1
|
Saka N, Ohta K, Kolakofsky D, Nishio M. The bipartite promoter of Orthonairovirus hazaraense large segment. J Virol 2023; 97:e0091823. [PMID: 37916836 PMCID: PMC10688357 DOI: 10.1128/jvi.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The realization that segmented negative-strand RNA virus genome ribonucleoproteins are never free as their RNA ends are always bound to the viral polymerase has highlighted the problem of how these genome segments are replicated and express their mRNAs while their RNA ends remain associated with the polymerase throughout the cycles of RNA synthesis. This study of the length and nucleotide composition of the Orthonairovirus hazaraense L segment-specific double-stranded RNA (dsRNA) promoter element (the promoter duplex) provides insight into how its mRNA might be initiated and suggests that this promoter element acts via its separated single strands as well as via dsRNA.
Collapse
Affiliation(s)
- Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, Geneva, Switzerland
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
A point mutation in human parainfluenza virus type 2 nucleoprotein leads to two separate effects on virus replication. J Virol 2021; 96:e0206721. [PMID: 34878809 DOI: 10.1128/jvi.02067-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxovirus genomes, like that of human parainfluenza virus type 2 (hPIV2), are precisely a multiple of six nucleotides long ("rule of six"), in which each nucleoprotein subunit (NP) binds precisely 6 nucleotides. Ten residues of its RNA binding groove contact the genome RNA; but only one, Q202, directly contacts a nucleotide base. Mutation of NPQ202 leads to two phenotypes; the ability of the viral polymerase to replicate minigenomes with defective bipartite promoters where NPwt is inactive, and the inability to rescue rPIV2 carrying this point mutation by standard means. The absence a rPIV2 NPQ202A prevented further study of this latter phenotype. By extensive and repeated co-cultivation of transfected cells, a rPIV2 carrying this mutation was finally recovered, and this virus was apparently viable due to the presence of an additional NP mutation (I35L). Our results suggest that these two phenotypes are due to separate effects of the Q202 mutation, and that of the problematic rescue phenotype may be due to the inability of the transfected cell to incorporate viral nucleocapsids during virus budding. Importance Paramyxovirus genomes are contained within a non-covalent homopolymer of its nucleoprotein (NP) and form helical nucleocapsids (NC) whose 3' ends contain the promoters for the initiation of viral RNA synthesis. This work suggests that these NC 3' ends may play another role in the virus life cycle, namely via their specific interaction with virus modified cell membranes needed for the incorporation of viral NCs into budding virions.
Collapse
|
3
|
Ohta K, Matsumoto Y, Nishio M. Inhibition of Cavin3 Degradation by the Human Parainfluenza Virus Type 2 V Protein Is Important for Efficient Viral Growth. Front Microbiol 2020; 11:803. [PMID: 32425917 PMCID: PMC7203785 DOI: 10.3389/fmicb.2020.00803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
Cavin proteins have important roles in the formation of caveolae in lipid raft microdomains. Pulse-chase experiments of cells infected with human parainfluenza virus type 2 (hPIV-2) showed decreased proteasomal degradation of Cavin3. Overexpression of hPIV-2 V protein alone was sufficient to inhibit Cavin3 degradation. Immunoprecipitation analysis revealed that V protein bound to Cavin3. Trp residues within C-terminal region of V protein, as well as the N-terminal region of Cavin3, are important for V–Cavin3 interaction. Cavin3 knockdown suppressed hPIV-2 growth without affecting its entry, replication, transcription, or translation. Higher amounts of Cavin3 were observed in V protein-overexpressing cells than in control cells in lipid raft microdomains. Our data collectively suggest that hPIV-2 V protein binds to and stabilizes Cavin3, which in turn facilitates assembly and budding of hPIV-2 in lipid raft microdomains.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
4
|
Matsumoto Y, Ohta K, Nishio M. Importance of tyrosine in the RNA-binding domain of human parainfluenza virus type 2 nucleoprotein for polymerase activity. Arch Virol 2019; 164:1851-1855. [PMID: 31055651 DOI: 10.1007/s00705-019-04240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 10/26/2022]
Abstract
The RNA genome of human parainfluenza virus type 2 (hPIV2) is encapsidated by nucleoprotein (NP) to act as a template for RNA synthesis. We examined the importance of individual amino acids in the RNA-binding domain of hPIV2 NP for polymerase activity using a mini-replicon assay. We showed that substitution of tyrosine at amino acid position 260, located in the RNA-binding pocket of NP, severely reduced polymerase activity. The aromatic side-chain of Y260 may be required for the formation of stable contacts between nucleotides and basic amino acids, thereby affecting promoter recognition by the viral polymerase.
