1
|
Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Nondomestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142522. [PMID: 36533958 PMCID: PMC9945507 DOI: 10.1128/jcm.01425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Revisions and new additions to bacterial taxonomy can have a significant widespread impact on clinical practice, infectious disease epidemiology, veterinary microbiology laboratory operations, and wildlife conservation efforts. The expansion of genome sequencing technologies has revolutionized our knowledge of the microbiota of humans, animals, and insects. Here, we address novel taxonomy and nomenclature revisions of veterinary significance that impact bacteria isolated from nondomestic wildlife, with emphasis being placed on bacteria that are associated with disease in their hosts or were isolated from host animal species that are culturally significant, are a target of conservation efforts, or serve as reservoirs for human pathogens.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Lv X, Li Y, Cheng Y, Lai XH, Yang J, Lu S, Zhang G, Yang C, Jin D, Liu L, Xu J. Canibacter zhuwentaonis sp. nov. and Canibacter zhoujuaniae sp. nov. , isolated from Marmota himalayana. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748412 DOI: 10.1099/ijsem.0.005633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Four Gram-stain-positive, facultatively anaerobic, non-motile, non-spore-forming and rod-shaped bacteria (lx-72T, lx-45, ZJ784T and ZJ955) were isolated from the respiratory tract or faeces of marmot (Marmota himalayana) from the Qinghai-Tibet Plateau in China. Analysis of the 16S rRNA gene sequences showed that all strains belong to the genus Canibacter and are more related to Canibacter oris CCUG 64069T (95.1-97.4 % similarity) than to the genus Leucobacter. Both strain pairs grew well at pH 6-9 and 15-42°C, and ZJ784T/ZJ955 could tolerate slightly higher NaCl (0.5-4.5 %, w/v) than lx-72T/lx-45(0.5-3.5 %). Based on whole-genome sequences, the average nucleotide identity and digital DNA-DNA hybridization values between our four isolates and their closest relative were below the species delineation thresholds of 70 % and 95-96 %. The common major fatty acids (>10 %) of our four strains were anteiso-C15 : 0 and anteiso-C17 : 0. For both new type strains, MK-8(H4) and MK-9(H4) were the major isoprenoid quinones, and diphosphatidylglycerol and phosphatidylglycerol were the main polar lipids. The genomic DNA G+C content of all strains was 53.9 mol%. Based on results from the genomic comparison, phylogenetic analysis, and physiological and biochemical characteristics, the four isolates represent two novel species in the genus Canibacter, for which the names Canibacter zhuwentaonis sp. nov. (type strain lx-72T=KCTC 49658T=GDMCC 1.2569T) and Canibacter zhoujuaniae sp. nov. (type strain ZJ784T=KCTC 49507T=GDMCC 1.1997T) are proposed.
Collapse
Affiliation(s)
- Xianglian Lv
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yinmei Li
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yanpeng Cheng
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Caixin Yang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jianguo Xu
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,Institute of Public Health, Nankai University, Tianjin, PR China
| |
Collapse
|
3
|
Zhang G, Huang Y, Yang J, Lai XH, Jin D, Lu S, Cheng Y, Yang C, Pu J, Liang J, Huang Y, Xu J. Gordonia jinghuaiqii sp. nov. and Gordonia zhaorongruii sp. nov., isolated from Tibetan Plateau wildlife. Int J Syst Evol Microbiol 2021; 71. [PMID: 34280084 DOI: 10.1099/ijsem.0.004897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Four mesophilic and Gram-stain-positive strains (zg-686T/zg-691 and HY186T/HY189) isolated from Tibetan Plateau wildlife (PR China) belong to the genus Gordonia according to 16S rRNA gene and genomic sequence-based phylogenetic/genomic results. They have a DNA G+C content range of 67.4-68.3 mol% and low DNA relatedness (19.2-27.6 %) with all available genomes in the genus Gordonia. Strains zg-686T/zg-691 and HY186T/HY189 had C18 : 1ω9c, C18 : 0 10-methyl, C16 : 1 ω7c/C16 : 1ω6c and C16 : 0 as major cellular fatty acids. The polar lipids detected in strains zg-686T and HY186T included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyl inositol mannoside and phosphatidylinositol. The respiratory quinones comprised MK8(H2) (10.8 %) and MK9(H2) (89.2 %) for strain zg-686T, and MK6 (7.7 %), MK8(H2) (8.4 %), MK8(H4) (3.1 %) and MK9(H2) (80.8 %) for strain HY186T. Optimal growth conditions were pH 7.0, 35-37 °C and 0.5-1.5 % NaCl (w/v) for strains pair zg-686T/zg-691, and pH 7.0, 28 °C and 1.5 % (w/v) NaCl for strains pair HY186T/HY189. Based on these genotypic and phenotypic results, these four strains could be classified as two different novel species in the genus Gordonia, for which the names Gordonia jinghuaiqii sp. nov. and Gordonia zhaorongruii sp. nov. are proposed. The type strains are zg-686T (=GDMCC 1.1715T =JCM 33890T) and HY186T (=CGMCC 4.7607T =JCM 33466T), respectively.
