1
|
McAllister TA, Thomas KD, Gruninger RJ, Elshahed M, Li Y, Cheng Y. INTERNATIONAL SYMPOSIUM ON RUMINANT PHYSIOLOGY: Rumen fungi, archaea and their interactions. J Dairy Sci 2025:S0022-0302(25)00009-8. [PMID: 39824485 DOI: 10.3168/jds.2024-25713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H2 transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO2 to CH4 by methanogens. This symbiotic relationship is bolstered by hydrogensomes, fungal organelles that generate H2 and formate. Interspecies H2 transfer prevents the accumulation of reducing equivalents that would otherwise impede fermentation. The extent to which hydrogenosomes serve as a conduit for H2 flow to methanogens is unknown, but it is likely greater with low quality forages. Strategies that alter the production of CH4 could also have implications for H2 transfer by anaerobic fungi. Understanding the factors that drive these interactions and H2 flow could provide insight into the effect of reducing CH4 production on the activity of ruminal fungi and the digestion of low-quality feeds.
Collapse
Affiliation(s)
- Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1.
| | - Krysty D Thomas
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Mostafa Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74074, USA
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| |
Collapse
|
2
|
England EE, Pratt CJ, Elshahed MS, Youssef NH. Evaluating the impact of redox potential on the growth capacity of anaerobic gut fungi. FEMS MICROBES 2024; 5:xtae033. [PMID: 39563712 PMCID: PMC11575491 DOI: 10.1093/femsmc/xtae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
Anaerobic gut fungi (AGF, Neocallimastigomycota) inhabit the alimentary tract of herbivores. Although strict anaerobes, studies have suggested their capacity to retain viability after various durations of air exposure. It is currently unclear whether AGF can actively grow, and not merely survive, in redox potentials (Eh) higher than those encountered in the herbivorous gut. We evaluated the growth of two AGF strains (Orpinomyces joyonii and Testudinimyces gracilis) at various Eh levels, achieved by manipulating the concentrations of reductant (cysteine hydrochloride) in culture media. Both strains exhibited robust and sustainable growth at negative Eh (-50 mV or below). However, growth in the absence of cysteine hydrochloride (Eh value around +50 mV) was possible only for O. joyonii and only for one subcultivation. The capacity to grow at +50 mV was further confirmed in four additional taxa (Pecoramyces ruminatium, Anaeromyces mucronatus, Aklioshbmyces papillarum, and Piromyces communis), while two (Aestipascuomyces dupliciliberans and Capellomyces foraminis) failed to grow under these conditions. Our results establish the ability of AGF to grow at redox potential values higher than those encountered in their natural habitats. Such capability could contribute to efficient AGF dispersal and horizontal transmission between hosts, and could have important implications for industrial applications of AGF.
Collapse
Affiliation(s)
- Emma E England
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, United States
| | - Carrie J Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, United States
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, United States
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, United States
| |
Collapse
|
3
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
4
|
Neurauter M, Vinzelj JM, Strobl SFA, Kappacher C, Schlappack T, Badzoka J, Rainer M, Huck CW, Podmirseg SM. Exploring near-infrared spectroscopy and hyperspectral imaging as novel characterization methods for anaerobic gut fungi. FEMS MICROBES 2024; 5:xtae025. [PMID: 39301047 PMCID: PMC11412074 DOI: 10.1093/femsmc/xtae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Neocallimastigomycota are a phylum of anaerobic gut fungi (AGF) that inhabit the gastrointestinal tract of herbivores and play a pivotal role in plant matter degradation. Their identification and characterization with marker gene regions has long been hampered due to the high inter- and intraspecies length variability in the commonly used fungal marker gene region internal transcribed spacer (ITS). While recent research has improved methodology (i.e. switch to LSU D2 as marker region), molecular methods will always introduce bias through nucleic acid extraction or PCR amplification. Here, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) are introduced as two nucleic acid sequence-independent tools for the characterization and identification of AGF strains. We present a proof-of-concept for both, achieving an independent prediction accuracy of above 95% for models based on discriminant analysis trained with samples of three different genera. We further demonstrated the robustness of the NIRS model by testing it on cultures of different growth times. Overall, NIRS provides a simple, reliable, and nondestructive approach for AGF classification, independent of molecular approaches. The HSI method provides further advantages by requiring less biomass and adding spatial information, a valuable feature if this method is extended to mixed cultures or environmental samples in the future.
