1
|
Zhang Y, Li L, Liu Y, Zhang W, Peng W, Zhang S, Qu R, Ma Y, Liu Z, Ge Z, Zhou Y, Tian W, Shen Y, Liu L, Duan J, Chen Z, Zhu L. Identification of CCL20 as a Prognostic Predictor for Severe Fever With Thrombocytopenia Syndrome Based on Plasma Proteomics. J Infect Dis 2024; 230:741-753. [PMID: 38271258 DOI: 10.1093/infdis/jiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS), a lethal tick-borne hemorrhagic fever, prompted our investigation into prognostic predictors and potential drug targets using plasma Olink Proteomics. METHODS Employing the Olink assay, we analyzed 184 plasma proteins in 30 survivors and 8 nonsurvivors of SFTS. Validation was performed in a cohort of 154 patients with SFTS via enzyme-linked immunosorbent assay. We utilized the Drug-Gene Interaction Database to identify protein-drug interactions. RESULTS Nonsurvivors exhibited 110 differentially expressed proteins as compared with survivors, with functional enrichment in the cell chemotaxis-related pathway. Thirteen differentially expressed proteins-including C-C motif chemokine 20 (CCL20), calcitonin gene-related peptide alpha, and pleiotrophin-were associated with multiple-organ dysfunction syndrome. CCL20 emerged as the top predictor of death, demonstrating an area under the curve of 1 (P = .0004) and 0.9033 (P < .0001) in the discovery and validation cohorts, respectively. Patients with CCL20 levels exceeding 45.74 pg/mL exhibited a fatality rate of 45.65%, while no deaths occurred in those with lower CCL20 levels. Furthermore, we identified 202 Food and Drug Administration-approved drugs targeting 37 death-related plasma proteins. CONCLUSIONS Distinct plasma proteomic profiles characterize SFTS cases with different outcomes, with CCL20 emerging as a novel, sensitive, accurate, and specific biomarker for predicting SFTS prognosis.
Collapse
Affiliation(s)
- Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanni Liu
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Wei Zhang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Peng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuai Zhang
- Department of Clinical Laboratory, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Renliang Qu
- Department of Clinical Laboratory, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Yuan Ma
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zishuai Liu
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziruo Ge
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanxi Zhou
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Tian
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yi Shen
- Department of Infectious Diseases, Dandong Infectious Disease Hospital, Dandong, China
| | - Li Liu
- Department of Infectious Diseases, Taian City Central Hospital, Taian, China
| | - Jianping Duan
- Department of Hepatology, Qing Dao No. 6 People's Hospital, Qingdao, China
| | - Zhihai Chen
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Benito JM, Jiménez-Carretero D, Restrepo C, Ligos JM, Valentín-Quiroga J, Mahillo I, Cabello A, López-Collazo E, Sánchez-Cabo F, Górgolas M, Estrada V, Rallón N. T Cell Homeostasis Disturbances in a Cohort of Long-Term Elite Controllers of HIV Infection. Int J Mol Sci 2024; 25:5937. [PMID: 38892124 PMCID: PMC11172696 DOI: 10.3390/ijms25115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Elite controllers (ECs) are people living with HIV (PLWH) able to control HIV replication without antiretroviral therapy and have been proposed as a model of a functional HIV cure. Much evidence suggests that this spontaneous control of HIV has a cost in terms of T cell homeostasis alterations. We performed a deep phenotypic study to obtain insight into T cell homeostasis disturbances in ECs maintaining long-term virologic and immunologic control of HIV (long-term elite controllers; LTECs). Forty-seven PLWH were included: 22 LTECs, 15 non-controllers under successful antiretroviral therapy (onART), and 10 non-controllers not receiving ART (offART). Twenty uninfected participants (UCs) were included as a reference. T cell homeostasis was analyzed by spectral flow cytometry and data were analyzed using dimensionality reduction and clustering using R software v3.3.2. Dimensionality reduction and clustering yielded 57 and 54 different CD4 and CD8 T cell clusters, respectively. The offART group showed the highest perturbation of T cell homeostasis, with 18 CD4 clusters and 15 CD8 clusters significantly different from those of UCs. Most of these alterations were reverted in the onART group. Interestingly, LTECs presented several disturbances of T cell homeostasis with 15 CD4 clusters and 13 CD8 clusters different from UC. Moreover, there was a specific profile of T cell homeostasis alterations associated with LTECs, characterized by increases in clusters of naïve T cells, increases in clusters of non-senescent effector CD8 cells, and increases in clusters of central memory CD4 cells. These results demonstrate that, compared to ART-mediated control of HIV, the spontaneous control of HIV is associated with several disturbances in CD4 and CD8 T cell homeostasis. These alterations could be related to the existence of a potent and efficient virus-specific T cell response, and to the ability to halt disease progression by maintaining an adequate pool of CD4 T cells.
Collapse
Affiliation(s)
- José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.R.); (N.R.)
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| | - Daniel Jiménez-Carretero
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (D.J.-C.); (F.S.-C.)
| | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.R.); (N.R.)
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| | | | - Jaime Valentín-Quiroga
- Grupo de Respuesta Inmune Innata, IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.V.-Q.); (E.L.-C.)
| | - Ignacio Mahillo
- Department of Statistics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain;
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (A.C.); (M.G.)
| | - Eduardo López-Collazo
- Grupo de Respuesta Inmune Innata, IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.V.-Q.); (E.L.-C.)
| | - Fátima Sánchez-Cabo
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (D.J.-C.); (F.S.-C.)
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (A.C.); (M.G.)
| | - Vicente Estrada
- Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.R.); (N.R.)
