1
|
Wilhelm RC, Muñoz-Ucros J, Weikl F, Pritsch K, Goebel M, Buckley DH, Bauerle TL. The effects of mixed-species root zones on the resistance of soil bacteria and fungi to long-term experimental and natural reductions in soil moisture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162266. [PMID: 36822431 DOI: 10.1016/j.scitotenv.2023.162266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Mixed forest stands tend to be more resistant to drought than species-specific stands partially due to complementarity in root ecology and physiology. We asked whether complementary differences in the drought resistance of soil microbiomes might contribute to this phenomenon. We experimented on the effects of reduced soil moisture on bacterial and fungal community composition in species-specific (single species) and mixed-species root zones of Norway spruce and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal (spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root zones, corresponding with the proportions of drought-favored (more in spruce) and drought-sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal and latitudinal precipitation gradients and were more predictive of soil water content than other environmental variables. We conclude that complementary differences in the drought resistance of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones coincides with the enrichment of drought-tolerant bacteria associated with spruce and the sustenance of EMF by beech.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA; Agronomy Department, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN, 47904, USA
| | - Juana Muñoz-Ucros
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Fabian Weikl
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany; Technical University of Munich, Professorship of Land Surface Atmosphere Interactions, Freising, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marc Goebel
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Muñoz-Palazon B, Gorrasi S, Rosa-Masegosa A, Pasqualetti M, Braconcini M, Fenice M. Treatment of High-Polyphenol-Content Waters Using Biotechnological Approaches: The Latest Update. Molecules 2022; 28:314. [PMID: 36615508 PMCID: PMC9822302 DOI: 10.3390/molecules28010314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Polyphenols and their intermediate metabolites are natural compounds that are spread worldwide. Polyphenols are antioxidant agents beneficial for human health, but exposure to some of these compounds can be harmful to humans and the environment. A number of industries produce and discharge polyphenols in water effluents. These emissions pose serious environmental issues, causing the pollution of surface or groundwater (which are used to provide drinking water) or harming wildlife in the receiving ecosystems. The treatment of high-polyphenol-content waters is mandatory for many industries. Nowadays, biotechnological approaches are gaining relevance for their low footprint, high efficiency, low cost, and versatility in pollutant removal. Biotreatments exploit the diversity of microbial metabolisms in relation to the different characteristics of the polluted water, modifying the design and the operational conditions of the technologies. Microbial metabolic features have been used for full or partial polyphenol degradation since several decades ago. Nowadays, the comprehensive use of biotreatments combined with physical-chemical treatments has enhanced the removal rates to provide safe and high-quality effluents. In this review, the evolution of the biotechnological processes for treating high-polyphenol-content water is described. A particular emphasis is given to providing a general concept, indicating which bioprocess might be adopted considering the water composition and the economic/environmental requirements. The use of effective technologies for environmental phenol removal could help in reducing/avoiding the detrimental effects of these chemicals. In addition, some of them could be employed for the recovery of beneficial ones.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Aurora Rosa-Masegosa
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Laboratory of Ecology of Marine Fungi, CoNISMa, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Martina Braconcini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Laboratory of Applied Marine Microbiology, CoNISMa, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Karasz DC, Weaver AI, Buckley DH, Wilhelm RC. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ Microbiol 2021; 24:1-17. [PMID: 34929753 DOI: 10.1111/1462-2920.15871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.