Collapse
Affiliation(s)
- Markus Neurauter
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Julia M Vinzelj
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sophia F A Strobl
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Christoph Kappacher
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Tobias Schlappack
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Sabine M Podmirseg
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Thongbunrod N, Chaiprasert P. Efficient methane production from agro-industrial residues using anaerobic fungal-rich consortia. World J Microbiol Biotechnol 2024; 40:239. [PMID: 38862848 DOI: 10.1007/s11274-024-04050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/09/2024] [Indexed: 06/13/2024]
Abstract
Anaerobic digestion (AD) emerges as a pivotal technique in climate change mitigation, transforming organic materials into biogas, a renewable energy form. This process significantly impacts energy production and waste management, influencing greenhouse gas emissions. Traditional research has largely focused on anaerobic bacteria and methanogens for methane production. However, the potential of anaerobic lignocellulolytic fungi for degrading lignocellulosic biomass remains less explored. In this study, buffalo rumen inocula were enriched and acclimatized to improve lignocellulolytic hydrolysis activity. Two consortia were established: the anaerobic fungi consortium (AFC), selectively enriched for fungi, and the anaerobic lignocellulolytic microbial consortium (ALMC). The consortia were utilized to create five distinct microbial cocktails-AF0, AF20, AF50, AF80, and AF100. These cocktails were formulated based on varying of AFC and ALMC by weights (w/w). Methane production from each cocktail of lignocellulosic biomasses (cassava pulp and oil palm residues) was evaluated. The highest methane yields of CP, EFB, and MFB were obtained at 337, 215, and 54 mL/g VS, respectively. Cocktails containing a mix of anaerobic fungi, hydrolytic bacteria (Sphingobacterium sp.), syntrophic bacteria (Sphaerochaeta sp.), and hydrogenotrophic methanogens produced 2.1-2.6 times higher methane in cassava pulp and 1.1-1.2 times in oil palm empty fruit bunch compared to AF0. All cocktails effectively produced methane from oil palm empty fruit bunch due to its lipid content. However, methane production ceased after 3 days when oil palm mesocarp fiber was used, due to long-chain fatty acid accumulation. Anaerobic fungi consortia showed effective lignocellulosic and starchy biomass degradation without inhibition due to organic acid accumulation. These findings underscore the potential of tailored microbial cocktails for enhancing methane production from diverse lignocellulosic substrates.
Collapse
Affiliation(s)
- Nitiya Thongbunrod
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Pawinee Chaiprasert
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
6
|
Jones AL, Pratt CJ, Meili CH, Soo RM, Hugenholtz P, Elshahed MS, Youssef NH. Anaerobic gut fungal communities in marsupial hosts. mBio 2024; 15:e0337023. [PMID: 38259066 PMCID: PMC10865811 DOI: 10.1128/mbio.03370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The anaerobic gut fungi (AGF) inhabit the alimentary tracts of herbivores. In contrast to placental mammals, information regarding the identity, diversity, and community structure of AGF in marsupials is extremely sparse. Here, we characterized AGF communities in 61 fecal samples from 10 marsupial species belonging to four families in the order Diprotodontia: Vombatidae (wombats), Phascolarctidae (koalas), Phalangeridae (possums), and Macropodidae (kangaroos, wallabies, and pademelons). An amplicon-based diversity survey using the D2 region of the large ribosomal subunit as a phylogenetic marker indicated that marsupial AGF communities were dominated by eight genera commonly encountered in placental herbivores (Neocallimastix, Caecomyces, Cyllamyces, Anaeromyces, Orpinomyces, Piromyces, Pecoramyces, and Khoyollomyces). Community structure analysis revealed a high level of stochasticity, and ordination approaches did not reveal a significant role for the animal host, gut type, dietary preferences, or lifestyle in structuring marsupial AGF communities. Marsupial foregut and hindgut communities displayed diversity and community structure patterns comparable to AGF communities typically encountered in placental foregut hosts while exhibiting a higher level of diversity and a distinct community structure compared to placental hindgut communities. Quantification of AGF load using quantitative PCR indicated a significantly smaller load in marsupial hosts compared to their placental counterparts. Isolation efforts were only successful from a single red kangaroo fecal sample and yielded a Khoyollomyces ramosus isolate closely related to strains previously isolated from placental hosts. Our results suggest that AGF communities in marsupials are in low abundance and show little signs of selection based on ecological and evolutionary factors.IMPORTANCEThe AGF are integral part of the microbiome of herbivores. They play a crucial role in breaking down plant biomass in hindgut and foregut fermenters. The majority of research has been conducted on the AGF community in placental mammalian hosts. However, it is important to note that many marsupial mammals are also herbivores and employ a hindgut or foregut fermentation strategy for breaking down plant biomass. So far, very little is known regarding the AGF diversity and community structure in marsupial mammals. To fill this knowledge gap, we conducted an amplicon-based diversity survey targeting AGF in 61 fecal samples from 10 marsupial species. We hypothesize that, given the distinct evolutionary history and alimentary tract architecture, novel and unique AGF communities would be encountered in marsupials. Our results indicate that marsupial AGF communities are highly stochastic, present in relatively low loads, and display community structure patterns comparable to AGF communities typically encountered in placental foregut hosts. Our results indicate that marsupial hosts harbor AGF communities; however, in contrast to the strong pattern of phylosymbiosis typically observed between AGF and placental herbivores, the identity and gut architecture appear to play a minor role in structuring AGF communities in marsupials.
