1
|
Diver P, Ward BA, Cunliffe M. Physiological and morphological plasticity in response to nitrogen availability of a yeast widely distributed in the open ocean. FEMS Microbiol Ecol 2024; 100:fiae053. [PMID: 38599628 PMCID: PMC11062419 DOI: 10.1093/femsec/fiae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024] Open
Abstract
Yeasts are prevalent in the open ocean, yet we have limited understanding of their ecophysiological adaptations, including their response to nitrogen availability, which can have a major role in determining the ecological potential of other planktonic microbes. In this study, we characterized the nitrogen uptake capabilities and growth responses of marine-occurring yeasts. Yeast isolates from the North Atlantic Ocean were screened for growth on diverse nitrogen substrates, and across a concentration gradient of three environmentally relevant nitrogen substrates: nitrate, ammonium, and urea. Three strains grew with enriched nitrate while two did not, demonstrating that nitrate utilization is present but not universal in marine yeasts, consistent with existing knowledge of nonmarine yeast strains. Naganishia diffluens MBA_F0213 modified the key functional trait of cell size in response to nitrogen concentration, suggesting yeast cell morphology changes along chemical gradients in the marine environment. Meta-analysis of the reference DNA barcode in public databases revealed that the genus Naganishia has a global ocean distribution, strengthening the environmental applicability of the culture-based observations. This study provides novel quantitative understanding of the ecophysiological and morphological responses of marine-derived yeasts to variable nitrogen availability in vitro, providing insight into the functional ecology of yeasts within pelagic open ocean environments.
Collapse
Affiliation(s)
- Poppy Diver
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Ben A Ward
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom
| |
Collapse
|
2
|
Leo P, de Melo Texeira M, Chander AM, Singh NK, Simpson AC, Yurkov A, Karouia F, Stajich JE, Mason CE, Venkateswaran K. Genomic characterization and radiation tolerance of Naganishia kalamii sp. nov. and Cystobasidium onofrii sp. nov. from Mars 2020 mission assembly facilities. IMA Fungus 2023; 14:15. [PMID: 37568226 PMCID: PMC10422843 DOI: 10.1186/s43008-023-00119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023] Open
Abstract
During the construction and assembly of the Mars 2020 mission components at two different NASA cleanrooms, several fungal strains were isolated. Based on their colony morphology, two strains that showed yeast-like appearance were further characterized for their phylogenetic position. The species-level classification of these two novel strains, using traditional colony and cell morphology methods combined with the phylogenetic reconstructions using multi-locus sequence analysis (MLSA) based on several gene loci (ITS, LSU, SSU, RPB1, RPB2, CYTB and TEF1), and whole genome sequencing (WGS) was carried out. This polyphasic taxonomic approach supported the conclusion that the two basidiomycetous yeasts belong to hitherto undescribed species. The strain FJI-L2-BK-P3T, isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility, was placed in the Naganishia albida clade (Filobasidiales, Tremellomycetes), but is genetically and physiologically different from other members of the clade. Another yeast strain FKI-L6-BK-PAB1T, isolated from the Kennedy Space Center Payload Hazardous and Servicing Facility, was placed in the genus Cystobasidium (Cystobasidiales, Cystobasidiomycetes) and is distantly related to C. benthicum. Here we propose two novel species with the type strains, Naganishia kalamii sp. nov. (FJI-L2-BK-P3T = NRRL 64466 = DSM 115730) and Cystobasidium onofrii sp. nov. (FKI-L6-BK-PAB1T = NRRL 64426 = DSM 114625). The phylogenetic analyses revealed that single gene phylogenies (ITS or LSU) were not conclusive, and MLSA and WGS-based phylogenies were more advantageous for species discrimination in the two genera. The genomic analysis predicted proteins associated with dehydration and desiccation stress-response and the presence of genes that are directly related to osmotolerance and psychrotolerance in both novel yeasts described. Cells of these two newly-described yeasts were exposed to UV-C radiation and compared with N. onofrii, an extremophilic UV-C resistant cold-adapted Alpine yeast. Both novel species were UV resistant, emphasizing the need for collecting and characterizing extremotolerant microbes, including yeasts, to improve microbial reduction techniques used in NASA planetary protection programs.
