.6% and contains 47 predicted genes on a single strand. The phage is classified in genus Berlinvirus, family Autographiviridae. The PcCB7V phage has a circular dsDNA genome of 146,054 bp with G+C content of 50.4% and contains 269 predicted protein genes on both strands and 13 tRNA genes. The PcCB7V phage can be classified in genus Certrevirus, subfamily Vequintavirinae. Both novel bacteriophages have narrow host ranges, but they extend the list of candidates for phage-based control of pectolytic bacteria causing soft rot disease of potato.
Collapse
Affiliation(s)
- Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic.
| | - Martin Kmoch
- Potato Research Institute Havlíčkův Brod, Dobrovského 2366, Havlíčkův Brod, 580 01, Czech Republic
| | - Sára Brázdová
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic
| | - Rudolf Ševčík
- University of Chemistry and Technology Prague, Technická 1905/5, Prague 6-Dejvice, Prague, Czech Republic
| |
Collapse
|
34
|
Affinibrenneria salicis gen. nov. sp. nov. isolated from Salix matsudana bark canker. Arch Microbiol 2021; 203:3473-3481. [PMID: 33903975 DOI: 10.1007/s00203-021-02323-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
L3-3HAT, a Gram-negative-staining, facultatively anaerobic, motile bacterial strain, was isolated from the symptomatic bark of Salix matsudana canker in China. 16S rRNA gene analysis revealed that the novel strain shares the highest sequence similarity with Brenneria goodwinii FRB141T (95.5%). In phylogenetic trees based on four housekeeping genes (gyrB, rpoB, atpD, and infB) and the 16S rRNA gene sequence, the novel strain formed a separate branch from the five genera of the family Pectobacteriaceae (Lonsdalea, Brenneria, Dickeya, Pectobacterium, and Sodalis), suggesting that the novel strain should belong to a novel species of a novel genus within the family Pectobacteriaceae. The result was also supported by phylogenomics, amino acid identity and average nucleotide identity. The major fatty acids were C14:0, C16:0, C17:0 cyclo, and C19:0 cyclo ɷ8c. Genome analysis showed that the novel strain has a large genome (5.89 Mb) with 5,052 coding genes, including 181 virulence genes by searching the pathogen-host interactions database (PHI-base), indicating that the novel strain is a potential pathogen of plants and animals. Based on phenotypic and genotypic characteristics, the L3-3HAT strain represents a novel species of a novel genus in the Pectobacteriaceae family, for which the name Affinibrenneria salicis gen nov. sp. nov. is proposed. The strain type is L3-3HAT (= CFCC 15588T = LMG 31209T).
Collapse
|
35
|
European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen. Microorganisms 2021; 9:microorganisms9040781. [PMID: 33917923 PMCID: PMC8068253 DOI: 10.3390/microorganisms9040781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Enterobacteria belonging to the Pectobacterium and Dickeya genera are responsible for soft rot and blackleg diseases occurring in many crops around the world. Since 2016, the number of described species has more than doubled. However, some new species, such as Pectobacterium punjabense, are often poorly characterized, and little is known about their genomic and phenotypic variation. Here, we explored several European culture collections and identified seven strains of P. punjabense. All were collected from potato blackleg symptoms, sometimes from a long time ago, i.e., the IFB5596 strain isolated almost 25 years ago. We showed that this species remains rare, with less than 0.24% of P. punjabense strains identified among pectinolytic bacteria present in the surveyed collections. The analysis of the genomic diversity revealed the non-clonal character of P. punjabense species. Furthermore, the strains showed aggressiveness differences. Finally, a qPCR Taqman assay was developed for rapid and specific strain characterization and for use in diagnostic programs.