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
3
|
Pampalone M, Cuscino N, Iannolo G, Amico G, Ricordi C, Vitale G, Carcione C, Castelbuono S, Scilabra SD, Coronnello C, Gruttadauria S, Pietrosi G. Human Amniotic MSC Response in LPS-Stimulated Ascites from Patients with Cirrhosis: FOXO1 Gene and Th17 Activation in Enhanced Antibacterial Activation. Int J Mol Sci 2024; 25:2801. [PMID: 38474048 DOI: 10.3390/ijms25052801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Spontaneous bacterial peritonitis (SBP) is a severe complication in patients with decompensated liver cirrhosis and is commonly treated with broad spectrum antibiotics. However, the rise of antibiotic resistance requires alternative therapeutic strategies. As recently shown, human amnion-derived mesenchymal stem cells (hA-MSCs) are able, in vitro, to promote bacterial clearance and modulate the immune and inflammatory response in SBP. Our results highlight the upregulation of FOXO1, CXCL5, CXCL6, CCL20, and MAPK13 in hA-MSCs as well as the promotion of bacterial clearance, prompting a shift in the immune response toward a Th17 lymphocyte phenotype after 72 h treatment. In this study, we used an in vitro SBP model and employed omics techniques (next-generation sequencing) to investigate the mechanisms by which hA-MSCs modify the crosstalk between immune cells in LPS-stimulated ascitic fluid. We also validated the data obtained via qRT-PCR, cytofluorimetric analysis, and Luminex assay. These findings provide further support to the hope of using hA-MSCs for the prevention and treatment of infective diseases, such as SBP, offering a viable alternative to antibiotic therapy.
Collapse
Affiliation(s)
- Mariangela Pampalone
- Ri.MED Foundation, 90127 Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Nicola Cuscino
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Gioacchin Iannolo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Ri.MED Foundation, 90127 Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
| | | | | | - Salvatore Castelbuono
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Simone Dario Scilabra
- Ri.MED Foundation, 90127 Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Salvatore Gruttadauria
- Department for the Treatment and Study of Abdominal Disease and Abdominal Transplantation, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), UPMCI (University of Pittsburgh Medical Center Italy), 90127 Palermo, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Giada Pietrosi
- Department for the Treatment and Study of Abdominal Disease and Abdominal Transplantation, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), UPMCI (University of Pittsburgh Medical Center Italy), 90127 Palermo, Italy
| |
Collapse
|
4
|
Tanaka T, Tawara M, Suzuki H, Kaneko MK, Kato Y. Identification of the Binding Epitope of an Anti-Mouse CCR6 Monoclonal Antibody (C 6Mab-13) Using 1× Alanine Scanning. Antibodies (Basel) 2023; 12:antib12020032. [PMID: 37218898 DOI: 10.3390/antib12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
CC chemokine receptor 6 (CCR6) is one of the members of the G-protein-coupled receptor (GPCR) family that is upregulated in many immune-related cells, such as B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. The coordination between CCR6 and its ligand CC motif chemokine ligand 20 (CCL20) is deeply involved in the pathogenesis of various diseases, such as cancer, psoriasis, and autoimmune diseases. Thus, CCR6 is an attractive target for therapy and is being investigated as a diagnostic marker for various diseases. In a previous study, we developed an anti-mouse CCR6 (mCCR6) monoclonal antibody (mAb), C6Mab-13 (rat IgG1, kappa), that was applicable for flow cytometry by immunizing a rat with the N-terminal peptide of mCCR6. In this study, we investigated the binding epitope of C6Mab-13 using an enzyme-linked immunosorbent assay (ELISA) and the surface plasmon resonance (SPR) method, which were conducted with respect to the synthesized point-mutated-peptides within the 1-20 amino acid region of mCCR6. In the ELISA results, C6Mab-13 lost its ability to react to the alanine-substituted peptide of mCCR6 at Asp11, thereby identifying Asp11 as the epitope of C6Mab-13. In our SPR analysis, the dissociation constants (KD) could not be calculated for the G9A and D11A mutants due to the lack of binding. The SPR analysis demonstrated that the C6Mab-13 epitope comprises Gly9 and Asp11. Taken together, the key binding epitope of C6Mab-13 was determined to be located around Asp11 on mCCR6. Based on the epitope information, C6Mab-13 could be useful for further functional analysis of mCCR6 in future studies.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mayuki Tawara
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Gómez-Melero S, Caballero-Villarraso J. CCR6 as a Potential Target for Therapeutic Antibodies for the Treatment of Inflammatory Diseases. Antibodies (Basel) 2023; 12:30. [PMID: 37092451 PMCID: PMC10123731 DOI: 10.3390/antib12020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a G protein-coupled receptor (GPCR) involved in a wide range of biological processes. When CCR6 binds to its sole ligand CCL20, a signaling network is produced. This pathway is implicated in mechanisms related to many diseases, such as cancer, psoriasis, multiple sclerosis, HIV infection or rheumatoid arthritis. The CCR6/CCL20 axis plays a fundamental role in immune homeostasis and activation. Th17 cells express the CCR6 receptor and inflammatory cytokines, including IL-17, IL-21 and IL-22, which are involved in the spread of inflammatory response. The CCL20/CCR6 mechanism plays a crucial role in the recruitment of these pro-inflammatory cells to local tissues. To date, there are no drugs against CCR6 approved, and the development of small molecules against CCR6 is complicated due to the difficulty in screenings. This review highlights the potential as a therapeutic target of the CCR6 receptor in numerous diseases and the importance of the development of antibodies against CCR6 that could be a promising alternative to small molecules in the treatment of CCR6/CCL20 axis-related pathologies.
Collapse
Affiliation(s)
- Sara Gómez-Melero
- Maimonides Biomedical Research Institute of Cordoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Biomedical Research Institute of Cordoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
6
|
Moliki JM, Nhundu TJ, Maritz L, Avenant C, Hapgood JP. Glucocorticoids and medroxyprogesterone acetate synergize with inflammatory stimuli to selectively upregulate CCL20 transcription. Mol Cell Endocrinol 2023; 563:111855. [PMID: 36646303 PMCID: PMC9892260 DOI: 10.1016/j.mce.2023.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The pro-inflammatory cytokine, chemokine (C-C motif) ligand 20 (CCL20), is emerging as a therapeutic target for immune-based therapies. Cooperative regulation of CCL20 by glucocorticoids and progestins used in endocrine therapy and pro-inflammatory mediators could modulate immune function and affect disease outcomes. We show that glucocorticoids as well as medroxyprogesterone acetate (MPA), the progestin widely used in injectable contraception in sub-Saharan Africa, cooperate with pro-inflammatory mediators to upregulate CCL20 protein and/or mRNA in human peripheral blood mononuclear cells (PBMCs) and human cervical cell lines. Changes in CCL20 mRNA levels were shown to be synergistic, as assessed by Chou analysis, cell- and gene-specific and to involve transcriptional regulation, with a requirement for a nuclear factor kappa B (NF-κB) site and glucocorticoid receptor (GR) involvement. The novel results suggest a mechanism whereby MPA, like glucocorticoids, may impact inflammation both systemically and in the genital tract in patients using MPA and/or glucocorticoid therapy.