Collapse
Affiliation(s)
- Patrick Leo
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Mestre, Italy
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'università snc, 01100, Viterbo, Italy
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-103, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Marcus de Melo Texeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Atul M Chander
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-103, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Nitin K Singh
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-104, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Anna C Simpson
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-103, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, PO BOX 1 MS 239/4, Moffett Field, CA, 94035, USA
- Space Research Within Reach, San Francisco, CA, 941110, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of CA-Riverside, Riverside, CA, 92521, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Kasthuri Venkateswaran
- NASA-Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group, California Institute of Technology, M/S 245-104, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA.
| |
Collapse
|
3
|
Nuppunen-Puputti M, Kietäväinen R, Kukkonen I, Bomberg M. Implications of a short carbon pulse on biofilm formation on mica schist in microcosms with deep crystalline bedrock groundwater. Front Microbiol 2023; 14:1054084. [PMID: 36819068 PMCID: PMC9932282 DOI: 10.3389/fmicb.2023.1054084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Microbial life in the deep subsurface occupies rock surfaces as attached communities and biofilms. Previously, epilithic Fennoscandian deep subsurface bacterial communities were shown to host genetic potential, especially for heterotrophy and sulfur cycling. Acetate, methane, and methanol link multiple biogeochemical pathways and thus represent an important carbon and energy source for microorganisms in the deep subsurface. In this study, we examined further how a short pulse of low-molecular-weight carbon compounds impacts the formation and structure of sessile microbial communities on mica schist surfaces over an incubation period of ∼3.5 years in microcosms containing deep subsurface groundwater from the depth of 500 m, from Outokumpu, Finland. The marker gene copy counts in the water and rock phases were estimated with qPCR, which showed that bacteria dominated the mica schist communities with a relatively high proportion of epilithic sulfate-reducing bacteria in all microcosms. The dominant bacterial phyla in the microcosms were Proteobacteria, Firmicutes, and Actinobacteria, whereas most fungal genera belonged to Ascomycota and Basidiomycota. Dissimilarities between planktic and sessile rock surface microbial communities were observed, and the supplied carbon substrates led to variations in the bacterial community composition.
Collapse
Affiliation(s)
- Maija Nuppunen-Puputti
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland,*Correspondence: Maija Nuppunen-Puputti,
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
4
|
Szulc J, Cichowicz R, Gutarowski M, Okrasa M, Gutarowska B. Assessment of Dust, Chemical, Microbiological Pollutions and Microclimatic Parameters of Indoor Air in Sports Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1551. [PMID: 36674305 PMCID: PMC9865041 DOI: 10.3390/ijerph20021551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/13/2023]
Abstract
The aim of this study was to analyse the quality of indoor air in sport facilities in one of the sport centres in Poland with respect to microclimatic parameters (temperature, humidity, and air flow velocity), particulate matter concentrations (PM10, PM4, PM2.5, and PM1), gas concentrations (oxygen, ozone, hydrogen sulphide, sulphur dioxide, volatile organic compounds, and benzopyrene), and microbial contamination (the total number of bacteria, specifically staphylococci, including Staphylococcus aureus, haemolytic bacteria, Enterobacteriaceae, Pseudomonas fluorescens, actinomycetes, and the total number of fungi and xerophilic fungi). Measurements were made three times in May 2022 at 28 sampling points in 5 different sporting areas (the climbing wall, swimming pool, swimming pool changing room, and basketball and badminton courts) depending on the time of day (morning or afternoon) and on the outside building. The obtained results were compared with the standards for air quality in sports facilities. The air temperature (21−31 °C) was at the upper limit of thermal comfort, while the air humidity (RH < 40%) in the sports halls in most of the locations was below demanded values. The values for dust pollution in all rooms, except the swimming pool, exceeded the permissible limits, especially in the afternoons. Climatic conditions correlated with a high concentration of dust in the indoor air. Particulate matter concentrations of all fractions exceeded the WHO guidelines in all researched premises; the largest exceedances of standards occurred for PM2.5 (five-fold) and for PM10 (two-fold). There were no exceedances of gaseous pollutant concentrations in the air, except for benzopyrene, which resulted from the influence of the outside air. The total number of bacteria (5.1 × 101−2.0 × 104 CFU m−3) and fungi (3.0 × 101−3.75 × 102 CFU m−3) was exceeded in the changing room and the climbing wall hall. An increased number of staphylococci in the afternoon was associated with a large number of people training. The increased concentration of xerophilic fungi in the air correlated with the high dust content and low air humidity. Along with the increase in the number of users in the afternoon and their activities, the concentration of dust (several times) and microorganisms (1−2 log) in the air increased by several times and 1−2 log, respectively. The present study indicates which air quality parameters should be monitored and provides guidelines on how to increase the comfort of those who practice sports and work in sports facilities.
