1
|
Tao Y, Yang C, Dong K, Luo W, Ye L, Pu J, Yang J, Zheng H, Xu J. Two new members of the genus Sphingobacterium: Sphingobacterium zhuxiongii sp. nov. and Sphingobacterium luzhongxinii sp. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 39140715 DOI: 10.1099/ijsem.0.006488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Four strains, designated dk4302T, dk4209, xlx-73T, and xlx-183, were isolated from Tibetan gazelle and red swamp crawfish collected from the Qinghai-Tibet Plateau and Jiangxi Province, PR China. The strains were Gram-stain-negative, aerobic, rod-shaped, non-motile, mucoid, and yellow-pigmented. Strains dk4302T and dk4209 grew at 10-40 °C and pH 6.0-9.0, while strains xlx-73T/xlx-183 grew at 15-40 °C and pH 6.0-10.0. Both strains exhibited growth in the presence of up to 3.5 % (w/v) NaCl. Phylogenetic and phylogenomic analyses based on the 16S rRNA gene sequences and 652 core genes, respectively, revealed that the four strains formed two distinct clusters in the genus Sphingobacterium. Strains dk4302T and dk4209 formed a distinct clade with Sphingobacterium hotanense XH4T and Sphingobacterium humi D1T. The most closely related strains to xlx-73T and xlx-183 were Sphingobacterium nematocida M-SX103T. The DNA G+C contents were 38.9 and 39.8 mol%. The digital DNA-DNA hybridization (dDDH) values between dk4302T and S. humi D1T and S. hotanense XH4T were 19.2 and 21.8 % (19.0 and 21.6 % for strain dk4209), respectively. The corresponding average nucleotide identity (ANI) values were 74.3 and 78.1 % (74.4 and 78.3 % for strain dk4209), respectively. The dDDH values between xlx-73T (xlx-183) and S. nematocida M-SX103T was 24.6 % (25.7 %). The corresponding ANI value was 85.7 % (85.5 % for strain xlx-183). The major fatty acid and respiratory quinone of dk4302T and xlx-73T were iso-C15:0 and MK7. The polar lipids identified in all of the novel strains were phosphatidylethanolamine, phosphoglycolipids, aminophospholipids, and phospholipids. A total of 61/190 (32.1 %) and 82/190 (43.2 %) carbon substrates were metabolized by strains dk4302T and xlx-73T in the Biolog MicroPlates, respectively. Based on the results from this polyphasic taxonomic study, two novel species in the genus Sphingobacteruim are proposed, namely Sphingobacteruim zhuxiongii sp. nov. (type strain dk4302T=CGMCC 1.16795T=JCM 33600T) and Sphingobacteruimluzhongxinii sp. nov. (type strain xlx-73T=GDMCC 1.1712T=JCM 33886T).
Collapse
Affiliation(s)
- Yuanmeihui Tao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Kui Dong
- Shanxi Eye Hospital, Shanxi Province Key Laboratory of Ophthalmology, Taiyuan 030002, PR China
| | - Wenbo Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lin Ye
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ji Pu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Han Zheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| |
Collapse
|
2
|
Boutroux M, Favre-Rochex S, Gorgette O, Touak G, Mühle E, Bouchier C, Chesneau O, Veyrier FJ, Clermont D, Rahi P. Neisseria leonii sp. nov., isolated from the nose, lung, and liver of rabbits. Int J Syst Evol Microbiol 2024; 74:006460. [PMID: 39023135 PMCID: PMC11316581 DOI: 10.1099/ijsem.0.006460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