Collapse
Affiliation(s)
- David C Karasz
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Anna I Weaver
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York, 14853, USA.,Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
4
|
Dahal RH, Kim J, Chaudhary DK, Kim DU, Kim J. Description of antibiotic-producing novel bacteria Paraburkholderia antibiotica sp. nov. and Paraburkholderia polaris sp. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34694983 DOI: 10.1099/ijsem.0.005060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two white colony-forming, Gram-stain-negative, non-sporulating and motile bacteria, designated G-4-1-8T and RP-4-7T, were isolated from forest soil and Arctic soil, respectively. Both strains showed antimicrobial activity against Gram-negative pathogens (Pseudomonas aeruginosa and Escherichia coli) and could grow at a pH range of pH 4.0-11.0 (optimum, pH 7.0-9.0). Phylogenetic analyses based on their 16S rRNA gene sequences indicated that strains G-4-1-8T and RP-4-7T formed a lineage within the family Burkholderiaceae and were clustered as members of the genus Paraburkholderia. Strain G-4-1-8T showed the highest 16S rRNA sequence similarity to Paraburkholderia monticola JC2948T (98.1 %), while strain RP-4-7T showed the highest similarity to Paraburkholderia metrosideri DNBP6-1T (98.8 %). The only respiratory quinone in both strains was ubiquinone Q-8. Their principal cellular fatty acids were C16 : 0, cyclo-C17 : 0, summed feature 3 (iso-C15 :0 2-OH and/or C16 :1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). Their major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. The DNA G+C content of strains G-4-1-8T and RP-4-7T were 63.7 and 61.3 mol%, respectively, while their genome lengths were 7.44 and 9.67 Mb, respectively. The genomes of both strains showed at least 12 putative biosynthetic gene clusters. The average nucleotide identity and in silico DNA-DNA hybridization relatedness values between both strains and most closely related Paraburkholderia species were below the species threshold values. Based on a polyphasic study, these isolated strains represent novel species belonging to the genus Paraburkholderia, for which the names Paraburkholderia antibiotica sp. nov. (G-4-1-8T= KACC 21617T=NBRC 114603T) and Paraburkholderia polaris sp. nov. (RP-4-7T=KACC 21621T=NBRC 114605T) are proposed.
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea.,Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong City 30019, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| |
Collapse
|
5
|
Vanwijnsberghe S, Peeters C, De Ridder E, Dumolin C, Wieme AD, Boon N, Vandamme P. Genomic Aromatic Compound Degradation Potential of Novel Paraburkholderia Species: Paraburkholderia domus sp. nov., Paraburkholderia haematera sp. nov. and Paraburkholderia nemoris sp. nov. Int J Mol Sci 2021; 22:ijms22137003. [PMID: 34209778 PMCID: PMC8268980 DOI: 10.3390/ijms22137003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
We performed a taxonomic and comparative genomics analysis of 67 novel Paraburkholderia isolates from forest soil. Phylogenetic analysis of the recA gene revealed that these isolates formed a coherent lineage within the genus Paraburkholderia that also included Paraburkholderiaaspalathi, Paraburkholderiamadseniana, Paraburkholderiasediminicola, Paraburkholderiacaffeinilytica, Paraburkholderiasolitsugae and Paraburkholderiaelongata and four unidentified soil isolates from earlier studies. A phylogenomic analysis, along with orthoANIu and digital DNA–DNA hybridization calculations revealed that they represented four different species including three novel species and P. aspalathi. Functional genome annotation of the strains revealed several pathways for aromatic compound degradation and the presence of mono- and dioxygenases involved in the degradation of the lignin-derived compounds ferulic acid and p-coumaric acid. This co-occurrence of multiple Paraburkholderia strains and species with the capacity to degrade aromatic compounds in pristine forest soil is likely caused by the abundant presence of aromatic compounds in decomposing plant litter and may highlight a diversity in micro-habitats or be indicative of synergistic relationships. We propose to classify the isolates representing novel species as Paraburkholderia domus with LMG 31832T (=CECT 30334) as the type strain, Paraburkholderia nemoris with LMG 31836T (=CECT 30335) as the type strain and Paraburkholderia haematera with LMG 31837T (=CECT 30336) as the type strain and provide an emended description of Paraburkholderia sediminicola Lim et al. 2008.