Collapse
Affiliation(s)
- Justyna Szulc
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Robert Cichowicz
- Institute of Environmental Engineering and Building Installations, Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6, 90-924 Łódź, Poland
| | - Michał Gutarowski
- Institute of Environmental Engineering and Building Installations, Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6, 90-924 Łódź, Poland
| | - Małgorzata Okrasa
- Department of Personal Protective Equipment, Central Institute for Labour Protection—National Research Institute, 90-133 Łódź, Poland
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| |
Collapse
|
5
|
Molecular Identification and Biochemical Characterization of Novel Marine Yeast Strains with Potential Application in Industrial Biotechnology. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-based agriculture is an emerging and attractive alternative to produce various food ingredients. In this study, five strains of marine yeast were isolated, molecularly identified and biochemically characterized. Molecular identification was realized by sequencing the DNA ITS1 and D1/D2 region, and sequences were registered in GenBank as Yarrowia lipolytica YlTun15, Rhodotorula mucilaginosa RmTun15, Candida tenuis CtTun15, Debaryomyces hansenii DhTun2015 and Trichosporon asahii TaTun15. Yeasts showed protein content varying from 26% (YlTun15) to 40% (CtTun15 and DhTun2015), and essential amino acids ranging from 38.1 to 64.4% of the total AAs (CtTun15-YlTun15, respectively). Lipid content varied from 11.15 to 37.57% with substantial amount of PUFA (>12% in RmTun15). All species had low levels of Na (<0.15 mg/100 g) but are a good source of Ca and K. Yeast cytotoxic effect was investigated against human embryonic kidney cells (HEK 293); results showed improved cell viability with all added strains, indicating safety of the strains used. Based on thorough literature investigation and yeast composition, the five identified strains could be classified not only as oleaginous yeasts but also as single cell protein (SCP) (DhTun2015 and CtTun15) and single cell oil (SCO) (RmTun15, YlTun15 and TaTun15) producers; and therefore, they represent a source of alternative ingredients for food, feed and other sectors.