A taxogenomic study of three strains (3986T, 51.81, and JF 2415) isolated from rabbits between 1972 and 2000 led to the description of a new Neisseria species. The highest sequence similarity of the 16S rRNA gene was found to Neisseria animalis NCTC 10212T (96.7 %). The 16S rRNA gene similarity above 99 % and average nucleotide identity (ANI) values above 96 % among the strains, indicated that they belong to the same species. At the same time, the strains shared ANI values below 81 % and dDDH values below 24 % with all described Neisseria species. In the bac120 gene phylogenetic tree, the three strains clustered near Neisseria elongata and Neisseria bacilliformis in the Neisseria clade. However, the Neisseria clade is not monophyletic, and includes the type strains of Morococcus cerebrosus, Bergeriella denitrificans, Kingella potus, Uruburuella suis, and Uruburuella testudinis. Neisseria shayeganii clustered outside the clade with members of the genus Eikenella. Amino acid identity (AAI) values were calculated, and a threshold of 71 % was used to circumscribe the genus Neisseria. According to this proposed AAI threshold, strains 3986T, 51.81, and JF 2415 were placed within the genus Neisseria. The cells of the three strains were Gram-stain-negative diplococcobacilli and non-motile. Optimal growth on trypticase soy agar occurred at 37 °C and pH 8.5 in aerobic conditions. Notably, all strains exhibited indole production in the API-NH test, which is atypical for Neisseria and the family Neisseriaceae. The strains exhibited a common set of 68 peaks in their MALDI-TOF MS profiles, facilitating the swift and accurate identification of this species. Based on genotypic and phenotypic data, it is proposed that strains 3986T, 51.81, and JF 2415 represent a novel species within the genus Neisseria, for which the name Neisseria leonii sp. nov. is proposed (type strain 3986T=R726T=CIP 109994T=LMG 32907T).
Collapse
Affiliation(s)
- Martin Boutroux
- Institut Pasteur, Université Paris Cité, Center of Biological Resources of Institut Pasteur (CRBIP), 75015 Paris, France
| | - Sandrine Favre-Rochex
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Olivier Gorgette
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging Unit, 75015 Paris, France
| | - Gérald Touak
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Estelle Mühle
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Christiane Bouchier
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Olivier Chesneau
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Praveen Rahi
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| |
Collapse
|
3
|
Yang C, Zhao L, Zhou J, Cheng Y, Yang J, Zhou H, Luo W, Lu S, Jin D, Pu J, Zhang S, Liu L, Xu J. Neisseria lisongii sp. nov. and Neisseria yangbaofengii sp. nov., isolated from the respiratory tracts of marmots. Int J Syst Evol Microbiol 2023; 73. [PMID: 37610801 DOI: 10.1099/ijsem.0.006002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Four Gram-stain-negative, oxidase-positive, non-motile, cocci-shaped bacteria strains (ZJ106T, ZJ104, ZJ785T and ZJ930) were isolated from marmot respiratory tracts. Phylogenetic analyses based on 16S rRNA genes, 53 ribosomal protein sequences and 441 core genes supported that all four strains belonged to the genus Neisseria with close relatives Neisseria weixii 10022T and Neisseria iguanae ATCC 51483T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the species-level thresholds (95-96 % for ANI, and 70 % for dDDH). The major fatty acids of all four strains were C16 : 1 ω7c /C16 : 1 ω6c, C16 : 0 and C18 : 1 ω9c. Major polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. MK-8 was the major menaquinone. Based on Virulence Factor Database analysis, the four strains were found to contain NspA and PorB H-factor binding proteins that promote evasion of host immunity. Strains ZJ106T and ZJ104 contained structures similar to the capsule synthesis manipulator of Neisseria meningitidis. Based on phenotypic and phylogenetic evidence, we propose that strains ZJ106T and ZJ785T represent two novel species of the genus Neisseria, respectively, with the names Neisseria lisongii sp. nov. and Neisseria yangbaofengii sp. nov. The type strains are ZJ106T (=GDMCC 1.3111T=JCM 35323T) and ZJ785T (=GDMCC 1.1998T=KCTC 82336T).