Collapse
Affiliation(s)
- Adrienne L. Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Carrie J. Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Casey H. Meili
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rochelle M. Soo
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
7
|
Marchetta A, Papale M, Rappazzo AC, Rizzo C, Camacho A, Rochera C, Azzaro M, Urzì C, Lo Giudice A, De Leo F. A Deep Insight into the Diversity of Microfungal Communities in Arctic and Antarctic Lakes. J Fungi (Basel) 2023; 9:1095. [PMID: 37998900 PMCID: PMC10672340 DOI: 10.3390/jof9111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
We assessed fungal diversity in water and sediment samples obtained from five Arctic lakes in Ny-Ålesund (Svalbard Islands, High Arctic) and five Antarctic lakes on Livingston and Deception Islands (South Shetland Islands), using DNA metabarcoding. A total of 1,639,074 fungal DNA reads were detected and assigned to 5980 ASVs amplicon sequence variants (ASVs), with only 102 (1.7%) that were shared between the two Polar regions. For Arctic lakes, unknown fungal taxa dominated the sequence assemblages, suggesting the dominance of possibly undescribed fungi. The phylum Chytridiomycota was the most represented in the majority of Arctic and Antarctic samples, followed by Rozellomycota, Ascomycota, Basidiomycota, and the less frequent Monoblepharomycota, Aphelidiomycota, Mortierellomycota, Mucoromycota, and Neocallimastigomycota. At the genus level, the most abundant genera included psychrotolerant and cosmopolitan cold-adapted fungi including Alternaria, Cladosporium, Cadophora, Ulvella (Ascomycota), Leucosporidium, Vishniacozyma (Basidiomycota), and Betamyces (Chytridiomycota). The assemblages displayed high diversity and richness. The assigned diversity was composed mainly of taxa recognized as saprophytic fungi, followed by pathogenic and symbiotic fungi.
Collapse
Affiliation(s)
- Alessia Marchetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
| | - Alessandro Ciro Rappazzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catédratico José Beltrán, 2, E46980 Paterna, Spain
| | - Carlos Rochera
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catédratico José Beltrán, 2, E46980 Paterna, Spain
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
| | - Clara Urzì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
| | - Filomena De Leo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
8
|
Liang Z, Zhang J, Ahmad AA, Han J, Gharechahi J, Du M, Zheng J, Wang P, Yan P, Salekdeh GH, Ding X. Forage lignocellulose is an important factor in driving the seasonal dynamics of rumen anaerobic fungi in grazing yak and cattle. Microbiol Spectr 2023; 11:e0078823. [PMID: 37707448 PMCID: PMC10581131 DOI: 10.1128/spectrum.00788-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 09/15/2023] Open
Abstract
Anaerobic fungi (AF) inhabit the gastrointestinal tract of ruminants and play an important role in the degradation of fiber feed. However, limited knowledge is available on seasonal dynamics and inter-species differences in rumen AF community in yak and cattle under natural grazing systems. Using the random forests model, the null model, and structural equation model, we investigated the seasonal dynamics and key driving factors of fiber-associated rumen AF in grazing yak and cattle throughout the year on the Qinghai-Tibet Plateau (QTP). We found that the richness and diversity of rumen AF of grazing yak and cattle in cold season were significantly higher than those in warm season (P < 0.05). We identified 12 rumen AF genera, among which , Cyllamyces, and Orpinomyces were predominant in the rumen of both grazing yak and cattle. LEfSe and random forest analysis showed that Feramyces, Tahromyces, and Buwchfawromyces were important seasonal indicator of rumen AF in grazing yak (P < 0.05), and Caecomyces, Cyllamyces, and Piromyces in grazing cattle (P < 0.05). Null model analysis revealed that the dynamic changes of rumen AF community structure were mainly affected by deterministic factors. Notably, mantel test and structural equation model revealed that forage physical-chemical properties, including dry matter (DM), neutral detergent fiber (NDF), and hemicellulose contents (HC) were the key factors driving the seasonal variations of the rumen AF community (P < 0.05). The results revealed that forage lignocellulose was probably an important factor affecting the seasonal dynamics and inter-species differences of the rumen AF community under natural grazing conditions. IMPORTANCE The seasonal dynamics of rumen anaerobic fungi in nature grazing yak and cattle were determined during cold and warm seasons based on pasture nutritional quality and environmental data sets. The main driving factors of anaerobic fungi in yak and cattle rumen were explored by combining random forest and structural equation models. In addition, the dynamic differences in the composition of the anaerobic fungi community in the yak and cattle in different seasons were characterized. It was found that some rumen anaerobic fungi have contributed to high fiber degradation rate in yak. These novel findings improve our understanding of the association of environmental and dietary seasonal variations with anaerobic fungal community, facilitating yak adaptation to high altitude.