Collapse
Affiliation(s)
- Johnson M Moliki
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Tawanda J Nhundu
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Leo Maritz
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
7
|
Ye C, Guo X, Wu J, Wang M, Ding H, Ren X. CCL20/CCR6 Mediated Macrophage Activation and Polarization Can Promote Adenoid Epithelial Inflammation in Adenoid Hypertrophy. J Inflamm Res 2022; 15:6843-6855. [PMID: 36583131 PMCID: PMC9793726 DOI: 10.2147/jir.s390210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Adenoid hypertrophy (AH) is a chronic or acute obstruction-related ailment of the upper respiratory tract that arises as an inflammatory response to exposure of bacteria, viruses or allergies. Activation and polarization of macrophages are key processes in inflammation-related disorders like AH and CCL20/CCR6 axis is a critical therapeutic target. Purpose To determine that CCL20/CCR6 mediated macrophage activation and polarization can promote adenoid epithelial inflammation in AH. Methods To support this claim, CCL20 and CCR6 expressions were studied in clinical AH samples. In addition, the expressions of cytokines such as TNF-α, IL-1β, IL-6, IL-17, IL-10 and TGF-β were analysed. In vitro, human adenoid epithelial cells were co-cultured with polarized THP-1 and T lymphocyte H9 cells to study the expressions of several inflammatory markers. Results The expressions of M1 macrophage markers CD86 and IL-17 were significantly increased, whereas the expressions of M2 macrophage markers CD206 and FOXP3 were significantly decreased. The THP-1 cells were successfully polarized to M0, M1 and M2 macrophages. The survival of macrophages improved after 24 hr of induction and enhanced TGF-β expression was observed. The expressions of the inflammatory cytokines IL-6, TNF-α, IL-1β and CCL20 increased significantly. Conclusion Collectively, these results suggest that the CCL20/CCR6 mediated macrophage activation and polarization into M1-type macrophages can promote adenoid epithelial inflammation in AH. Further studies are warranted to determine the roles of inflammatory markers in the pathophysiology of AH and identifying potential targets.
Collapse
Affiliation(s)
- Chenchen Ye
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Xinxue Guo
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Jiani Wu
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Minhua Wang
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Haiyan Ding
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Xianzhi Ren
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210046, People’s Republic of China,Correspondence: Xianzhi Ren, Department of Pediatrics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210046, People’s Republic of China, Email
| |
Collapse
|
8
|
Isaguliants MG, Trotsenko I, Buonaguro FM. An overview of "Chronic viral infection and cancer, openings for vaccines" virtual symposium of the TechVac Network - December 16-17, 2021. Infect Agent Cancer 2022; 17:28. [PMID: 35804391 PMCID: PMC9263434 DOI: 10.1186/s13027-022-00436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
This is a report on the research activities currently ongoing in virology, oncology and virus-associated cancers and possibilities of their treatment and prevention by vaccines and immunotherapies as outlined at the symposium “Chronic viral infection and cancer, openings for vaccines” virtually held on December 16–17, 2021. Experts from the various disciplines involved in the study of the complex relationships between solid tumors and viruses met to discuss recent developments in the field and to report their personal contributions to the specified topics. Secondary end point was to sustain the TECHVAC Network established in 2016 as a multidisciplinary work group specifically devoted to development of vaccines and immunotherapies against chronic viral infections and associated cancers, with the aim to identify areas of common interest, promote research cooperation, establish collaborative cross-border programs and projects, and to coordinate clinical and research activities.
Collapse
Affiliation(s)
- Maria G Isaguliants
- Riga Stradins University, Riga, Latvia. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Ivan Trotsenko
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Naples, Italy.
| |
Collapse
|
9
|
Svensson Akusjärvi S, Krishnan S, Jütte BB, Ambikan AT, Gupta S, Rodriguez JE, Végvári Á, Sperk M, Nowak P, Vesterbacka J, Svensson JP, Sönnerborg A, Neogi U. Peripheral blood CD4 +CCR6 + compartment differentiates HIV-1 infected or seropositive elite controllers from long-term successfully treated individuals. Commun Biol 2022; 5:357. [PMID: 35418589 PMCID: PMC9008025 DOI: 10.1038/s42003-022-03315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
HIV-1 infection induces a chronic inflammatory environment not restored by suppressive antiretroviral therapy (ART). As of today, the effect of viral suppression and immune reconstitution in people living with HIV-1 (PLWH) has been well described but not completely understood. Herein, we show how PLWH who naturally control the virus (PLWHEC) have a reduced proportion of CD4+CCR6+ and CD8+CCR6+ cells compared to PLWH on suppressive ART (PLWHART) and HIV-1 negative controls (HC). Expression of CCR2 was reduced on both CD4+, CD8+ and classical monocytes in PLWHEC compared to PLWHART and HC. Longer suppressive therapy, measured in the same patients, decreased number of cells expressing CCR2 on all monocytic cell populations while expression on CD8+ T cells increased. Furthermore, the CD4+CCR6+/CCR6- cells exhibited a unique proteomic profile with a modulated energy metabolism in PLWHEC compared to PLWHART independent of CCR6 status. The CD4+CCR6+ cells also showed an enrichment in proteins involved in apoptosis and p53 signalling in PLWHEC compared to PLWHART, indicative of increased sensitivity towards cell death mechanisms. Collectively, this data shows how PLWHEC have a unique chemokine receptor profile that may aid in facilitating natural control of HIV-1 infection.
Collapse
Affiliation(s)
- Sara Svensson Akusjärvi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52, Stockholm, Sweden.