Collapse
|
6
|
Communities of culturable yeasts and yeast-like fungi in oligotrophic hypersaline coastal waters of the Arabian Gulf surrounding Qatar. Antonie van Leeuwenhoek 2022; 115:609-633. [PMID: 35322327 DOI: 10.1007/s10482-022-01722-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
This report is the first investigation of yeast biodiversity from the oligotrophic hypersaline coastal waters of the Arabian Gulf surrounding Qatar. Yeasts and yeast-like fungi, were cultured from seawater sampled at 13 coastal areas surrounding Qatar over a period of 2 years (December 2013-September 2015). Eight hundred and forty-two isolates belonging to 82 species representing two phyla viz., Ascomycota (23 genera) and Basidiomycota (16 genera) were identified by molecular sequencing. The results indicated that the coastal waters of the Qatari oligotrophic marine environment harbor a diverse pool of yeast species, most of which have been reported from terrestrial, clinical and aquatic sources in various parts of the world. Five species, i.e., Candida albicans, C. parapsilosis, C. tropicalis, Pichia kudriavzevii and Meyerozyma guilliermondii (n = 252/842; 30% isolates) are known as major opportunistic human pathogens. Fifteen species belonging to nine genera (n = 498/842; 59%) and 12 species belonging to seven genera (n = 459/842; 55%) are hydrocarbon degrading yeast and pollution indicator yeast species, respectively. Ascomycetous yeasts were predominant (66.38%; 559/842) as compared to their basidiomycetous counterparts (33.6%; 283/842). The most isolated yeast genera were Candida (28%; 236/842) (e.g., C. aaseri, C. boidinii, C. glabrata, C. intermedia, C. oleophila, C. orthopsilosis, C. palmioleophila, C. parapsilosis, C. pseudointermedia, C. rugopelliculosa, C. sake, C. tropicalis and C. zeylanoides), Rhodotorula (12.7%; 107/842), Naganishia (8.4%; 71/842), Aureobasidium (7.4%; 62/842), Pichia (7.3%; 62/842), and Debaryomyces (6.4%; 54/842). A total of eleven yeast species ( n = 38) isolated in this study are reported for the first time from the marine environment. Chemical testing demonstrated that seven out of the 13 sites had levels of total petroleum hydrocarbons (TPH) ranging from 200 to 900 µg/L, whereas 6 sites showed higher TPH levels (> 1000-21000 µg/L). The results suggest that the yeast community structure and density are impacted by various physico-chemical factors, namely total organic carbon, dissolved organic carbon and sulphur.
Collapse
|
7
|
Wingfield BD, De Vos L, Wilson AM, Duong TA, Vaghefi N, Botes A, Kharwar RN, Chand R, Poudel B, Aliyu H, Barbetti MJ, Chen S, de Maayer P, Liu F, Navathe S, Sinha S, Steenkamp ET, Suzuki H, Tshisekedi KA, van der Nest MA, Wingfield MJ. IMA Genome - F16 : Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta. IMA Fungus 2022; 13:3. [PMID: 35197126 PMCID: PMC8867778 DOI: 10.1186/s43008-022-00089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa.
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
| | - Angela Botes
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ravindra Nath Kharwar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Martin J Barbetti
- School of Agriculture and Environment and the UWA Institute of Agriculture, University of Western Australia, Perth, Australia
| | - ShuaiFei Chen
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong Province, China
| | - Pieter de Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - FeiFei Liu
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong Province, China
| | | | - Shagun Sinha
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Hiroyuki Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Kalonji A Tshisekedi
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
8
|
Bijlani S, Parker C, Singh NK, Sierra MA, Foox J, Wang CCC, Mason CE, Venkateswaran K. Genomic Characterization of the Titan-like Cell Producing Naganishia tulchinskyi, the First Novel Eukaryote Isolated from the International Space Station. J Fungi (Basel) 2022; 8:165. [PMID: 35205919 PMCID: PMC8875396 DOI: 10.3390/jof8020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple strains of a novel yeast belonging to genus Naganishia were isolated from environmental surfaces aboard the International Space Station (ISS). These strains exhibited a phenotype similar to Titan cell (~10 µm diameter) morphology when grown under a combination of simulated microgravity and 5% CO2 conditions. Confocal, scanning, and transmission electron microscopy revealed distinct morphological differences between the microgravity-grown cells and the standard Earth gravity-grown cells, including larger cells and thicker cell walls, altered intracellular morphology, modifications to extracellular fimbriae, budding, and the shedding of bud scars. Phylogenetic analyses via multi-locus sequence typing indicated that these ISS strains represented a single species in the genus Naganishia and were clustered with Naganishia diffluens. The name Naganishia tulchinskyi is proposed to accommodate these strains, with IF6SW-B1T as the holotype. The gene ontologies were assigned to the cell morphogenesis, microtubule-based response, and response to UV light, suggesting a variety of phenotypes that are well suited to respond to microgravity and radiation. Genomic analyses also indicated that the extracellular region, outer membrane, and cell wall were among the highest cellular component results, thus implying a set of genes associated with Titan-like cell plasticity. Finally, the highest molecular function matches included cytoskeletal motor activity, microtubule motor activity, and nuclear export signal receptor activity.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; (S.B.); (C.C.C.W.)