Collapse
Affiliation(s)
- Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Peng Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
9
|
Rúa-Giraldo ÁL. Fungal taxonomy: A puzzle with many missing pieces. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:288-311. [PMID: 37721899 PMCID: PMC10588969 DOI: 10.7705/biomedica.7052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023]
Abstract
Fungi are multifaceted organisms found in almost all ecosystems on Earth, where they establish various types of symbiosis with other living beings. Despite being recognized by humans since ancient times, and the high number of works delving into their biology and ecology, much is still unknown about these organisms. Some criteria classically used for their study are nowadays limited, generating confusion in categorizing them, and even more, when trying to understand their genealogical relationships. To identify species within Fungi, phenotypic characters to date are not sufficient, and to construct a broad phylogeny or a phylogeny of a particular group, there are still gaps affecting the generated trees, making them unstable and easily debated. For health professionals, fungal identification at lower levels such as genus and species, is enough to select the most appropriate therapy for their control, understand the epidemiology of clinical pictures associated, and recognize outbreaks and antimicrobial resistance. However, the taxonomic location within the kingdom, information with apparently little relevance, can allow phylogenetic relationships to be established between fungal taxa, facilitating the understanding of their biology, distribution in nature, and pathogenic potential evolution. Advances in molecular biology and computer science techniques from the last 30 years have led to crucial changes aiming to establish the criteria to define a fungal species, allowing us to reach a kind of stable phylogenetic construction. However, there is still a long way to go, and it requires the joint work of the scientific community at a global level and support for basic research.
Collapse
|
10
|
Hanafy RA, Wang Y, Stajich JE, Pratt CJ, Youssef NH, Elshahed MS. Phylogenomic analysis of the Neocallimastigomycota: proposal of Caecomycetaceae fam. nov., Piromycetaceae fam. nov., and emended description of the families Neocallimastigaceae and Anaeromycetaceae. Int J Syst Evol Microbiol 2023; 73. [PMID: 36827202 DOI: 10.1099/ijsem.0.005735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The anaerobic gut fungi (AGF) represent a coherent phylogenetic clade within the Mycota. Twenty genera have been described so far. Currently, the phylogenetic and evolutionary relationships between AGF genera remain poorly understood. Here, we utilized 52 transcriptomic datasets from 14 genera to resolve AGF inter-genus relationships using phylogenomics, and to provide a quantitative estimate (amino acid identity, AAI) for intermediate rank assignments. We identify four distinct supra-genus clades, encompassing all genera producing polyflagellated zoospores, bulbous rhizoids, the broadly circumscribed genus Piromyces, and the Anaeromyces and affiliated genera. We also identify the genus Khoyollomyces as the earliest evolving AGF genus. Concordance between phylogenomic outputs and RPB1 and D1/D2 LSU, but not RPB2, MCM7, EF1α or ITS1, phylogenies was observed. We combine phylogenomic analysis and AAI outputs with informative phenotypic traits to propose accommodating 14/20 AGF genera into four families: Caecomycetaceae fam. nov. (encompassing the genera Caecomyces and Cyllamyces), Piromycetaceae fam. nov. (encompassing the genus Piromyces), emend the description of the family Neocallimastigaceae to encompass the genera Neocallimastix, Orpinomyces, Pecoramyces, Feramyces, Ghazallomyces, Aestipascuomyces and Paucimyces, as well as the family Anaeromycetaceae to include the genera Oontomyces, Liebetanzomyces and Capellomyces in addition to Anaeromyces. We refrain from proposing families for the deeply branching genus Khoyollomyces and for genera with uncertain position (Buwchfawromyces, Joblinomyces, Tahromyces, Agriosomyces and Aklioshbomyces) pending availability of additional isolates and sequence data; and these genera are designated as 'genera incertae sedis' in the order Neocallimastigales. Our results establish an evolutionary-grounded Linnaean taxonomic framework for the AGF, provide quantitative estimates for rank assignments, and demonstrate the utility of RPB1 as an additional informative marker in Neocallimastigomycota taxonomy.