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52, Stockholm, Sweden
| | - Bianca B Jütte
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Campus Flemingsberg, 141 83, Stockholm, Sweden
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52, Stockholm, Sweden
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52, Stockholm, Sweden
| | - Jimmy Esneider Rodriguez
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Campus Solna, 171 65, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Campus Solna, 171 65, Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52, Stockholm, Sweden
| | - Piotr Nowak
- Division of Infectious Disease, Department of Medicine Huddinge, Karolinska Institutet, I73, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Jan Vesterbacka
- Division of Infectious Disease, Department of Medicine Huddinge, Karolinska Institutet, I73, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Campus Flemingsberg, 141 83, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52, Stockholm, Sweden.,Division of Infectious Disease, Department of Medicine Huddinge, Karolinska Institutet, I73, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 141 52, Stockholm, Sweden. .,Christopher S. Bond Life Sciences Centre, University of Missouri, Columbia, MO, 65211, USA. .,Manipal Institute of Virology (MIV), Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
10
|
Aldous AM, Joy C, Daniels J, Jais M, Simmens SJ, Magnus M, Roberts A, Connors K, Capozzi B, Mohamed H, Juzumaite M, Devore H, Moriarty T, Hatch Schultz C, Zumer M, Simon G, Ghosh M. Recent sexual violence exposure is associated with immune biomarkers of HIV susceptibility in women. Am J Reprod Immunol 2021; 86:e13432. [PMID: 33894020 DOI: 10.1111/aji.13432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
PROBLEM HIV/AIDS and sexual violence act synergistically and compromise women's health. Yet, immuno-biological mechanisms linking sexual violence and increased HIV susceptibility are poorly understood. METHODS We conducted a cross-sectional pilot study of HIV-uninfected women, comparing 13 women exposed to forced vaginal penetration within the past 12 weeks (Exposed) with 25 Non-Exposed women. ELISA assays were conducted for 49 biomarkers associated with HIV pathogenesis in plasma and cervicovaginal lavage (CVL). Differences between Exposed and Non-Exposed were analyzed by linear and logistic regression, using propensity score weighting to control for age, race, socioeconomic status, menstrual cycle, and contraceptive use. RESULTS In CVL, Exposed women had significantly reduced chemokines MIP-3α (p < .01), MCP-1 (p < .01), and anti-HIV/wound-healing thrombospondin-1 (p = .03). They also had significantly increased inflammatory cytokine IL-1α (p < 0.01) and were more likely to have detectable wound-healing PDGF (p = .02). In plasma, Exposed women had reduced chemokines MIP-3α (p < .01) and IL-8 (p < .01), anti-inflammatory cytokine TGF-β (p = .02), anti-HIV/antimicrobial HBD-2 (p = .02), and wound-healing MMP-1 (p = 0.02). They also had increased thrombospondin-1 (p < .01) and Cathepsin B (p = .01). After applying the stringent method of false discovery rate adjustment, differences for IL-1α (p = .05) and MCP-1 (p = .03) in CVL and MIP-3α (p = .03) in plasma remained significant. CONCLUSIONS We report systemic and mucosal immune dysregulation in women exposed to sexual violence. As these biomarkers have been associated with HIV pathogenesis, dysregulation may increase HIV susceptibility.
Collapse
Affiliation(s)
- Annette M Aldous
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Christopher Joy
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Jason Daniels
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Mariel Jais
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Samuel J Simmens
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Manya Magnus
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Afsoon Roberts
- Division of Infectious Diseases, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Kaleigh Connors
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Brendan Capozzi
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Hani Mohamed
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Monika Juzumaite
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Heather Devore
- District of Columbia Forensic Nurse Examiners, Washington, DC, USA
| | | | | | - Maria Zumer
- Medical Faculty Associates, Inc., The George Washington University, Washington, DC, USA
| | - Gary Simon
- Division of Infectious Diseases, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
11
|
Sperk M, Mikaeloff F, Svensson-Akusjärvi S, Krishnan S, Ponnan SM, Ambikan AT, Nowak P, Sönnerborg A, Neogi U. Distinct lipid profile, low-level inflammation, and increased antioxidant defense signature in HIV-1 elite control status. iScience 2021; 24:102111. [PMID: 33659876 PMCID: PMC7892918 DOI: 10.1016/j.isci.2021.102111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-1 elite controllers (EC) are a rare but heterogeneous group of HIV-1-infected individuals who can suppress viral replication in the absence of antiretroviral therapy. The mechanisms of how EC achieve undetectable viral loads remain unclear. This study aimed to investigate host plasma metabolomics and targeted plasma proteomics in a Swedish HIV-1 cohort including EC and treatment-naïve viremic progressors (VP) as well as HIV-negative individuals (HC) to get insights into EC phenotype. Metabolites belonging to antioxidant defense had higher levels in EC relative to VP, whereas inflammation markers were increased in VP compared with EC. Only four plasma proteins (CCL4, CCL7, CCL20, and NOS3) were increased in EC compared with HC, and CCL20/CCR6 axis can play an essential role in EC status. Our study suggests that low-level inflammation and oxidative stress at physiological levels could be important factors contributing to elite control phenotype. Increased acylcholine as unique HIV-1 positive elite controllers (EC) feature Physiological oxidative stress and inflammation profile in EC Increased in CCL4, CCL7, CCL20, and NOS3 in EC compared with HIV-ve control CCR6-CCL20-dependent anti-HIV mechanism can play an essential role in EC status
Collapse
Affiliation(s)
- Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Sara Svensson-Akusjärvi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Sivasankaran Munusamy Ponnan
- Centre for Infectious Disease Research, Indian Institute of Science (IISc), CV Raman Avenue, Bangalore, Karnataka 560012, India
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institute, I73, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden.,Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institute, I73, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden.,Department of Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Hwang JY, Lee UH, Heo MJ, Jeong JM, Kwon MG, Jee BY, Park CI, Park JW. RNA-seq transcriptome analysis in flounder cells to compare innate immune responses to low- and high-virulence viral hemorrhagic septicemia virus. Arch Virol 2020; 166:191-206. [PMID: 33145636 DOI: 10.1007/s00705-020-04871-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes high mortality in cultured flounder. Viral growth and virulence rely on the ability to inhibit the cellular innate immune response. In this study, we investigated differences in the modulation of innate immune responses of HINAE flounder cells infected with low- and high-virulence VHSV strains at a multiplicity of infection of 1 for 12 h and 24 h and performed RNA sequencing (RNA-seq)-based transcriptome analysis. A total of 193 and 170 innate immune response genes were differentially expressed by the two VHSV strains at 12 and 24 h postinfection (hpi), respectively. Of these, 73 and 77 genes showed more than a twofold change in their expression at 12 and 24 hpi, respectively. Of the genes with more than twofold changes, 22 and 11 genes showed high-virulence VHSV specificity at 12 and 24 hpi, respectively. In particular, IL-16 levels were more than two time higher and CCL20a.3, CCR6b, CCL36.1, Casp8L2, CCR7, and Trim46 levels were more than two times lower in high-virulence-VHSV-infected cells than in low-virulence-VHSV-infected cells at both 12 and 24 hpi. Quantitative PCR (qRT-PCR) confirmed the changes in expression of the ten mRNAs with the most significantly altered expression. This is the first study describing the genome-wide analysis of the innate immune response in VHSV-infected flounder cells, and we have identified innate immune response genes that are specific to a high-virulence VHSV strain. The data from this study can contribute to a greater understanding of the molecular basis of VHSV virulence in flounder.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, 46083, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Min Jin Heo
- Department of Marine Biology and Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, 650-160, Korea
| | - Ji Min Jeong
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, 46083, Korea
| | - Mun Gyeong Kwon
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, 46083, Korea
| | - Bo Young Jee
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, 46083, Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, 650-160, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea.