Collapse
|
36
|
Biocontrol of Soft Rot Caused by Pectobacterium odoriferum with Bacteriophage phiPccP-1 in Kimchi Cabbage. Microorganisms 2021; 9:microorganisms9040779. [PMID: 33917817 PMCID: PMC8068257 DOI: 10.3390/microorganisms9040779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Pectobacterium odoriferum has recently emerged as a widely infective and destructive pathogen causing soft-rot disease in various vegetables. Bacteriophage phiPccP-1 isolated from Pyeongchang, South Korea, showed lytic activity against P. odoriferum Pco14 and two other Pectobacterium species. The transmission electron microscopy and genome phylograms revealed that phiPccP-1 belongs to the Unyawovirus genus, Studiervirinae subfamily of the Autographivirinae family. Genome comparison showed that its 40,487 bp double-stranded DNA genome shares significant similarity with Pectobacterium phage DU_PP_II with the identity reaching 98% of the genome. The phiPccP-1 application significantly inhibited the development of soft-rot disease in the mature leaves of the harvested Kimchi cabbage up to 48 h after Pco14 inoculation compared to the untreated leaves, suggesting that phiPccP-1 can protect Kimchi cabbage from soft-rot disease after harvest. Remarkably, bioassays with phiPccP-1 in Kimchi cabbage seedlings grown in the growth chamber successfully demonstrated its prophylactic and therapeutic potential in the control of bacterial soft-rot disease in Kimchi cabbage. These results indicate that bacteriophage phiPccP-1 can be used as a potential biological agent for controlling soft rot disease in Kimchi cabbage.
Collapse
|
37
|
Wang H, Wang Y, Humphris S, Nie W, Zhang P, Wright F, Campbell E, Hu B, Fan J, Toth I. Pectobacterium atrosepticum KDPG aldolase, Eda, participates in the Entner-Doudoroff pathway and independently inhibits expression of virulence determinants. MOLECULAR PLANT PATHOLOGY 2021; 22:271-283. [PMID: 33301200 PMCID: PMC7814964 DOI: 10.1111/mpp.13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 05/22/2023]
Abstract
Pectobacterium carotovorum has an incomplete Entner-Doudoroff (ED) pathway, including enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase (Eda) but lacking phosphogluconate dehydratase (Edd), while P. atrosepticum (Pba) has a complete pathway. To understand the role of the ED pathway in Pectobacterium infection, mutants of these two key enzymes, Δeda and Δedd, were constructed in Pba SCRI1039. Δeda exhibited significant decreased virulence on potato tubers and colonization in planta and was greatly attenuated in pectinase activity and the ability to use pectin breakdown products, including polygalacturonic acid (PGA) and galacturonic acid. These reduced phenotypes were restored following complementation with an external vector expressing eda. Quantitative reverse transcription PCR analysis revealed that expression of the pectinase genes pelA, pelC, pehN, pelW, and pmeB in Δeda cultured in pyruvate, with or without PGA, was significantly reduced compared to the wild type, while genes for virulence regulators (kdgR, hexR, hexA, and rsmA) remained unchanged. However, Δedd showed similar phenotypes to the wild type. To our knowledge, this is the first demonstration that disruption of eda has a feedback effect on inhibiting pectin degradation and that Eda is involved in building the arsenal of pectinases needed during infection by Pectobacterium.
Collapse
Affiliation(s)
- Huan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
- Institute of Agricultural Science of Taihu Lake DistrictSuzhouChina
| | - Yujie Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Sonia Humphris
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| | - Weihua Nie
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Pengfei Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Frank Wright
- Bioinformatics and StatisticsJames Hutton InstituteDundeeUK
| | - Emma Campbell
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| | - Baishi Hu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jiaqin Fan
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Ian Toth
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| |
Collapse
|
38
|
Oulghazi S, Sarfraz S, Zaczek-Moczydłowska MA, Khayi S, Ed-Dra A, Lekbach Y, Campbell K, Novungayo Moleleki L, O’Hanlon R, Faure D. Pectobacterium brasiliense: Genomics, Host Range and Disease Management. Microorganisms 2021; 9:E106. [PMID: 33466309 PMCID: PMC7824751 DOI: 10.3390/microorganisms9010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Pectobacterium brasiliense (Pbr) is considered as one of the most virulent species among the Pectobacteriaceae. This species has a broad host range within horticulture crops and is well distributed elsewhere. It has been found to be pathogenic not only in the field causing blackleg and soft rot of potato, but it is also transmitted via storage causing soft rot of other vegetables. Genomic analysis and other cost-effective molecular detection methods such as a quantitative polymerase chain reaction (qPCR) are essential to investigate the ecology and pathogenesis of the Pbr. The lack of fast, field deployable point-of-care testing (POCT) methods, specific control strategies and current limited genomic knowledge make management of this species difficult. Thus far, no comprehensive review exists about Pbr, however there is an intense need to research the biology, detection, pathogenicity and management of Pbr, not only because of its fast distribution across Europe and other countries but also due to its increased survival to various climatic conditions. This review outlines the information available in peer-reviewed literature regarding host range, detection methods, genomics, geographical distribution, nomenclature and taxonomical evolution along with some of the possible management and control strategies. In summary, the conclusions and a further directions highlight the management of this species.