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.,Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Carrie J Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
11
|
Joshi A, Young D, Huang L, Mosberger L, Munk B, Vinzelj J, Flad V, Sczyrba A, Griffith GW, Podmirseg SM, Warthmann R, Lebuhn M, Insam H. Effect of Growth Media on the Diversity of Neocallimastigomycetes from Non-Rumen Habitats. Microorganisms 2022; 10:1972. [PMID: 36296248 PMCID: PMC9612151 DOI: 10.3390/microorganisms10101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 12/02/2022] Open
Abstract
Anaerobic fungi (AF), belonging to the phylum Neocallimastigomycota, are a pivotal component of the digestive tract microbiome of various herbivorous animals. In the last decade, the diversity of AF has rapidly expanded due to the exploration of numerous (novel) habitats. Studies aiming at understanding the role of AF require robust and reliable isolation and cultivation techniques, many of which remained unchanged for decades. Using amplicon sequencing, we compared three different media: medium with rumen fluid (RF), depleted rumen fluid (DRF), and no rumen fluid (NRF) to enrich the AF from the feces of yak, as a rumen control; and Przewalski's horse, llama, guanaco, and elephant, as a non-rumen habitats. The results revealed the selective enrichment of Piromyces and Neocallimastix from the feces of elephant and llama, respectively, in the RF medium. Similarly, the enrichment culture in DRF medium explicitly manifested Piromyces-related sequences from elephant feces. Five new clades (MM1-5) were defined from llama, guanaco, yak, and elephant feces that could as well be enriched from llama and elephant samples using non-conventional DRF and NRF media. This study presents evidence for the selective enrichment of certain genera in medium with RF and DRF from rumen as well as from non-rumen samples. NRF medium is suggested for the isolation of AF from non-rumen environments.
Collapse
Affiliation(s)
- Akshay Joshi
- Biocatalysis, Environment and Process Technology Unit, Life Science and Facility Management, Zurich University of Applied Sciences (ZHAW), 8820 Wadenswil, Switzerland
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Diana Young
- Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany
| | - Liren Huang
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lona Mosberger
- Biocatalysis, Environment and Process Technology Unit, Life Science and Facility Management, Zurich University of Applied Sciences (ZHAW), 8820 Wadenswil, Switzerland
| | - Bernhard Munk
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Julia Vinzelj
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Veronika Flad
- Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany
| | - Alexander Sczyrba
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Gareth W. Griffith
- Department of Life Sciences, Cledwyn Building, Aberystwyth University, Aberystwyth SY23 3DD, UK
| | - Sabine Marie Podmirseg
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Rolf Warthmann
- Biocatalysis, Environment and Process Technology Unit, Life Science and Facility Management, Zurich University of Applied Sciences (ZHAW), 8820 Wadenswil, Switzerland
| | - Michael Lebuhn
- Central Department for Quality Assurance and Analytics, Micro- and Molecular Biology, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
12
|
Vinzelj J, Joshi A, Young D, Begovic L, Peer N, Mosberger L, Luedi KCS, Insam H, Flad V, Nagler M, Podmirseg SM. No time to die: Comparative study on preservation protocols for anaerobic fungi. Front Microbiol 2022; 13:978028. [PMID: 36225373 PMCID: PMC9549207 DOI: 10.3389/fmicb.2022.978028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Anaerobic fungi (AF, phylum Neocallimastigomycota) are best known for their ability to anaerobically degrade recalcitrant lignocellulosic biomass through mechanic and enzymatic means. While their biotechnological potential is well-recognized, applied research on AF is still hampered by the time-consuming and cost-intensive laboratory routines required to isolate, maintain, and preserve AF cultures. Reliable long-term preservation of specific AF strains would aid basic as well as applied research, but commonly used laboratory protocols for AF preservation can show erratic survival rates and usually exhibit only moderate resuscitation success for up to one or two years after preservation. To address both, the variability, and the preservation issues, we have set up a cross-laboratory, year-long study. We tested five different protocols for the preservation of AF. The experiments were performed at three different laboratories (Austria, Germany, Switzerland) with the same three morphologically distinct AF isolates (Anaeromyces mucronatus, Caeocmyces sp., and Neocallimastix cameroonii) living in stable co-culture with their naturally occurring, syntrophic methanogens. We could show that handling greatly contributes to the variability of results, especially in Anaeromyces mucronatus. Cryopreservation of (mature) biomass in liquid nitrogen had the highest overall survival rates (85-100%, depending on the strain and laboratory). Additionally, preservation on agar at 39°C had surprisingly high survival rates for up to 9 months, if pieces of agar containing mature AF thalli were resuscitated. This low-cost, low-effort method could replace consecutive batch cultivation for periods of up to 6 months, while long-term preservation is best done by cryopreservation in liquid nitrogen. Regardless of the method, however, preserving several replicates (>three) of the same strain is highly advisable.
Collapse
Affiliation(s)
- Julia Vinzelj
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Akshay Joshi
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
- Institute of Chemistry and Biotechnology, Biocatalysis and Process Technology Unit, Zurich University of Applied Sciences, Wäedenswil, Switzerland
| | - Diana Young
- Micro- and Molecular Biology, Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Freising, Germany
| | - Ljubica Begovic
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Nico Peer
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Lona Mosberger
- Institute of Chemistry and Biotechnology, Biocatalysis and Process Technology Unit, Zurich University of Applied Sciences, Wäedenswil, Switzerland
| | - Katharina Cécile Schmid Luedi
- Institute of Chemistry and Biotechnology, Biocatalysis and Process Technology Unit, Zurich University of Applied Sciences, Wäedenswil, Switzerland
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Veronika Flad
- Micro- and Molecular Biology, Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Freising, Germany
| | - Magdalena Nagler
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
13
|
Elshahed MS, Hanafy RA, Cheng Y, Dagar SS, Edwards JE, Flad V, Fliegerová KO, Griffith GW, Kittelmann S, Lebuhn M, O'Malley MA, Podmirseg SM, Solomon KV, Vinzelj J, Young D, Youssef NH. Characterization and rank assignment criteria for the anaerobic fungi (Neocallimastigomycota). Int J Syst Evol Microbiol 2022; 72. [PMID: 35852502 DOI: 10.1099/ijsem.0.005449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Establishing a solid taxonomic framework is crucial for enabling discovery and documentation efforts. This ensures effective communication between scientists as well as reproducibility of results between laboratories, and facilitates the exchange and preservation of biological material. Such framework can only be achieved by establishing clear criteria for taxa characterization and rank assignment. Within the anaerobic fungi (phylum Neocallimastigomycota), the need for such criteria is especially vital. Difficulties associated with their isolation, maintenance and long-term storage often result in limited availability and loss of previously described taxa. To this end, we provide here a list of morphological, microscopic, phylogenetic and phenotypic criteria for assessment and documentation when characterizing newly obtained Neocallimastigomycota isolates. We also recommend a polyphasic rank-assignment scheme for novel genus-, species- and strain-level designations for newly obtained Neocallimastigomycota isolates.
Collapse
Affiliation(s)
- Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA, USA
| | - Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark DE, USA
| | - Yanfen Cheng
- College of Animal Science and Technology, Nanjing Agricultural University., Nanjing, Jiangsu, PR China
| | - Sumit S Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | | | - Veronika Flad
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | | | - Gareth W Griffith
- Institute of Biological, Environmental, and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, Wales, UK
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - Michelle A O'Malley
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sabine Marie Podmirseg
- Department of Microbiology, University of Innsbruck, Technikerstraße, Innsbruck, Austria
| | - Kevin V Solomon
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark DE, USA
| | - Julia Vinzelj
- Department of Microbiology, University of Innsbruck, Technikerstraße, Innsbruck, Austria
| | - Diana Young
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA, USA
| |
Collapse
|