| |
Collapse
|
13
|
Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, Fang W. The role of Th17 cells in psoriasis. Immunol Res 2020; 68:296-309. [PMID: 32827097 DOI: 10.1007/s12026-020-09149-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
T helper 17 (Th17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases, like psoriasis, multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). However, the role of Th17 cells in psoriasis has not been clarified completely. Th17-derived proinflammatory cytokines including IL-17A, IL-17F, IL-21, IL-22, and IL-26 have a critical role in the pathogenesis of these disorders. In this review, we introduced the signaling and transcriptional regulation of Th17 cells. And then, we demonstrate the immunopathology role of Th17 cells and functions of the related cytokines in the psoriasis to get a better understanding of the inflammatory mechanisms mediated by Th17 cells in this disease.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Peng Lv
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaoxian Qian
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yixiao Shen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
14
|
Lee AY, Körner H. CC chemokine receptor 6 (CCR6) in the pathogenesis of systemic lupus erythematosus. Immunol Cell Biol 2020; 98:845-853. [PMID: 32634857 DOI: 10.1111/imcb.12375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
The CC chemokine receptor 6 (CCR6) and its sole chemokine ligand, CCL20, are an intriguing pair that have been implicated in a growing number of inflammatory, autoimmune and malignant disease processes. Recent observations have also highlighted this chemokine axis in the regulation of humoral immune responses. Through this review article, we explore the emerging links of CCR6-CCL20 with an archetypal autoimmune disease of humoral dysregulation: systemic lupus erythematosus (SLE). CCR6 is expressed prominently on several immune cells involved in the pathogenesis of SLE, such as dendritic cells and T-helper 17 cells. CCR6's expression is correlated with disease activity and serological markers of disease severity, suggesting a possible role in disease pathogenesis. However, there are numerous holes in our understanding of the functions of CCR6 and CCL20, and future studies are required to determine if there are any diagnostic, prognostic or monitoring roles for these important molecules.
Collapse
Affiliation(s)
- Adrian Ys Lee
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
15
|
Chessa C, Bodet C, Jousselin C, Wehbe M, Lévêque N, Garcia M. Antiviral and Immunomodulatory Properties of Antimicrobial Peptides Produced by Human Keratinocytes. Front Microbiol 2020; 11:1155. [PMID: 32582097 PMCID: PMC7283518 DOI: 10.3389/fmicb.2020.01155] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Keratinocytes, the main cells of the epidermis, are the first site of replication as well as the first line of defense against many viruses such as arboviruses, enteroviruses, herpes viruses, human papillomaviruses, or vaccinia virus. During viral replication, these cells can sense virus associated molecular patterns leading to the initiation of an innate immune response composed of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. Human keratinocytes produce and secrete at least nine antimicrobial peptides: human cathelicidin LL-37, types 1–4 human β-defensins, S100 peptides such as psoriasin (S100A7), calprotectin (S100A8/9) and koebnerisin (S100A15), and RNase 7. These peptides can exert direct antiviral effects on the viral particle or its replication cycle, and indirect antiviral activity, by modulating the host immune response. The purpose of this review is to summarize current knowledge of antiviral and immunomodulatory properties of human keratinocyte antimicrobial peptides.
Collapse
Affiliation(s)
- Céline Chessa
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Clément Jousselin
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Michel Wehbe
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| |
Collapse
|
16
|
Fitzpatrick S, Lausch R, Barrington RA. CCR6-Positive γδ T Cells Provide Protection Against Intracorneal HSV-1 Infection. Invest Ophthalmol Vis Sci 2020; 60:3952-3962. [PMID: 31560369 DOI: 10.1167/iovs.19-27810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose γδ T cells offer an important early immune defense against many different pathogens, both bacterial and viral. Herein, we examined the capacity of γδ T cell subsets to provide protection in the cornea against herpes simplex virus-1 (HSV-1). Methods C57Bl/6 (wild-type [WT]), γδ T-cell deficient (TCRδ-/-) and CCR6-deficient (CCR6-/-) mice were infected intracorneally with HSV-1. At multiple time points following infection, corneas were excised, and cells were immunostained for surface markers, intracellular cytokines, and analyzed using flow cytometry. WT and CCR6-/- γδ T cells were adoptively transferred into TCRδ-/- mice and corneal scores and survival were measured. Results Intracorneal infection of mice lacking γδ T cells exhibited increased corneal opacity scores, elevated viral titers, and higher mortality compared with WT mice. Both CCR6+ and CCR6neg γδ T cell subsets were observed in corneas after virus infection. CCR6+ γδ T cells produced IL-17A and were predominantly CD44+CD62L+, consistent with natural IL-17+ γδ T cells. In contrast IL-17A production by CCR6neg γδ T cells was infrequent, and this subset was largely single positive for CD62L or CD44. The CCR6+ subset appeared to provide protection against HSV-1 as follows: (1) CCR6-/- mice had more severe corneal opacity compared with WT mice; and (2) adoptive transfer of γδ T cells from WT mice restored protection in TCRδ-/- mice whereas transfer of γδ T cells from CCR6-/- mice did not. Conclusions γδ T cells in the cornea can be divided into CCR6+ and CCR6neg subsets with the former conferring protection early after intracorneal HSV-1 infection.