Collapse
Affiliation(s)
- Said Oulghazi
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP.11201, Zitoune Meknes 50000, Morocco; (S.O.); (A.E.-D.)
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS University Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Sohaib Sarfraz
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Maja A. Zaczek-Moczydłowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; (M.A.Z.-M.); (K.C.)
| | - Slimane Khayi
- Biotechnology Research Unit, CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| | - Abdelaziz Ed-Dra
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP.11201, Zitoune Meknes 50000, Morocco; (S.O.); (A.E.-D.)
| | - Yassir Lekbach
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China;
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; (M.A.Z.-M.); (K.C.)
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Richard O’Hanlon
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, UK;
- Department of Agriculture, Food and the Marine, D02 WK12 Dublin 2, Ireland
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS University Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
39
|
Portier P, Pédron J, Taghouti G, Dutrieux C, Barny MA. Updated Taxonomy of Pectobacterium Genus in the CIRM-CFBP Bacterial Collection: When Newly Described Species Reveal "Old" Endemic Population. Microorganisms 2020; 8:microorganisms8091441. [PMID: 32962307 PMCID: PMC7565848 DOI: 10.3390/microorganisms8091441] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Bacterial collections are invaluable tools for microbiologists. However, their practical use is compromised by imprecise taxonomical assignation of bacterial strains. This is particularly true for soft rotting plant pathogens of the Pectobacterium genus. We analysed the taxonomic status of 265 Pectobacterium strains deposited at CIRM-CFBP collection from 1944 to 2020. This collection gathered Pectobacterium strains isolated in 27 countries from 32 plant species representing 17 botanical families or from nonhost environments. The MLSA approach completed by genomic analysis of 15 strains was performed to update the taxonomic status of these 265 strains. The results showed that the CIRM-CFBP Pectobacterium collection harboured at least one strain of each species, with the exception of P. polonicum. Yet, seven strains could not be assigned to any of the described species and may represent at least two new species. Surprisingly, P. versatile, recently described in 2019, is the most prevalent species among CIRM-CFBP strains. An analysis of P. versatile strains revealed that this species is pandemic and isolated from various host plants and environments. At the opposite, other species gathered strains isolated from only one botanical family or exclusively from a freshwater environment. Our work also revealed new host plants for several Pectobacterium spp.
Collapse
Affiliation(s)
- Perrine Portier
- IRHS-UMR1345, CIRM-CFBP, Institut Agro, INRAE, Université d’Angers, SFR 4207 QuaSav, 49071 Beaucouzé, France; (P.P.); (G.T.); (C.D.)
| | - Jacques Pédron
- Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences-Paris, 4 place Jussieu, F-75 252 Paris, France;
| | - Géraldine Taghouti
- IRHS-UMR1345, CIRM-CFBP, Institut Agro, INRAE, Université d’Angers, SFR 4207 QuaSav, 49071 Beaucouzé, France; (P.P.); (G.T.); (C.D.)
| | - Cécile Dutrieux
- IRHS-UMR1345, CIRM-CFBP, Institut Agro, INRAE, Université d’Angers, SFR 4207 QuaSav, 49071 Beaucouzé, France; (P.P.); (G.T.); (C.D.)