Collapse
Affiliation(s)
- Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lijun Zhao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yanpeng Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Huimin Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Wenbo Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Sihui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Institute of Public Health, Nankai University, Tianjin 300305, PR China
| |
Collapse
|
4
|
Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Nondomestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142522. [PMID: 36533958 PMCID: PMC9945507 DOI: 10.1128/jcm.01425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Revisions and new additions to bacterial taxonomy can have a significant widespread impact on clinical practice, infectious disease epidemiology, veterinary microbiology laboratory operations, and wildlife conservation efforts. The expansion of genome sequencing technologies has revolutionized our knowledge of the microbiota of humans, animals, and insects. Here, we address novel taxonomy and nomenclature revisions of veterinary significance that impact bacteria isolated from nondomestic wildlife, with emphasis being placed on bacteria that are associated with disease in their hosts or were isolated from host animal species that are culturally significant, are a target of conservation efforts, or serve as reservoirs for human pathogens.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Zhang G, Lv X, Cheng Y, Lai XH, Yang J, Jin D, Lu S, Pu J, Liu L, Xu J. New members of the family Eggerthellaceae isolated from Marmota himalayana: Xiamenia xianingshaonis gen. nov., sp. nov., from intestinal contents, and Berryella wangjianweii sp. nov., from trachea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four strictly anaerobic, Gram-stain-positive, urease-, oxidase- and catalase-negative, rod-shaped strains (zg-886T/zg-887 and zg-1050T/zg-1084) were isolated from Marmota himalayana. Comparison analysis of 16S rRNA genes showed that the two strain pairs belong to the family
Eggerthellaceae
: zg-1050T and zg-1084 were most closely related to
Berryella intestinalis
68-1-3T (97.2 %), while zg-886T/zg-887 had the highest similarity to
Slackia piriformis
YIT 12062T (91.6 %), followed by
Paraeggerthella hongkongensis
DSM 16106T (91.4 %) and
Gordonibacter urolithinfaciens
DSM 27213T (91.4 %). Phylogenetic analyses based on 16S rRNA genes and genomes showed that the two strain pairs represent two different lineages within the family
Eggerthellaceae
. The genomic G+C contents of strains zg-886T and zg-1050T were 63.0 and 66.3 mol%, respectively. The values of digital DNA–DNA hybridization, average nucleotide identity, average amino acid identity and the percentage of conserved proteins between the two new type strains and members of the family
Eggerthellaceae
were lower than the respective thresholds for delineation of a species or genus. In contrast to the absence of any known quinones in strain zg-1050T, strain zg-886T contained MK-6 (42.5 %), MMK-6 (25.0 %) and DMMK-6 (32.5 %). The four strains grew optimally at pH 7.0, 37 ºC and 0.5 % NaCl (w/v). According to these polyphasic analyses, two new members within the family
Eggerthellaceae
are proposed, Xiamenia xianingshaonis gen. nov., sp. nov. (zg-886T=JCM 34097T=GDMCC 1.1710T) and Berryella wangjianweii sp. nov. (zg-1050T=GDMCC 1.2426T=JCM 34748T).
Collapse
Affiliation(s)
- Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xianglian Lv
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yanpeng Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- Institute of Public Health, Nankai University, Tianjin 300071, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|
6
|
Ge Y, Tao Y, Yang J, Lai XH, Jin D, Lu S, Huang Y, Luo X, Zhou J, Zhang X, Xu J. Arthrobacter yangruifuii sp. nov. and Arthrobacter zhaoguopingii sp. nov., two new members of the genus Arthrobacter. Int J Syst Evol Microbiol 2020; 70:5287-5295. [PMID: 32841110 DOI: 10.1099/ijsem.0.004414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai-Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9 %, respectively). Average nucleotide identity and the digital DNA-DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter. These strains had DNA G+C contents of 66.0-66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter: anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).