Collapse
Affiliation(s)
- Steffani Fitzpatrick
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| | - Robert Lausch
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| | - Robert A Barrington
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| |
Collapse
|
17
|
Wang A, Bai Y. Dendritic cells: The driver of psoriasis. J Dermatol 2019; 47:104-113. [PMID: 31833093 DOI: 10.1111/1346-8138.15184] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022]
Abstract
Psoriasis is a chronic skin inflammatory disorder, the immune mechanism of which has been profoundly elucidated in the past few years. The dominance of the interleukin (IL)-23/IL-17 axis is a significant breakthrough in the understanding of the pathogenesis of psoriasis, and treatment targeting IL-23 and IL-17 has successfully benefited patients with the disease. The skin contains a complex network of dendritic cells (DC) mainly composed of epidermal Langerhans cells, bone marrow-derived dermal conventional DC, plasmacytoid DC and inflammatory DC. As the prominent cellular source of α-interferon, tumor necrosis factor-α, IL-12 and IL-23, DC play a pivotal role in psoriasis. Thus, targeting pathogenic DC subsets is a valid strategy for alleviating and preventing psoriasis and other DC-derived diseases. In this review, we survey the known role of DC in this disease.
Collapse
Affiliation(s)
- Ao Wang
- Clinical Institute of China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Beijing, China.,Department of Dermatology and Venerology, China-Japan Friendship Hospital, Beijing, China
| | - YanPing Bai
- Clinical Institute of China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Beijing, China.,Department of Dermatology and Venerology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
Caires NCM, Espaladori MC, Tavares WLF, Brito LCND, Vieira LQ, Ribeiro Sobrinho AP. Influence of genetic regulatory effects modified by environmental immune activation on periapical disease. Braz Oral Res 2019; 33:e109. [PMID: 31800862 DOI: 10.1590/1807-3107bor-2019.vol33.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to compare the periradicular responses in endodontic infections among members of two populations: an urban Brazilian population and a non-mixed indigenous population. Samples were collected immediately and 7 days after the cleaning and shaping procedures (after reducing the intracanal microbial load) in an attempt to characterize the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-9, interferon (IFN)-γ, IL-17, IL-10, and the chemokines CXCR4, CCL2/monocyte chemotactic protein (MCP)-1, and CCR6. The endogenous cytokine and chemokine expression levels were analyzed using real-time PCR. Only the urban population showed a significant increase in TNF-α, CCL2/MCP-1, CXCR4, and CCR6 expression following the cleaning and shaping of the root canal system. The IFN-γ levels were increased at the 2nd collection (p < 0.05) in the indigenous population. In turn, a significant increase in IL-10 and IL-17 expression (p < 0.05) was observed after the cleaning and shaping procedures (2nd collection) in both populations. No significant differences in the IL-1β, IL-9, and CCL4 expression levels were observed between the 1st and 2nd collections in both populations. The results demonstrate a cytokine and chemokine expression profile that is specific to each analyzed population. However, immune modulation mediated by IL-10 began on the 7th day after the beginning of the endodontic treatment in both populations.
Collapse
Affiliation(s)
- Nely Cristina Medeiros Caires
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Marcela Carvalho Espaladori
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | - Warley Luciano Fonseca Tavares
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| | | | - Leda Quercia Vieira
- Universidade Federal de Minas Gerais - UFMG, Institute of Biological Sciences, Department of Biochemistry and Immunology, Belo Horizonte, MG, Brazil
| | - Antônio Paulino Ribeiro Sobrinho
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Restorative Dentistry, Belo Horizonte, MG, Brazil
| |
Collapse
|
19
|
Lee WS, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ. Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit Vectors 2019; 12:165. [PMID: 30975197 PMCID: PMC6460799 DOI: 10.1186/s13071-019-3433-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 01/24/2023] Open
Abstract
Mosquito-borne diseases are associated with major global health burdens. Aedes spp. and Culex spp. are primarily responsible for the transmission of the most medically important mosquito-borne viruses, including dengue virus, West Nile virus and Zika virus. Despite the burden of these pathogens on human populations, the interactions between viruses and their mosquito hosts remain enigmatic. Viruses enter the midgut of a mosquito following the mosquito’s ingestion of a viremic blood meal. During infection, virus recognition by the mosquito host triggers their antiviral defense mechanism. Of these host defenses, activation of the RNAi pathway is the main antiviral mechanism, leading to the degradation of viral RNA, thereby inhibiting viral replication and promoting viral clearance. However, whilst antiviral host defense mechanisms limit viral replication, the mosquito immune system is unable to effectively clear the virus. As such, these viruses can establish persistent infection with little or no fitness cost to the mosquito vector, ensuring life-long transmission to humans. Understanding of the mosquito innate immune response enables the discovery of novel antivectorial strategies to block human transmission. This review provides an updated and concise summary of recent studies on mosquito antiviral immune responses, which is a key determinant for successful virus transmission. In addition, we will also discuss the factors that may contribute to persistent infection in mosquito hosts. Finally, we will discuss current mosquito transmission-blocking strategies that utilize genetically modified mosquitoes and Wolbachia-infected mosquitoes for resistance to pathogens.
Collapse
Affiliation(s)
- Wai-Suet Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Julie A Webster
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Eugene T Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Eloise B Stephenson
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.,Environmental Futures Research Institute, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.