| | - Marie-Anne Barny
- Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences-Paris, 4 place Jussieu, F-75 252 Paris, France;
- Correspondence:
| |
Collapse
|
40
|
Jee S, Choi JG, Lee YG, Kwon M, Hwang I, Heu S. Distribution of Pectobacterium Species Isolated in South Korea and Comparison of Temperature Effects on Pathogenicity. THE PLANT PATHOLOGY JOURNAL 2020; 36:346-354. [PMID: 32788893 PMCID: PMC7403519 DOI: 10.5423/ppj.oa.09.2019.0235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Pectobacterium, which causes soft rot disease, is divided into 18 species based on the current classification. A total of 225 Pectobacterium strains were isolated from 10 main cultivation regions of potato (Solanum tuberosum), napa cabbage (Brassica rapa subsp. pekinensis), and radish (Raphanus sativus) in South Korea; 202 isolates (90%) were from potato, 18 from napa cabbage, and five from radish. Strains were identified using the Biolog test and phylogenetic analysis. The pathogenicity and swimming motility were tested at four different temperatures. Pectolytic activity and plant cell-wall degrading enzyme (PCWDE) activity were evaluated for six species (P. carotovorum subsp. carotovorum, Pcc; P. odoriferum, Pod; P. brasiliense, Pbr; P. versatile, Pve; P. polaris, Ppo; P. parmentieri, Ppa). Pod, Pcc, Pbr, and Pve were the most prevalent species. Although P. atrosepticum is a widespread pathogen in other countries, it was not found here. This is the first report of Ppo, Ppa, and Pve in South Korea. Pectobacterium species showed stronger activity at 28°C and 32°C than at 24°C, and showed weak activity at 37°C. Pectolytic activity decreased with increasing temperature. Activity of pectate lyase was not significantly affected by temperature. Activity of protease, cellulase, and polygalacturonase decreased with increasing temperature. The inability of isolated Pectobacterium to soften host tissues at 37°C may be a consequence of decreased motility and PCWDE activity. These data suggest that future increases in temperature as a result of climate change may affect the population dynamics of Pectobacterium.
Collapse
Affiliation(s)
- Samnyu Jee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Jang-Gyu Choi
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Young-Gyu Lee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Min Kwon
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| |
Collapse
|
41
|
Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco. Microorganisms 2020; 8:microorganisms8060895. [PMID: 32545839 PMCID: PMC7356628 DOI: 10.3390/microorganisms8060895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Dickeya and Pectobacterium pathogens are causative agents of several diseases that affect many crops worldwide. This work investigated the species diversity of these pathogens in Morocco, where Dickeya pathogens have only been isolated from potato fields recently. To this end, samplings were conducted in three major potato growing areas over a three-year period (2015-2017). Pathogens were characterized by sequence determination of both the gapA gene marker and genomes using Illumina and Oxford Nanopore technologies. We isolated 119 pathogens belonging to P. versatile (19%), P. carotovorum (3%), P. polaris (5%), P. brasiliense (56%) and D. dianthicola (17%). Their taxonomic assignation was confirmed by draft genome analyses of 10 representative strains of the collected species. D. dianthicola were isolated from a unique area where a wide species diversity of pectinolytic pathogens was observed. In tuber rotting assays, D. dianthicola isolates were more aggressive than Pectobacterium isolates. The complete genome sequence of D. dianthicola LAR.16.03.LID was obtained and compared with other D. dianthicola genomes from public databases. Overall, this study highlighted the ecological context from which some Dickeya and Pectobacterium species emerged in Morocco, and reported the first complete genome of a D. dianthicola strain isolated in Morocco that will be suitable for further epidemiological studies.
Collapse
|
42
|
Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, Wang H, Yang L, Hu B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. MOLECULAR PLANT PATHOLOGY 2020; 21:871-891. [PMID: 32267092 PMCID: PMC7214478 DOI: 10.1111/mpp.12936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.
Collapse
Affiliation(s)
- Jiaqin Fan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Lin Ma
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Chendi Zhao
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jingyuan Yan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Shu Che
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhaowei Zhou
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Huan Wang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Liuke Yang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Baishi Hu
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
43
|
Sarfraz S, Sahi ST, Oulghazi S, Riaz K, Rajput NA, Atiq M, Tufail MR, Hameed A, Faure D. Species Diversity of Dickeya and Pectobacterium Causing Potato Blackleg Disease in Pakistan. PLANT DISEASE 2020; 104:1492-1499. [PMID: 32150503 DOI: 10.1094/pdis-08-19-1743-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Potato blackleg is caused by a diverse species of pectinolytic bacteria. In Pakistan, approximately 90% of the pathogens involved belong to Pectobacterium atrosepticum. Survey (2014 to 2017), sampling, and isolation from different potato growing areas of Punjab, Pakistan depicted an overall disease incidence of approximately 15%. Thirty-six pectinolytic strains confirmed through biochemical and pathogenicity testing were characterized via gapA gene to identify them at the species level. To further validate the identification, one strain from each species SS26 (P. atrosepticum), SS28 (Pectobacterium polaris), SS70 (Dickeya dianthicola), SS90 (Pectobacterium parmentieri), SS95 (Pectobacterium punjabense), and SS96 (Pectobacterium versatile) were selected for draft genome sequencing and multilocus sequence analysis of 13 housekeeping genes (fusA, rpoD, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA, and rplB). Phylogenetic analysis revealed considerable genetic diversity in the genus Pectobacterium. In silico DNA-DNA hybridization and average nucleotide identity values of the strains selected for genome sequencing were determined with other reference Pectobacterium and Dickeya strains. Moreover, all six representative strains were also phenotypically characterized on the basis of metabolism of different carbon sources. Overall, on the basis of genotypic and phenotypic characteristics, these 36 isolates were grouped into six species: P. atrosepticum, P. versatile, P. parmentieri, P. polaris, P. punjabense, and D. dianthicola.