Collapse
Affiliation(s)
- Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
5
|
A Minigenome Study of Hazara Nairovirus Genomic Promoters. J Virol 2019; 93:JVI.02118-18. [PMID: 30626667 DOI: 10.1128/jvi.02118-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Hazara nairovirus (HAZV) is a trisegmented RNA virus most closely related to Crimean-Congo hemorrhagic fever virus (CCHFV) in the order Bunyavirales The terminal roughly 20 nucleotides (nt) of its genome ends are highly complementary, similar to those of other segmented negative-strand RNA viruses (sNSV), and act as promoters for RNA synthesis. These promoters contain two elements: the extreme termini of both strands (promoter element 1 [PE1]) are conserved and virus specific and are found bound to separate sites on the polymerase surface in crystal structures of promoter-polymerase complexes. The following sequences (PE2) are segment specific, with the potential to form double-stranded RNA (dsRNA), and the latter aspect is also important for promoter activity. Nairovirus genome promoters differ from those of peribunyaviruses and arenaviruses in that they contain a short single-stranded region between the two regions of complementarity. Using a HAZV minigenome system, we found the single-stranded nature of this region, as well as the potential of the following sequence to form dsRNA, is essential for reporter gene expression. Most unexpectedly, the sequence of the PE2 dsRNA appears to be equally important for promoter activity. These differences in sNSV PE2 promoter elements are discussed in light of our current understanding of the initiation of RNA synthesis.IMPORTANCE A minigenome system for HAZV, closely related to CCHFV, was used to study its genome replication. HAZV genome ends, like those of other sNSV, such as peribunyaviruses and arenaviruses, are highly complementary and serve as promoters for genome synthesis. These promoters are composed of two elements: the extreme termini of both 3' and 5' strands that are initially bound to separate sites on the polymerase surface in a sequence-specific fashion and the following sequences with the potential to anneal but whose sequence is not important. Nairovirus promoters differ from the other sNSV cited in that they contain a short single-stranded RNA (ssRNA) region between the two elements. The single-stranded nature of this region is an essential element of the promoter, whereas its sequence is unimportant. The sequence of the following complementary region is unexpectedly also important, a possible rare example of sequence-specific dsRNA recognition.
Collapse
|
6
|
Ohtsuka J, Matsumoto Y, Ohta K, Fukumura M, Tsurudome M, Nosaka T, Nishio M. Nucleocytoplasmic shuttling of the human parainfluenza virus type 2 phosphoprotein. Virology 2018; 528:54-63. [PMID: 30576860 DOI: 10.1016/j.virol.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/21/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
Human parainfluenza virus type 2 phosphoprotein (P) is an essential component of viral polymerase. The P gene encodes both P and accessory V proteins by a specific gene editing mechanism. Therefore, the N-terminal 164 amino acids of P protein are common to V protein. Interestingly, while P protein is located in the cytoplasm, V protein is found mainly in the nucleus. Using deletion mutants, we show the presence of a nuclear localization signal (NLS) in the P/V common domain, and a nuclear export signal (NES) in the C-terminal P specific region. The NLS region makes a complex with importin α5 or 7. In the presence of leptomycin B, P protein is retained in the nucleus, indicating that it contains a CRM1-dependent NES. We identified the NLS (65PVKPRRKK72) and the NES (225IIELLKGLDL234) using β-galactosidase fusion proteins. Moreover, nucleocytoplasmic shuttling of P protein appears to be important for efficient viral polymerase activity.
Collapse
Affiliation(s)
- Junpei Ohtsuka
- Department of Microbiology, Mie University Graduate School of Medicine, Mie, Japan; Biocomo Inc., Mie, Japan
| | - Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayuki Fukumura
- Department of Microbiology, Mie University Graduate School of Medicine, Mie, Japan; Biocomo Inc., Mie, Japan
| | - Masato Tsurudome
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Tetsuya Nosaka
- Department of Microbiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
7
|
Šantak M, Mlinarić-Galinović G, Vilibić-Čavlek T, Tabain I. Comparative genomics of human rubulavirus 2. Arch Virol 2018; 163:3141-3148. [PMID: 30097744 DOI: 10.1007/s00705-018-3986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Although human rubulavirus 2 (HPIV2) is an important respiratory pathogen, little is known about its molecular epidemiology. We performed a comparative analysis of the full-length genomes of fourteen HPIV2 isolates belonging to different genotypes. Additionally, evolutionary analyses (phylogenetic reconstruction, sequence identity, detection of recombination and adaptive evolution) were conducted. Our study presents a systematic comparative genetic analysis that complements prior analyses and utilizes full-length HPIV2 genomes to provide a basis for future work on the clinical significance, molecular variation and conservation, and evolution of HPIV2.