Collapse
Affiliation(s)
- Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Yanpeng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Caixin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| |
Collapse
|
4
|
Tohno M, Tanizawa Y, Kojima Y, Sakamoto M, Ohkuma M, Kobayashi H. Lactobacillus corticis sp. nov., isolated from hardwood bark. Int J Syst Evol Microbiol 2021; 71. [PMID: 34264810 DOI: 10.1099/ijsem.0.004882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a study on the biodiversity of bacteria that inhabit woody biomass, we isolated a strain coded B40T from hardwood bark used as a compost ingredient in Japan. The strain, characterized as B40T, is a Gram-stain-positive, rod-shaped, non-motile, non-spore-forming and catalase-negative bacterium. This novel isolate showed growth at 30-50 °C, at pH 3.5-7.5 and in the presence of up to 4 % (w/v) NaCl. Its major fatty acids include C16:0, C18:1 ω9c and summed feature 8. The genomic DNA G+C content of strain B40T is 42.2 mol%. Results of 16S rRNA gene sequence-based phylogenetic analysis indicated that strain B40T belongs to the genus Lactobacillus and the closest neighbours of strain B40T are Lactobacillus gigeriorum 202T (95.7 %), Lactobacillus pasteurii CRBIP 24.76T (95.6 %), Lactobacillus psittaci DSM 15354T (95.4 %), Lactobacillus fornicalis TV1018T (95.4 %) and Lactobacillus jensenii ATCC 25258T (95.2 %). The amino acid sequence-based phylogenetic analyses of 489 shared protein-encoding genes showed that the strain forms a phylogenetically independent lineage in the genus Lactobacillus but could not be assigned to any known species. Strain B40T has an average nucleotide identify of <70.2 % and a digital DNA-DNA hybridization value of 19.2 % compared with the strains of other closely related Lactobacillus species. Differential genomic, phenotypic and chemotaxonomic properties, in addition to phylogenetic analyses, indicated that strain B40T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus corticis sp. nov. is proposed. The strain type is B40T (=JCM 32597T=DSM 107967T).
Collapse
Affiliation(s)
- Masanori Tohno
- Research Center of Genetic Resources, Core Technology Research Headquarters, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.,Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization Nasushiobara, Tochigi, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yoichiro Kojima
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Nasushiobara, Tochigi, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hisami Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization Nasushiobara, Tochigi, Japan
| |
Collapse
|
5
|
Characterization of two extracellular arabinanases in Lactobacillus crispatus. Appl Microbiol Biotechnol 2020; 104:10091-10103. [DOI: 10.1007/s00253-020-10979-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
|
6
|
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782-2858. [PMID: 32293557 DOI: 10.1099/ijsem.0.004107] [Citation(s) in RCA: 1635] [Impact Index Per Article: 327.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
Collapse
Affiliation(s)
- Jinshui Zheng
- Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, PR China
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Elisa Salvetti
- Dept. of Biotechnology, University of Verona, Verona, Italy
| | - Charles M A P Franz
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | - Hugh M B Harris
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Paola Mattarelli
- University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy
| | - Paul W O'Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Koichi Watanabe
- Food Industry Research and Development Institute, Bioresource Collection and Research Center, Hsinchu, Taiwan, ROC.,National Taiwan University, Dept. of Animal Science and Technology, Taipei, Taiwan, ROC
| | - Sander Wuyts
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | - Michael G Gänzle
- Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|