Collapse
Affiliation(s)
- Sohaib Sarfraz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
| | - Shahbaz Talib Sahi
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
| | - Saïd Oulghazi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Kashif Riaz
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
| | - Nasir Ahmed Rajput
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
| | - Muhammad Rizwan Tufail
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
| | - Akhtar Hameed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
| | - Denis Faure
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
44
|
Li X, Fu L, Chen C, Sun W, Tian Y, Xie H. Characteristics and Rapid Diagnosis of Pectobacterium carotovorum ssp. Associated With Bacterial Soft Rot of Vegetables in China. PLANT DISEASE 2020; 104:1158-1166. [PMID: 32053476 DOI: 10.1094/pdis-05-19-1033-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pectobacterium carotovorum, a causal agent of vegetable soft rot, contains three valid subspecies: P. carotovorum subsp. carotovorum (Pcc), P. carotovorum subsp. brasiliensis (Pcb), and P. carotovorum subsp. odoriferum (Pco). Using 16S rDNA sequencing and genus-specific PCR, we identified 72 P. carotovorum strains from Chinese cabbage, bok choy, and celery and assessed their pathogenicity on Chinese cabbage petioles and potato tubers. Based on phylogenetic analysis of pmrA sequences and confirmation by subspecies-specific PCR, the strains were divided into 18 Pcc, 29 Pco, and 25 Pcb. Several characteristic features were also assessed and supported the distinctiveness of the Pco strains. All P. carotovorum strains caused soft rot symptoms on Chinese cabbage and potato, but the Pco strains exhibited the greatest severity. We developed a conventional PCR and a quantitative PCR (qPCR) assay for the identification of Pco based on its specific srlE gene encoding sorbitol-specific phosphotransferase. These two methods could specifically amplify the expected products of 674 and 108 bp, respectively, from all of the Pco strains. The assays demonstrated high sensitivity and could detect as little as 1 and 100 pg/µl of bacterial genomic DNA, respectively. Both assays could also detect the pathogens directly from plant tissues infected with as little as 2.5 × 10-2 CFU/mg of Pco, even before external symptoms appeared. These assays constitute effective tools for disease diagnosis and the rapid identification of soft rot pathogens.
Collapse
Affiliation(s)
- Xiaoying Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, People's Republic of China
| | - Lu Fu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, People's Republic of China
| | - Changlong Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, People's Republic of China
| | - Wangwang Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, People's Republic of China
| | - Yu Tian
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, People's Republic of China
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, People's Republic of China
| |
Collapse
|
45
|
Pasanen M, Waleron M, Schott T, Cleenwerck I, Misztak A, Waleron K, Pritchard L, Bakr R, Degefu Y, van der Wolf J, Vandamme P, Pirhonen M. Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like Type III secretion system and low virulence. Int J Syst Evol Microbiol 2020; 70:2440-2448. [PMID: 32100697 PMCID: PMC7395620 DOI: 10.1099/ijsem.0.004057] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
Pectobacterium strains isolated from potato stems in Finland, Poland and the Netherlands were subjected to polyphasic analyses to characterize their genomic and phenotypic features. Phylogenetic analysis based on 382 core proteins showed that the isolates clustered closest to Pectobacterium polaris but could be divided into two clades. Average nucleotide identity (ANI) analysis revealed that the isolates in one of the clades included the P. polaris type strain, whereas the second clade was at the border of the species P. polaris with a 96 % ANI value. In silico genome-to-genome comparisons between the isolates revealed values below 70%, patristic distances based on 1294 core proteins were at the level observed between closely related Pectobacterium species, and the two groups of bacteria differed in genome size, G+C content and results of amplified fragment length polymorphism and Biolog analyses. Comparisons between the genomes revealed that the isolates of the atypical group contained SPI-1-type Type III secretion island and genes coding for proteins known for toxic effects on nematodes or insects, and lacked many genes coding for previously characterized virulence determinants affecting rotting of plant tissue by soft rot bacteria. Furthermore, the atypical isolates could be differentiated from P. polaris by their low virulence, production of antibacterial metabolites and a citrate-negative phenotype. Based on the results of a polyphasic approach including genome-to-genome comparisons, biochemical and virulence assays, presented in this report, we propose delineation of the atypical isolates as a novel species Pectobacterium parvum, for which the isolate s0421T (CFBP 8630T=LMG 30828T) is suggested as a type strain.