Collapse
Affiliation(s)
- Yajun Ge
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Yuanmeihui Tao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xuelian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Jianguo Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| |
Collapse
|
7
|
Clemence MEA, Harrison OB, Maiden MCJ. Neisseria meningitidis has acquired sequences within the capsule locus by horizontal genetic transfer. Wellcome Open Res 2019; 4:99. [PMID: 31346553 PMCID: PMC6619384 DOI: 10.12688/wellcomeopenres.15333.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Expression of a capsule from one of serogroups A, B, C, W, X or Y is usually required for
Neisseria meningitidis (
Nme) to cause invasive meningococcal disease. The capsule is encoded by the capsule locus,
cps, which is proposed to have been acquired by a formerly capsule null organism by horizontal genetic transfer (HGT) from another species. Following identification of putative capsule genes in non-pathogenic
Neisseria species, this hypothesis is re-examined. Methods: Whole genome sequence data from
Neisseria species, including
Nme genomes from a diverse range of clonal complexes and capsule genogroups, and non-
Neisseria species, were obtained from PubMLST and GenBank. Sequence alignments of genes from the meningococcal
cps, and predicted orthologues in other species, were analysed using Neighbor-nets, BOOTSCANing and maximum likelihood phylogenies. Results: The meningococcal
cps was highly mosaic within regions B, C and D. A subset of sequences within regions B and C were phylogenetically nested within homologous sequences belonging to
N. subflava, consistent with HGT event in which
N. subflava was the donor. In the
cps of 23/39 isolates, the two copies of region D were highly divergent, with
rfbABC’ sequences being more closely related to predicted orthologues in the proposed species
N. weixii (GenBank accession number
CP023429.1) than the same genes in
Nme isolates lacking a capsule. There was also evidence of mosaicism in the
rfbABC’ sequences of the remaining 16 isolates, as well as
rfbABC from many isolates. Conclusions: Data are consistent with the
en bloc acquisition of
cps in meningococci from
N. subflava, followed by further recombination events with other
Neisseria species. Nevertheless, the data cannot refute an alternative model, in which native meningococcal capsule existed prior to undergoing HGT with
N. subflava and other species. Within-genus recombination events may have given rise to the diversity of meningococcal capsule serogroups.
Collapse
Affiliation(s)
| | - Odile B Harrison
- Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| | | |
Collapse
|
8
|
Clemence MEA, Harrison OB, Maiden MCJ. Neisseria meningitidis has acquired sequences within the capsule locus by horizontal genetic transfer. Wellcome Open Res 2019; 4:99. [DOI: 10.12688/wellcomeopenres.15333.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2019] [Indexed: 11/20/2022] Open
Abstract
Background:Expression of a capsule from one of serogroups A, B, C, W, X or Y is usually required forNeisseria meningitidis(Nme) to cause invasive meningococcal disease. The capsule is encoded by the capsule locus,cps, which is proposed to have been acquired by a formerly capsule null organism by horizontal genetic transfer (HGT) from another species. Following identification of putative capsule genes in non-pathogenicNeisseriaspecies, this hypothesis is re-examined.Methods:Whole genome sequence data fromNeisseriaspecies, includingNmegenomes from a diverse range of clonal complexes and capsule genogroups, and non-Neisseriaspecies, were obtained from PubMLST and GenBank. Sequence alignments of genes from the meningococcalcps, and predicted orthologues in other species, were analysed using Neighbor-nets, BOOTSCANing and maximum likelihood phylogenies.Results:The meningococcalcpswas highly mosaic within regions B, C and D. A subset of sequences within regions B and C were phylogenetically nested within homologous sequences belonging toN. subflava, consistent with HGT event in whichN. subflavawas the donor. In thecpsof 23/39 isolates, the two copies of region D were highly divergent, withrfbABC’sequences being more closely related to predicted orthologues in the proposed speciesN. weixii (GenBank accession numberCP023429.1) than the same genes inNmeisolates lacking a capsule. There was also evidence of mosaicism in therfbABC’sequences of the remaining 16 isolates, as well asrfbABCfrom many isolates.Conclusions:Data are consistent with theen blocacquisition ofcpsin meningococci fromN. subflava, followed by further recombination events with otherNeisseriaspecies. Nevertheless, the data cannot refute an alternative model, in which native meningococcal capsule existed prior to undergoing HGT withN. subflavaand other species. Within-genus recombination events may have given rise to the diversity of meningococcal capsule serogroups.
Collapse
|