| | - Ceth Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| | - Maria A. Sierra
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA;
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jonathan Foox
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; (S.B.); (C.C.C.W.)
| | - Christopher E. Mason
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| |
Collapse
|
9
|
Boughattas S, Albatesh D, Al‐Khater A, Giraldes BW, Althani AA, Benslimane FM. Whole genome sequencing of marine organisms by Oxford Nanopore Technologies: Assessment and optimization of HMW-DNA extraction protocols. Ecol Evol 2021; 11:18505-18513. [PMID: 35003688 PMCID: PMC8717308 DOI: 10.1002/ece3.8447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/08/2021] [Accepted: 11/26/2021] [Indexed: 01/30/2023] Open
Abstract
Marine habitats are Earth's largest aquatic ecosystems, yet little is known about marine organism's genomes. Molecular studies can unravel their genetics print, thus shedding light on specie's adaptation and speciation with precise authentication. However, extracting high molecular weight DNA from marine organisms and subsequent DNA library preparation for whole genome sequencing is challenging. The challenges can be explained by excessive metabolites secretion that co-precipitates with DNA and barricades their sequencing. In this work, we sought to resolve this issue by describing an optimized isolation method and comparing its performance with the most commonly reported protocols or commercial kits: SDS/phenol-chloroform method, Qiagen Genomic Tips kit, Qiagen DNeasy Plant mini kit, a modified protocol of Qiagen DNeasy Plant kit, Qiagen DNeasy Blood and Tissue kit, and Qiagen Qiamp DNA Stool mini kit. Our method proved to work significantly better for different marine species regardless of their shape, consistency, and sample preservation, improving Oxford Nanopore Technologies sequencing yield by 39 folds for Spirobranchus sp. and enabling generation of almost 10 GB data per flow cell/run for Chrysaora sp. and Palaemon sp. samples.
Collapse
|
10
|
Kong Q, Liu S, Li A, Wang Y, Zhang L, Iqbal M, Jamil T, Shang Z, Suo LS, Li J. Characterization of fungal microbial diversity in healthy and diarrheal Tibetan piglets. BMC Microbiol 2021; 21:204. [PMID: 34217216 PMCID: PMC8254304 DOI: 10.1186/s12866-021-02242-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diarrhea is an important ailment limiting the production of the Tibetan pig industry. Dynamic balance of the intestinal microbiota is important for the physiology of the animal. The objective of this work was to study fungal diversity in the feces of early weaning Tibetan piglets in different health conditions. RESULTS In the present study, we performed high-throughput sequencing to characterize the fungal microbial diversity in healthy, diarrheal and treated Tibetan piglets at the Tibet Autonomous Region of the People's Republic of China. The four alpha diversity indices (Chao1, ACE, Shannon and Simpson) revealed no significant differences in the richness across the different groups (P > 0.05). In all samples, the predominant fungal phyla were Ascomycota, Basidiomycota and Rozellomycota. Moreover, the healthy piglets showed a higher abundance of Ascomycota than the treated ones with a decreased level of Basidiomycota. One phylum (Rozellomycota) showed higher abundance in the diarrheal piglets than in the treated. At genus level, compared with that to the healthy group, the proportion of Derxomyces and Lecanicillium decreased, whereas that of Cortinarius and Kazachstania increased in the diarrheal group. The relative abundances of Derxomyces, Phyllozyma and Hydnum were higher in treated piglets than in the diarrheal ones. CONCLUSIONS A decreased relative abundance of beneficial fungi (e.g. Derxomyces and Lecanicillium) may cause diarrhea in the early-weaned Tibetan piglets. Addition of probiotics into the feed may prevent diarrhea at this stage. This study presented the fungal diversity in healthy, diarrheal and treated early-weaned Tibetan piglets.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China. .,College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China. .,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China.