Collapse
Affiliation(s)
- Miia Pasanen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Malgorzata Waleron
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Ilse Cleenwerck
- Ghent University, BCCM/LMG Bacteria Collection, Ghent, Belgium
| | - Agnieszka Misztak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Gdańsk, Poland
| | - Leighton Pritchard
- Information and Computational Sciences, The James Hutton Institute, Dundee, Scotland, UK
- Present address: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ramadan Bakr
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Present address: Department of Agricultural Botany, Faculty of Agriculture, Menoufia University, Shibin Elkom, Egypt
| | | | - Jan van der Wolf
- Wageningen University and Research, Bio-interactions and Plant Health, Wageningen, The Netherlands
| | - Peter Vandamme
- Ghent University, BCCM/LMG Bacteria Collection, Ghent, Belgium
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Development of PCR-Based Detection System for Soft Rot Pectobacteriaceae Pathogens Using Molecular Signatures. Microorganisms 2020; 8:microorganisms8030358. [PMID: 32131497 PMCID: PMC7143467 DOI: 10.3390/microorganisms8030358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Pectobacterium and Dickeya species, usually referred to as soft rot Enterobacteriaceae, are phytopathogenic genera of bacteria that cause soft rot and blackleg diseases and are responsible for significant yield losses in many crops across the globe. Diagnosis of soft rot disease is difficult through visual disease symptoms. Pathogen detection and identification methods based on cultural and morphological identification are time-consuming and not always reliable. A polymerase chain reaction (PCR)-based detection method with the species-specific primers is fast and reliable for detecting soft rot pathogens. We have developed a specific and sensitive detection system for some species of soft rot Pectobacteriaceae pathogens in the Pectobacterium and Dickeya genera based on the use of species-specific primers to amplify unique genomic segments. The specificities of primers were verified by PCR analysis of genomic DNA from 14 strains of Pectobacterium, 8 strains of Dickeya, and 6 strains of non-soft rot bacteria. This PCR assay provides a quick, simple, powerful, and reliable method for detection of soft rot bacteria.
Collapse
|
47
|
van den Bosch TJM, Niemi O, Welte CU. Single gene enables plant pathogenic Pectobacterium to overcome host-specific chemical defence. MOLECULAR PLANT PATHOLOGY 2020; 21:349-359. [PMID: 31872947 PMCID: PMC7036374 DOI: 10.1111/mpp.12900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/30/2019] [Accepted: 11/27/2019] [Indexed: 05/04/2023]
Abstract
Plants of the Brassicales order, including Arabidopsis and many common vegetables, produce toxic isothiocyanates to defend themselves against pathogens. Despite this defence, plant pathogenic microorganisms like Pectobacterium cause large yield losses in fields and during storage of crops. The bacterial gene saxA was previously found to encode isothiocyanate hydrolase that degrades isothiocyanates in vitro. Here we demonstrate in planta that saxA is a virulence factor that can overcome the chemical defence system of Brassicales plants. Analysis of the distribution of saxA genes in Pectobacterium suggests that saxA from three different phylogenetic origins are present within this genus. Deletion of saxA genes representing two of the most common classes from P. odoriferum and P. versatile resulted in significantly reduced virulence on Arabidopsis thaliana and Brassica oleracea. Furthermore, expressing saxA from a plasmid in a potato-specific P. parmentieri strain that does not naturally harbour this gene significantly increased the ability of the strain to macerate Arabidopsis. These findings suggest that a single gene may have a significant role in defining the host range of a plant pathogen.