Collapse
Affiliation(s)
- Maja Šantak
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000, Zagreb, Croatia.
| | | | - Tatjana Vilibić-Čavlek
- School of Medicine, University of Zagreb, Šalata 3, 10000, Zagreb, Croatia.,Croatian National Institute of Public Health, Rockefellerova 12, 10000, Zagreb, Croatia
| | - Irena Tabain
- Croatian National Institute of Public Health, Rockefellerova 12, 10000, Zagreb, Croatia
| |
Collapse
|
8
|
Matsumoto Y, Ohta K, Kolakofsky D, Nishio M. The control of paramyxovirus genome hexamer length and mRNA editing. RNA (NEW YORK, N.Y.) 2018; 24:461-467. [PMID: 29358233 PMCID: PMC5855947 DOI: 10.1261/rna.065243.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/18/2018] [Indexed: 05/15/2023]
Abstract
The unusual ability of a human parainfluenza virus type 2 (hPIV2) nucleoprotein point mutation (NPQ202A) to strongly enhance minigenome replication was found to depend on the absence of a functional, internal element of the bipartite replication promoter (CRII). This point mutation allows relatively robust CRII-minus minigenome replication in a CRII-independent manner, under conditions in which NPwt is essentially inactive. The nature of the amino acid at position 202 apparently controls whether viral RNA-dependent RNA polymerase (vRdRp) can, or cannot, initiate RNA synthesis in a CRII-independent manner. By repressing genome synthesis when vRdRp cannot correctly interact with CRII, gln202 of N, the only residue of the RNA-binding groove that contacts a nucleotide base in the N-RNA, acts as a gatekeeper for wild-type (CRII-dependent) RNA synthesis. This ensures that only hexamer-length genomes are replicated, and that the critical hexamer phase of the cis-acting mRNA editing sequence is maintained.
Collapse
Affiliation(s)
- Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, 1211 Geneva, Switzerland
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
9
|
Rab27a facilitates human parainfluenza virus type 2 growth by promoting cell surface transport of envelope proteins. Med Microbiol Immunol 2018; 207:141-150. [DOI: 10.1007/s00430-018-0536-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/20/2018] [Indexed: 01/03/2023]
|
10
|
Human parainfluenza virus type 2 polymerase complex recognizes leader promoters of other species belonging to the genus Rubulavirus. Med Microbiol Immunol 2017; 206:441-446. [PMID: 28884293 DOI: 10.1007/s00430-017-0520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/02/2017] [Indexed: 10/18/2022]
Abstract
Leader sequence, located at the 3' terminus of paramyxovirus genomes, determines the degree of viral transcription and replication. The essential nucleotides in the leader sequence that influence viral propagation, however, have not been investigated in detail. In the present study, we show that polymerase complex of human parainfluenza virus type 2 (hPIV2) uses a luciferase-encoding hPIV2 mini-genome possessing the leader sequence from other closely related viruses as a template. Furthermore, we demonstrate that although hPIV2 polymerase complex can recognize the leader sequence of hPIV4B, mumps virus (MuV) and PIV5 as well as Newcastle disease virus (NDV), it cannot recognize measles virus, hPIV1, Sendai virus (SeV) or hPIV3. We could obtain the chimeric hPIV2 possessing the leader sequence from hPIV4B, MuV and PIV5, but not from other species, including NDV and SeV. These results reveal that although hPIV2 polymerase complex can recognize the leader sequence from rubulaviruses to achieve efficient viral infection, this does not apply to viruses belonging to other genus. A comparison of leader sequence nucleotides among paramyxoviruses highlights the importance of the conservation in the first 13 nucleotides for infectious hPIV2 growth.
Collapse
|
11
|
A Point Mutation in the RNA-Binding Domain of Human Parainfluenza Virus Type 2 Nucleoprotein Elicits Abnormally Enhanced Polymerase Activity. J Virol 2017; 91:JVI.02203-16. [PMID: 28179533 DOI: 10.1128/jvi.02203-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
The genome RNA of human parainfluenza virus type 2 (hPIV2) that acts as the template for the polymerase complex is entirely encapsidated by the nucleoprotein (NP). Recently, the crystal structure of NP of PIV5, a virus closely related to hPIV2, was resolved in association with RNA. Ten amino acids that contact the bound RNA were identified and are strictly conserved between PIV5 and hPIV2 NP. Mutation of hPIV2 NP Q202 (which contacts a base rather than the RNA backbone) to various amino acids resulted in an over 30-fold increase of polymerase activity as evidenced by a minireplicon assay, even though the RNA-binding affinity was unaltered. Using various modified minireplicons, we found that the enhanced reporter gene expression could be accounted for by increased minigenome replication, whereas mRNA synthesis itself was not affected by Q202 mutation. Moreover, the enhanced activities were still observed in minigenomes partially lacking the leader sequence and which were not of hexamer genome length. Unexpectedly, recombinant hPIV2 possessing the NP Q202A mutation could not be recovered from cDNA.IMPORTANCE We examined the importance of amino acids in the putative RNA-binding domain of hPIV2 NP for polymerase activity using minireplicons. Abnormally enhanced genome replication was observed upon substitution mutation of the NP Q202 position to various amino acids. Surprisingly, this mutation enabled polymerase to use minigenomes that were partially lacking the leader sequence and not of hexamer genome length. This mutation does not affect fundamental properties of NP, e.g., recognition of gene junctional and editing signals. However, the strongly enhanced polymerase activity may not be viable for the infectious life cycle. This report highlights the potential of the polymerase complex with point mutations in NP and helps our detailed understanding of the molecular basis of gene expression.
Collapse
|