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China
| | - Lang-Sizhu Suo
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China. .,College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.
| |
Collapse
|
11
|
Borzęcka J, Piecuch A, Kokurewicz T, Lavoie KH, Ogórek R. Greater Mouse-Eared Bats ( Myotis myotis) Hibernating in the Nietoperek Bat Reserve (Poland) as a Vector of Airborne Culturable Fungi. BIOLOGY 2021; 10:593. [PMID: 34199108 PMCID: PMC8301124 DOI: 10.3390/biology10070593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/07/2022]
Abstract
Bats can contribute to an increase of aeromycota in underground ecosystems and might be a vector/reservoir of microorganisms; however, there is no information about the number and species composition of fungi around hibernating bats. One of the most common species in Europe with direct human contact is the greater mouse-eared bat (Myotis myotis). The goal of our research was the first report of the airborne fungi present in the close vicinity of hibernating M. myotis in the Nietoperek bat reserve (Western Poland) by the use of culture-based techniques and genetic and phenotypic identifications. Aerobiological investigations of mycobiota under hibernating bats were performed on two culture media (PDA and YPG) and at two incubation temperatures (7 and 24 ± 0.5 °C). Overall, we detected 32 fungal species from three phyla (Ascomycota, Basidiomycota, and Zygomycota) and 12 genera. The application of YPG medium and the higher incubation temperature showed higher numbers of isolated fungal species and CFU. Penicillium spp. were dominant in the study, with spores found outside the underground hibernation site from 51.9% to 86.3% and from 56.7% to 100% inside the bat reserve. Penicillium chrysogenum was the most frequently isolated species, then Absidia glauca, Aspergillus fumigatus, A. tubingensis, Mortierella polycephala, Naganishia diffluens, and Rhodotorula mucilaginosa. Temperature, relative humidity, and the abundance of bats correlated positively with the concentration of airborne fungal propagules, between fungal species diversity, and the concentration of aeromycota, but the number of fungal species did not positively correlate with the number of bats. The air in the underground site was more contaminated by fungi than the air outside; however, the concentration of aeromycota does not pose a threat for human health. Nevertheless, hibernating bats contribute to an increase in the aeromycota and as a vector/reservoir of microscopic fungi, including those that may cause allergies and infections in mammals, and should be monitored.
Collapse
Affiliation(s)
- Justyna Borzęcka
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland;
| | - Agata Piecuch
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland;
| | - Tomasz Kokurewicz
- Department of Vertebrate Ecology and Paleontology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland;
| | - Kathleen H. Lavoie
- Department of Biological Sciences, State University of New York, Plattsburgh, NY 12901, USA;
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland;
| |
Collapse
|
12
|
Yeasts isolated from a lotic continental environment in Brazil show potential to produce amylase, cellulase and protease. ACTA ACUST UNITED AC 2021; 30:e00630. [PMID: 34136364 PMCID: PMC8178091 DOI: 10.1016/j.btre.2021.e00630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
Yeasts have wide applicability in the industrial field, as in the production of enzymes used in biocatalysts. Biocatalysts are more efficient when compared to chemical catalysts, with emphasis on hydrolytic enzymes, such as amylase, cellulase and protease. Here we focused on prospecting yeasts, with a high capacity to synthesize hydrolytic enzymes, from a continental lotic ecosystem environment in Brazil. 75 yeasts were grown in Yeast Extract-Peptone-Dextrose (YPD) medium supplemented with antibacterial and their capacity for enzymatic production was tested in specific media. Accordingly, 64 yeasts showed enzyme production capacity. From those, six showed good enzyme indexes, 3 for amylase, 2 for cellulase and 1 for protease. All showed at least one hydrolytic enzyme activity for the tested enzymes (amylase, cellulase and protease), which suggested that the yeasts are metabolically active. By sequencing the 26S gene, we identified Naganishia diffluens and Apiotrichum mycotoxinivorans as the species with highest enzyme production activities. Those species showed potential for application as biological catalysts in the biotechnological scope, collaborating in a sustainable way for the development of industrial products.