Collapse
Affiliation(s)
- Tijs J. M. van den Bosch
- Department of MicrobiologyInstitute for Water and Wetland Research, Radboud UniversityNijmegenNetherlands
| | - Outi Niemi
- Viikki Plant Science CentreFaculty of Biological and Environmental SciencesUniversity of HelsinkiFinland
| | - Cornelia U. Welte
- Department of MicrobiologyInstitute for Water and Wetland Research, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
48
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
49
|
Portier P, Pédron J, Taghouti G, Fischer-Le Saux M, Caullireau E, Bertrand C, Laurent A, Chawki K, Oulgazi S, Moumni M, Andrivon D, Dutrieux C, Faure D, Hélias V, Barny MA. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int J Syst Evol Microbiol 2019; 69:3207-3216. [PMID: 31343401 DOI: 10.1099/ijsem.0.003611] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Pectobacteriumcarotovorum species corresponds to a complex, including two subspecies with validly published names, two proposed subspecies and two new species, Pectobacterium polaris and Pectobacterium aquaticum. Recent studies suggested that this complex needed revision. We examined the taxonomic status of 144 Pectobacterium strains isolated from a wide range of plant species, various geographical origins and waterways. Sequences of the leuS, dnaX and recA housekeeping genes clustered 114 of these Pectobacterium strains together within a not yet described clade. We sequenced eight strains of this clade and analysed them together with the 102 Pectobacterium genomes available in the NCBI database. Phylogenetic analysis, average nucleotide identity calculation and in silico DNA-DNA hybridization allowed us to differentiate seven clades. This led us to propose the elevation of Pectobacterium carotovorumsubsp. odoriferum to species level as Pectobacteriumodoriferum sp. nov. (type strain CFBP 1878T=LMG 5863T=NCPPB 3839T=ICMP 11533T), the proposal of Pectobacteriumactinidiae sp. nov. (type strain KKH3=LMG 26003 T=KCTC 23131T) and Pectobacteriumbrasiliense sp. nov. (type strain CFBP 6617T= LMG 21371T=NCPPB 4609T), to emend the description of Pectobacterium carotovorum (type strain CFBP 2046T=LMG 2404T=NCPPB 312T=ICMP 5702T), and to propose a novel species, Pectobacterium versatile sp. nov (type strain CFBP6051T= NCPPB 3387T=ICMP 9168T) which includes the strains previously described as 'Candidatus Pectobacterium maceratum'. Phenotypic analysis performed using Biolog GENIII plates on eight strains of P. versatile sp. nov. and related strains completed our analysis.
Collapse
Affiliation(s)
- Perrine Portier
- IRHS, CIRM-CFBP, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Jacques Pédron
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences-Paris, 4 place Jussieu, F-75 252 Paris, France
| | - Géraldine Taghouti
- IRHS, CIRM-CFBP, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marion Fischer-Le Saux
- IRHS, CIRM-CFBP, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Emma Caullireau
- IRHS, CIRM-CFBP, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Claire Bertrand
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences-Paris, 4 place Jussieu, F-75 252 Paris, France
| | - Angélique Laurent
- FN3PT/RD3PT, French Federation of Seed Potato Growers, 75008, Paris, France
| | - Khaoula Chawki
- FN3PT/RD3PT, French Federation of Seed Potato Growers, 75008, Paris, France
| | - Saïd Oulgazi
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS Univ. Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.,Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP11201 Zitoune, 50 000, Meknes, Morocco
| | - Mohedine Moumni
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP11201 Zitoune, 50 000, Meknes, Morocco
| | - Didier Andrivon
- IGEPP, Agrocampus Ouest, INRA, University Rennes 1, 35653 Le Rheu Cedex, France
| | - Cécile Dutrieux
- IRHS, CIRM-CFBP, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS Univ. Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Valérie Hélias
- FN3PT/RD3PT, French Federation of Seed Potato Growers, 75008, Paris, France
| | - Marie-Anne Barny
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences-Paris, 4 place Jussieu, F-75 252 Paris, France
| |
Collapse
|
50
|
Waleron M, Misztak A, Waleron M, Franczuk M, Jońca J, Wielgomas B, Mikiciński A, Popović T, Waleron K. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst Appl Microbiol 2019; 42:275-283. [DOI: 10.1016/j.syapm.2018.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 11/24/2022]
|