| |
Collapse
|
20
|
Zhou Y, Qiao H, Yin N, Chen L, Xie Y, Wu J, Du J, Lin X, Wang Y, Liu Y, Yi S, Zhang G, Sun M, He Z, Li H. Immune and cytokine/chemokine responses of PBMCs in rotavirus‐infected rhesus infants and their significance in viral pathogenesis. J Med Virol 2019; 91:1448-1469. [DOI: 10.1002/jmv.25460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Hongtu Qiao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Na Yin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Linlin Chen
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Yuping Xie
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Jing Du
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Xiaochen Lin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Yi Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Yang Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Shan Yi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Guangming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Maosheng Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| |
Collapse
|
21
|
Taniguchi K, Ando Y, Nobori H, Toba S, Noshi T, Kobayashi M, Kawai M, Yoshida R, Sato A, Shishido T, Naito A, Matsuno K, Okamatsu M, Sakoda Y, Kida H. Inhibition of avian-origin influenza A(H7N9) virus by the novel cap-dependent endonuclease inhibitor baloxavir marboxil. Sci Rep 2019; 9:3466. [PMID: 30837531 PMCID: PMC6401108 DOI: 10.1038/s41598-019-39683-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/24/2019] [Indexed: 11/09/2022] Open
Abstract
Human infections with avian-origin influenza A(H7N9) virus represent a serious threat to global health; however, treatment options are limited. Here, we show the inhibitory effects of baloxavir acid (BXA) and its prodrug baloxavir marboxil (BXM), a first-in-class cap-dependent endonuclease inhibitor, against A(H7N9), in vitro and in vivo. In cell culture, BXA at four nanomolar concentration achieved a 1.5-2.8 log reduction in virus titers of A(H7N9), including the NA-R292K mutant virus and highly pathogenic avian influenza viruses, whereas NA inhibitors or favipiravir required approximately 20-fold or higher concentrations to achieve the same levels of reduction. A(H7N9)-specific amino acid polymorphism at position 37, implicated in BXA binding to the PA endonuclease domain, did not impact on BXA susceptibility. In mice, oral administration of BXM at 5 and 50 mg/kg twice a day for 5 days completely protected from a lethal A/Anhui/1/2013 (H7N9) challenge, and reduced virus titers more than 2-3 log in the lungs. Furthermore, the potent therapeutic effects of BXM in mice were still observed when a higher virus dose was administered or treatment was delayed up to 48 hours post infection. These findings support further investigation of BXM for A(H7N9) treatment in humans.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi & Co., Ltd., Osaka, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Haruaki Nobori
- Shionogi & Co., Ltd., Osaka, Japan
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinsuke Toba
- Shionogi & Co., Ltd., Osaka, Japan
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Masanori Kobayashi
- Shionogi & Co., Ltd., Osaka, Japan
- Organization for Research and Community Development, Gifu University, Gifu, Japan
| | | | | | - Akihiko Sato
- Shionogi & Co., Ltd., Osaka, Japan
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | - Keita Matsuno
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Ramamourthy G, Arias M, Nguyen LT, Ishida H, Vogel HJ. Expression and Purification of Chemokine MIP-3α (CCL20) through a Calmodulin-Fusion Protein System. Microorganisms 2019; 7:microorganisms7010008. [PMID: 30626048 PMCID: PMC6352211 DOI: 10.3390/microorganisms7010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022] Open
Abstract
Human macrophage inflammatory protein 3α (MIP-3α), also known as CCL20, is a 70 amino acid chemokine that selectively binds and activates chemokine receptor 6 (CCR6). This chemokine is responsible for inducing the migration of immature dendritic cells, effector, or memory T-cells, and B-cells. Moreover, the MIP-3α protein has been shown to display direct antimicrobial, antiviral and antiprotozoal activities. Because of the potential therapeutic uses of this protein, the efficient production of MIP-3α is of great interest. However, bacterial recombinant production of the MIP-3α protein has been limited by the toxicity of this extremely basic protein (pI 9.7) toward prokaryotic cells, and by solubility problems during expression and purification. In an attempt to overcome these issues, we have investigated the bacterial recombinant expression of MIP-3α by using several common expression and fusion tags, including 6× histidine (His), small ubiquitin modifier protein (SUMO), thioredoxin (TRX), ketosteroid isomerase (KSI), and maltose binding protein (MBP). We have also evaluated a recently introduced calmodulin (CaM)-tag that has been used for the effective expression of many basic antimicrobial peptides (AMPs). Here, we show that the CaM fusion tag system effectively expressed soluble MIP-3α in the cytoplasm of Escherichia coli with good yields. Rapid purification was facilitated by the His-tag that was integrated in the CaM-fusion protein system. Multidimensional nuclear magnetic resonance (NMR) studies demonstrated that the recombinant protein was properly folded, with the correct formation of disulfide bonds. In addition, the recombinant MIP-3α had antibacterial activity, and was shown to inhibit the formation of Pseudomonas aeruginosa biofilms.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
23
|
García M, Navarrete-Muñoz MA, Ligos JM, Cabello A, Restrepo C, López-Bernaldo JC, de la Hera FJ, Barros C, Montoya M, Fernández-Guerrero M, Estrada V, Górgolas M, Benito JM, Rallón N. CD32 Expression is not Associated to HIV-DNA content in CD4 cell subsets of individuals with Different Levels of HIV Control. Sci Rep 2018; 8:15541. [PMID: 30341387 PMCID: PMC6195600 DOI: 10.1038/s41598-018-33749-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023] Open
Abstract
A recent study has pointed out to CD32a as a potential biomarker of HIV-persistent CD4 cells. We have characterized the level and phenotype of CD32+ cells contained in different subsets of CD4 T-cells and its potential correlation with level of total HIV-DNA in thirty HIV patients (10 typical progressors naïve for cART, 10 cART-suppressed patients, and 10 elite controllers). Total HIV-DNA was quantified in different subsets of CD4 T-cells: Trm and pTfh cells. Level and immunephenotype of CD32+ cells were analyzed in these same subsets by flow cytometry. CD32 expression in Trm and pTfh subsets was similar in the different groups, and there was no significant correlation between the level of total HIV-DNA and the level of CD32 expression in these subsets. However, total HIV-DNA level was correlated with expression of CD127 (rho = -0.46, p = 0.043) and of CCR6 (rho = -0.418, p = 0.027) on CD32+ cells. Our results do not support CD32 as a biomarker of total HIV-DNA content. However, analyzing the expression of certain markers by CD32+ cells could improve the utility of this marker in the clinical setting, prompting the necessity of further studies to both validate our results and to explore the potential utility of certain markers expressed by CD32+ cells.