Collapse
|
13
|
Haelewaters D, Urbina H, Brown S, Newerth-Henson S, Aime MC. Isolation and Molecular Characterization of the Romaine Lettuce Phylloplane Mycobiome. J Fungi (Basel) 2021; 7:277. [PMID: 33917072 PMCID: PMC8067711 DOI: 10.3390/jof7040277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Romaine lettuce (Lactuca sativa) is an important staple of American agriculture. Unlike many vegetables, romaine lettuce is typically consumed raw. Phylloplane microbes occur naturally on plant leaves; consumption of uncooked leaves includes consumption of phylloplane microbes. Despite this fact, the microbes that naturally occur on produce such as romaine lettuce are for the most part uncharacterized. In this study, we conducted culture-based studies of the fungal romaine lettuce phylloplane community from organic and conventionally grown samples. In addition to an enumeration of all such microbes, we define and provide a discussion of the genera that form the "core" romaine lettuce mycobiome, which represent 85.5% of all obtained isolates: Alternaria, Aureobasidium, Cladosporium, Filobasidium, Naganishia, Papiliotrema, Rhodotorula, Sampaiozyma, Sporobolomyces, Symmetrospora and Vishniacozyma. We highlight the need for additional mycological expertise in that 23% of species in these core genera appear to be new to science and resolve some taxonomic issues we encountered during our work with new combinations for Aureobasidiumbupleuri and Curvibasidium nothofagi. Finally, our work lays the ground for future studies that seek to understand the effect these communities may have on preventing or facilitating establishment of exogenous microbes, such as food spoilage microbes and plant or human pathogens.
Collapse
Affiliation(s)
- Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - Hector Urbina
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, USA
| | - Samuel Brown
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - Shannon Newerth-Henson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| |
Collapse
|
14
|
Zhou Y, Jia BS, Zhou YG, Li AH, Xue L. Naganishia floricola sp. nov., a novel basidiomycetous yeast species isolated from flowers of Sorbaria sorbifolia. Int J Syst Evol Microbiol 2020; 70:4496-4501. [DOI: 10.1099/ijsem.0.004304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two yeast strains representing a novel species in the basidiomycetous yeast genus Naganishia were isolated from flowers of Sorbaria sorbifolia collected in Beijing Olympic Forest Park, PR China. Results of multi-gene phylogenetic analysis indicated that the two strains were closely related to the type strains of Naganishia bhutanensis (CBS 6294T) and Naganishia antarctica (CBS 7687T). However, the new isolates differed from N. bhutanensis CBS 6294T by 1.79 % sequence divergence in the D1/D2 domain (11 nt substitutions and three indels), and 2.42 % (15 nt differences and one indel) to N. antarctica CBS 7687T. In the ITS region, the new isolates showed 1.15 % divergence (7 nt substitutions and one indel) to N. bhutanensis CBS 6294T and 0.92 % divergence (5 nt substitutions and no indels) to N. antarctica CBS 7687T. A phylogenetic analysis employing the sequences of six genes (D1/D2 domain of large subunit rDNA, ITS, small subunit rDNA, two subunits of the RNA polymerase II and elongation factor-1α) indicated that the novel species belonged to the genus Naganishia and formed a well-supported clade with N. bhutanensis, N. antarctica and N. indica. Moreover, the two strains differed from their closest relatives by the ability to grow on distinct carbon and nitrogen sources and ability to grow at 30 °C. On the basis of these findings, we propose a novel species in the genus Naganishia (Filobasidiales), Naganishia floricola sp. nov. (holotype CGMCC 2.5856).
