1
|
He HH, Feng CY, Wang D, Zheng ZH, Li S, Xu ZX, Lu CY, Lian WH, Dong L, Li WJ. Taklimakanibacter deserti gen. nov., sp. nov. and Taklimakanibacter lacteus sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 39037442 DOI: 10.1099/ijsem.0.006462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Two Gram-stain-negative, aerobic, milk-white coloured, non-motile, short rod-shaped bacteria, designated as strains SYSU D60010T and SYSU D60012T, were isolated from sand samples collected from the Taklimakan Desert of Xinjiang Province in China. Both strains were positive for oxidase, catalase and nitrate reduction, but negative for amylase, H2S production, hydrolysis of gelatin and cellulase. Strains SYSU D60010T and SYSU D60012T grew well at 28 °C, at pH 7 and had the same NaCl tolerance range of 0-1 % (w/v). The major fatty acids (>5 %) of strains SYSU D60010T and SYSU D60012T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), iso-C19 : 0 cyclo ω8c, C16 : 0 and iso-C18 : 1 2-OH. Q-10 was the only respiratory ubiquinone. Strains SYSU D60010T and SYSU D60012T showed high 16S rRNA gene sequence similarities to Aestuariivirga litoralis SYSU M10001T (94.2 and 94.1 %), Rhodoligotrophos jinshengii BUT-3T (92.0 and 91.9 %) and Rhodoligotrophos appendicifer 120-1T (91.8 and 91.7 %), and the genomes were 7.4 and 5.8 Mbp in size with DNA G+C contents of 62.8 and 63.0 mol%, respectively. Phylogenetic, phenotypic and chemotaxonomic characteristics indicated that these two strains represent a novel genus and two novel species within the family Aestuariivirgaceae. We propose the name Taklimakanibacter deserti gen. nov., sp. nov. for strain SYSU D60010T, representing the type strain of this species (=KCTC 52783T =NBRC 113344T) and Taklimakanibacter lacteus gen. nov., sp. nov. for strain SYSU D60012T, representing the type strain of this species (=KCTC 52785T=NBRC 113128T).
Collapse
Affiliation(s)
- Huan-Huan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Chu-Ying Feng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Dong Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, PR China
| | - Zhuo-Huan Zheng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Zi-Xin Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| |
Collapse
|
2
|
Ahmed Shazib SU, Cote-L’Heureux A, Ahsan R, Muñoz-Gómez SA, Lee J, Katz LA, Shin MK. Phylogeny and species delimitation of ciliates in the genus Spirostomum (Class, Heterotrichea) using single-cell transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596006. [PMID: 38854132 PMCID: PMC11160781 DOI: 10.1101/2024.05.29.596006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Ciliates are single-celled microbial eukaryotes that diverged from other eukaryotic lineages over a billion years ago. The extensive evolutionary timespan of ciliate has led to enormous genetic and phenotypic changes, contributing significantly to their high level of diversity. Recent analyses based on molecular data have revealed numerous cases of cryptic species complexes in different ciliate lineages, demonstrating the need for a robust approach to delimit species boundaries and elucidate phylogenetic relationships. Heterotrich ciliate species of the genus Spirostomum are abundant in freshwater and brackish environments and are commonly used as biological indicators for assessing water quality. However, some Spirostomum species are difficult to identify due to a lack of distinguishable morphological characteristics, and the existence of cryptic species in this genus remains largely unexplored. Previous phylogenetic studies have focused on only a few loci, namely the ribosomal RNA genes, alpha-tubulin, and mitochondrial CO1. In this study, we obtained single-cell transcriptome of 25 Spirostomum species populations (representing six morphospecies) sampled from South Korea and the USA, and used concatenation- and coalescent-based methods for species tree inference and delimitation. Phylogenomic analysis of 37 Spirostomum populations and 265 protein-coding genes provided a robustious insight into the evolutionary relationships among Spirostomum species and confirmed that species with moniliform and compact macronucleus each form a distinct monophyletic lineage. Furthermore, the multispecies coalescent (MSC) model suggests that there are at least nine cryptic species in the Spirostomum genus, three in S. minus, two in S. ambiguum, S. subtilis, and S. teres each. Overall, our fine sampling of closely related Spirostomum populations and wide scRNA-seq allowed us to demonstrate the hidden crypticity of species within the genus Spirostomum, and to resolve and provide much stronger support than hitherto to the phylogeny of this important ciliate genus.
Collapse
Affiliation(s)
- Shahed Uddin Ahmed Shazib
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, South Korea
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA
| | - Ragib Ahsan
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, South Korea
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Sergio A. Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, South Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, South Korea
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Mann Kyoon Shin
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, South Korea
| |
Collapse
|