Collapse
Affiliation(s)
- Sarah Vanwijnsberghe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Emmelie De Ridder
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Charles Dumolin
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Anneleen D. Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Nico Boon
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
- Correspondence:
| |
Collapse
|
6
|
de Lajudie P, Mousavi SA, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 6 July 2020. Int J Syst Evol Microbiol 2021; 71:004784. [PMID: 33956594 PMCID: PMC8289204 DOI: 10.1099/ijsem.0.004784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Philippe de Lajudie
- IRD, University of Montpellier, CIRAD, INRAE, SupAgro, LSTM, Montpellier, France
| | - Seyed Abdollah Mousavi
- Ecosystems and Environment Research Programme, University of Helsinki, Finland
- Department of Biology, University of Turku, Finland
| | | |
Collapse
|
7
|
Wilhelm RC, DeRito CM, Shapleigh JP, Madsen EL, Buckley DH. Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil. ISME COMMUNICATIONS 2021; 1:4. [PMID: 36717596 PMCID: PMC9723775 DOI: 10.1038/s43705-021-00009-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
Plant-derived phenolic acids are catabolized by soil microorganisms whose activity may enhance the decomposition of soil organic carbon (SOC). We characterized whether phenolic acid-degrading bacteria enhance SOC mineralization in forest soils when primed with 13C-labeled p-hydroxybenzoic acid (pHB). We further tested whether pHB-induced priming could explain differences in SOC content among mono-specific tree plantations in a 70-year-old common garden experiment. pHB addition primed significant losses of SOC (3-13 µmols C g-1 dry wt soil over 7 days) compared to glucose, which reduced mineralization (-3 to -8 µmols C g-1 dry wt soil over 7 days). The principal degraders of pHB were Paraburkholderia and Caballeronia in all plantations regardless of tree species or soil type, with one predominant phylotype (RP11ASV) enriched 23-fold following peak pHB respiration. We isolated and confirmed the phenolic degrading activity of a strain matching this phylotype (RP11T), which encoded numerous oxidative enzymes, including secretion signal-bearing laccase, Dyp-type peroxidase and aryl-alcohol oxidase. Increased relative abundance of RP11ASV corresponded with higher pHB respiration and expression of pHB monooxygenase (pobA), which was inversely proportional to SOC content among plantations. pobA expression proved a responsive measure of priming activity. We found that stimulating phenolic-acid degrading bacteria can prime decomposition and that this activity, corresponding with differences in tree species, is a potential mechanism in SOC cycling in forests. Overall, this study highlights the ecology and function of Paraburkholderia whose associations with plant roots and capacity to degrade phenolics suggest a role for specialized bacteria in the priming effect.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA.
| | | | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, USA
| | - Eugene L Madsen
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Wilhelm RC, Murphy SJL, Feriancek NM, Karasz DC, DeRito CM, Newman JD, Buckley DH. Corrigendum: Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int J Syst Evol Microbiol 2020; 70:6534-6538. [DOI: 10.1099/ijsem.0.004562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Roland C.* Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Sean J. L. Murphy
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Nicole M. Feriancek
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - David C. Karasz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
9
|
Ecophysiological Study of Paraburkholderia sp. Strain 1N under Soil Solution Conditions: Dynamic Substrate Preferences and Characterization of Carbon Use Efficiency. Appl Environ Microbiol 2020; 86:AEM.01851-20. [PMID: 33008817 PMCID: PMC7688210 DOI: 10.1128/aem.01851-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
We used time-resolved metabolic footprinting, an important technical approach used to monitor changes in extracellular compound concentrations during microbial growth, to study the order of substrate utilization (i.e., substrate preferences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-extracted solubilized organic matter medium, representing a realistic diversity of available substrates and gradient of initial concentrations. We combined multiple analytical approaches to track over 150 compounds in the medium and complemented this with bulk carbon and nitrogen measurements, allowing estimates of carbon use efficiency throughout the growth curve. Targeted methods allowed the quantification of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 organic acids. All targeted compounds were depleted from the medium, and depletion followed a sigmoidal curve where sufficient data were available. Substrates were utilized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced biomass at a cumulative carbon use efficiency of 0.43. The two substrates with highest initial concentrations, glucose and valine, exhibited longer usage windows, at higher biomass-normalized rates, and later in the growth curve. Contrary to hypotheses based on previous studies, we found no clear relationship between substrate nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of substrate depletion. Under soil solution conditions, the growth of Paraburkholderia sp. 1N induced multiauxic substrate depletion patterns that could not be explained by the traditional paradigm of catabolite repression.IMPORTANCE Exometabolomic footprinting methods have the capability to provide time-resolved observations of the uptake and release of hundreds of compounds during microbial growth. Of particular interest is microbial phenotyping under environmentally relevant soil conditions, consisting of relatively low concentrations and modeling pulse input events. Here, we show that growth of a bacterial soil isolate, Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic response, characterized by discrete temporal clusters of substrate depletion and metabolite production. Our data did not support the hypothesis that compounds with lower energy content are used preferentially, as each cluster contained compounds with a range of nominal oxidation states of carbon. These new findings with Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide insights on ecological strategies employed by aerobic heterotrophs competing for low-molecular-weight substrates in soil solution.
Collapse
|