Collapse
Affiliation(s)
- Yu Zhou
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, PR China
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Bi-Si Jia
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, PR China
| | - Yu-Guang Zhou
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, PR China
| | - Ai-Hua Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, PR China
| | - Lu Xue
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
15
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
16
|
Kachalkin AV, Turchetti B, Inácio J, Carvalho C, Mašínová T, Pontes A, Röhl O, Glushakova AM, Akulov A, Baldrian P, Begerow D, Buzzini P, Sampaio JP, Yurkov AM. Rare and undersampled dimorphic basidiomycetes. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01491-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Fotedar R, Sandoval-Denis M, Kolecka A, Zeyara A, Al Malki A, Al Shammari H, Al Marri M, Kaul R, Boekhout T. Toxicocladosporium aquimarinum sp. nov. and Toxicocladosporium qatarense sp. nov., isolated from marine waters of the Arabian Gulf surrounding Qatar. Int J Syst Evol Microbiol 2019; 69:2992-3000. [PMID: 31166162 DOI: 10.1099/ijsem.0.003482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arabian Gulf surrounding Qatar is distinct from other marine ecosystems due to its high salinity (35-75 PSU) and extreme water temperature fluctuations (11-40 °C). Furthermore, in the last decade, Qatar has been witnessing an industrial boom as well as extensive infrastructure construction activities. Marine micro-organisms, including fungi, remain largely unexplored in the Arabian Gulf. During a 3 year study, we investigated the diversity of marine fungi in coastal waters around Qatar. As a result, two new Toxicocladosporium species were isolated from the Qatari marine environment. Molecular and phylogenetic analyses of rRNA gene sequences of five loci, namely the internal transcribed spacer 1 and 2 regions and the D1/D2 domains of the large subunit rRNA, actin, RNA polymerase second largest subunit and beta-tubulin genes, were used to confirm the identity of the novel species for which we propose the names Toxicocladosporium aquimarinum sp. nov. and Toxicocladosporium qatarense sp. nov.
Collapse
Affiliation(s)
- Rashmi Fotedar
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | | | - Anna Kolecka
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Aisha Zeyara
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar.,Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Ameena Al Malki
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar.,Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Hamad Al Shammari
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar.,Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Masoud Al Marri
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar.,Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - R Kaul
- Weill Cornell Medical School, Doha, Qatar
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Fotedar R, Fell JW, Boekhout T, Kolecka A, Zeyara A, Kaul R, Malki AA, Marri MA. Cystobasidium halotolerans sp. nov., a novel basidiomycetous yeast species isolated from the Arabian Gulf. Int J Syst Evol Microbiol 2019; 69:839-845. [DOI: 10.1099/ijsem.0.003250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rashmi Fotedar
- 1Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | - Jack W. Fell
- 2Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Key Biscayne, Florida, USA
| | - Teun Boekhout
- 3Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- 4Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Anna Kolecka
- 3Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Aisha Zeyara
- 1Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | | | - Amina Al- Malki
- 1Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | - Masoud Al Marri
- 1Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| |
Collapse
|
20
|
Fotedar R, Kolecka A, Boekhout T, Fell JW, Zeyara A, Al Malki A, Al Marri M. Kondoa qatarensis f.a., sp. nov., a novel yeast species isolated from marine water in Qatar. Int J Syst Evol Microbiol 2019; 69:486-492. [DOI: 10.1099/ijsem.0.003182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rashmi Fotedar
- 1Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | - Anna Kolecka
- 2Westerdijk Fungal Biodiversity Institute (Westerdijk Institute), Utrecht, The Netherlands
| | - Teun Boekhout
- 2Westerdijk Fungal Biodiversity Institute (Westerdijk Institute), Utrecht, The Netherlands
- 3Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Jack W. Fell
- 4Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Key Biscayne, FL, USA
| | - Aisha Zeyara
- 1Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | - Ameena Al Malki
- 1Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | - Masoud Al Marri
- 1Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, Qatar
| |
Collapse
|