Collapse
Affiliation(s)
- Marcial García
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - María Angeles Navarrete-Muñoz
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José M Ligos
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Clara Restrepo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | | | | | - María Montoya
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José M Benito
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| | - Norma Rallón
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| |
Collapse
|
24
|
Ranasinghe R, Eri R. Pleiotropic Immune Functions of Chemokine Receptor 6 in Health and Disease. MEDICINES 2018; 5:medicines5030069. [PMID: 30004409 PMCID: PMC6164274 DOI: 10.3390/medicines5030069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023]
Abstract
C-C chemoattractant cytokine (chemokine) receptor 6 (CCR6) and its exclusive binding molecule CCL20 is an extremely important chemokine receptor-ligand pair which controls cell migration and immune induction during inflammatory disease. Not many scientific studies have been undertaken to study its immune mechanisms in detail, but its unique contribution to steady state cell chemotaxis in upholding immune tolerance and regulating immune homeostasis during inflammation is evident in multiple systems in the human body, including skin, liver, lung, kidney, brain, eye, joints, gonads and the gut. The role of CCR6 is constitutively expressed as a series of much debilitating severe inflammatory and autoimmune diseases, Human Immunodeficiency Virus (HIV) and cancer metastasis. CD4+ T cells, the central organizers of adaptive immunity, are stringently mobilized by the CCR6/CCL20 axis also induced by cytokines and a host of other factors in a carefully executed immune modulation scenario, to bring about a delicate balance between inflammation inducing TH17 cells and regulatory Treg cells. Although the exact immune regulatory role is not elucidated as yet, the CCR6/CCL20 axis is implicated as a front runner which determines the polarization of TH17 and regulatory Treg cells, upon which depends the resolution or progression of many debilitating disorders. This review therefore aims at emphasizing the pleiotropic significance of the chemokines CCR6 and CCL20 in immunologic function in multiple organ systems, thereby hoping to accentuate its value in future therapeutic modalities.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
25
|
Zahoor MA, Woods MW, Dizzell S, Nazli A, Mueller KM, Nguyen PV, Verschoor CP, Kaushic C. Transcriptional profiling of primary endometrial epithelial cells following acute HIV-1 exposure reveals gene signatures related to innate immunity. Am J Reprod Immunol 2018; 79:e12822. [PMID: 29418026 DOI: 10.1111/aji.12822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Genital epithelial cells (GECs) line the mucosal surface of the female genital tract (FGT) and are the first cells that interface with both commensal microbiota and sexually transmitted pathogens. Despite the protective barrier formed by GECs, the FGT is a major site of HIV-1 infection. This highlights the importance of studying the interaction of HIV-1 and GECs. METHOD OF STUDY Using microarray analysis, we characterized the transcriptional profile of primary endometrial GECs grown in the presence or absence of physiological levels of E2 (10-9 mol/L) or P4 (10-7 mol/L) following acute exposure to HIV-1 for 6 hours. RESULTS Acute exposure of primary endometrial GECs to HIV-1 resulted in the expression of genes related to inflammation, plasminogen activation, adhesion and diapedesis and interferon response. Interestingly, exposure to HIV-1 in the presence of E2 and P4 resulted in differential transcriptional profiles, suggesting that the response of primary endometrial GECs to HIV-1 exposure is modulated by female sex hormones. CONCLUSION The gene expression signature of endometrial GECs indicates that the response of these cells may be key to determining host susceptibility to HIV-1 and that sex hormones modulate these interactions. This study allows us to explore possible mechanisms that explain the hormone-mediated fluctuation of HIV-1 susceptibility in women.
Collapse
Affiliation(s)
- Muhammad Atif Zahoor
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Matthew William Woods
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Sara Dizzell
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Aisha Nazli
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Kristen M Mueller
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Philip V Nguyen
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Chris P Verschoor
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Institute for Research on Aging, McMaster University, McMaster Innovation Park, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Valverde-Villegas JM, de Medeiros RM, Ellwanger JH, Santos BR, Melo MGD, Almeida SEDM, Chies JAB. High CXCL10/IP-10 levels are a hallmark in the clinical evolution of the HIV infection. INFECTION GENETICS AND EVOLUTION 2017; 57:51-58. [PMID: 29122683 DOI: 10.1016/j.meegid.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the modulation of plasma CXCL10, CCL20, CCL22, CCL2, CCL17 and CCL24 levels in HIV-positive patients grouped according to extreme phenotypes of progression to AIDS, and at different stages of HIV infection. HIV-positive individuals with extreme phenotypes of AIDS progression (n=58) at different clinical stages (chronic individuals, both pre-HAART and under-HAART) and HIV-negative controls (n=20) were evaluated. Additionally, HIV-positive individuals that initiated HAART with >350CD4+T-cells/mm3 were compared with those who initiated treatment with <350CD4+T-cells/mm3. Plasma levels of six chemokines were quantified by a Luminex assay. Higher CXCL10 levels were observed in individuals immediately before their CD4+T-cell levels were indicative for HAART (pre-HAART), independently of their progressor status, i.e. slow (SPs) or rapid progressors (RPs). SPs pre-HAART showed higher CXCL10 levels compared to elite controllers and RPs under HAART (pc=0.009 and pc=0.007, respectively). CXCL10 levels were higher in SPs HAART CD4<350 (initiated HAART with <350 CD4+T-cells) when compared with SPs HAART CD4>350 (initiated HAART with >350 CD4+T-cells) (1096 vs. 360.33pg/mL, p=0.0101). Normalisation of CXCL10 levels seems to depend on the CD4+T-cell nadir at HAART initiation. CCL20 levels were higher in chronic SPs, SPs pre-HAART, SPs HAART and RPs HAART compared with the HIV-negative controls, indicating persistent CCL20 expression. In conclusion, our results indicate that CXCL10 levels are a hallmark in the clinical evolution of HIV infection. However, our results must be verified in a study evaluating a larger number of AIDS progressors.
Collapse
Affiliation(s)
- Jacqueline María Valverde-Villegas
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil; Fundação Estadual de Produção e Pesquisa em Saúde - FEPPS, Brazil
| | - Rúbia Marília de Medeiros
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil; Fundação Estadual de Produção e Pesquisa em Saúde - FEPPS, Brazil
| | - Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil
| | - Breno Riegel Santos
- Serviço de Infectologia, Grupo Hospitalar Nossa Senhora da Conceição, Brazil
| | | | - Sabrina Esteves de Matos Almeida
- Fundação Estadual de Produção e Pesquisa em Saúde - FEPPS, Brazil; Instituto de Ciências da Saúde, Universidade Feevale - FEEVALE, Brazil; Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil.
| |
Collapse
|
27
|
Woods MW, Zahoor MA, Dizzell S, Verschoor CP, Kaushic C. Medroxyprogesterone acetate-treated human, primary endometrial epithelial cells reveal unique gene expression signature linked to innate immunity and HIV-1 susceptibility. Am J Reprod Immunol 2017; 79. [PMID: 29105931 DOI: 10.1111/aji.12781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. METHOD OF STUDY Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. RESULTS Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. CONCLUSION The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition.
Collapse
Affiliation(s)
- Matthew W Woods
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Muhammad Atif Zahoor
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Sara Dizzell
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Chris P Verschoor
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Institute for Research on Aging, McMaster Innovation Park, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|