1
|
del Rio Oliva M, Basler M. Valosin-containing protein (VCP/p97) inhibition reduces viral clearance and induces toxicity associated with muscular damage. Cell Death Dis 2022; 13:1015. [PMID: 36456548 PMCID: PMC9715549 DOI: 10.1038/s41419-022-05461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Valosin-containing protein (VCP)/p97 has emerged as a central regulator of the ubiquitin-proteasome system by connecting ubiquitylation and degradation. The development of CB-5083, an ATPase D2-domain-selective and orally bioavailable inhibitor of VCP/p97, allows targeting of the ubiquitin-proteasome system in human diseases. In this study, we evaluated the effect of CB-5083 on the immune response in mice by using the lymphocytic choriomeningitis virus (LCMV) as an infection model. We demonstrate that LCMV infection increased the susceptibility to CB-5083 treatment in a CD8-independent manner. Administration of CB-5083 to mice reduced the cytotoxic T cell response and impaired viral clearance. Compared to uninfected cells, CB-5083 treatment enhanced the unfolded protein response in LCMV-infected cells. Administration of CB-5083 during the expansion of CD8+ T cells led to strong toxicity in mice within hours, which resulted in enhanced IL-6 levels in the serum and accumulation of poly-ubiquitinated proteins. Furthermore, we linked the observed toxicity to the specific formation of aggregates in the skeletal muscle tissue and the upregulation of both lactate dehydrogenase and creatine kinase in the serum.
Collapse
Affiliation(s)
- Marta del Rio Oliva
- grid.9811.10000 0001 0658 7699Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michael Basler
- grid.9811.10000 0001 0658 7699Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany ,grid.469411.fBiotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
2
|
Feng Z, Kovalev N, Nagy PD. Multifunctional role of the co-opted Cdc48 AAA+ ATPase in tombusvirus replication. Virology 2022; 576:1-17. [PMID: 36126429 DOI: 10.1016/j.virol.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/07/2022] [Indexed: 10/31/2022]
Abstract
Replication of positive-strand RNA viruses depends on usurped cellular membranes and co-opted host proteins. Based on pharmacological inhibition and genetic and biochemical approaches, the authors identified critical roles of the cellular Cdc48 unfoldase/segregase protein in facilitating the replication of tomato bushy stunt virus (TBSV). We show that TBSV infection induces the expression of Cdc48 in Nicotiana benthamiana plants. Cdc48 binds to the TBSV replication proteins through its N-terminal region. In vitro TBSV replicase reconstitution experiments demonstrated that Cdc48 is needed for efficient replicase assembly and activity. Surprisingly, the in vitro replication experiments also showed that excess amount of Cdc48 facilitates the disassembly of the membrane-bound viral replicase-RNA template complex. Cdc48 is also needed for the recruitment of additional host proteins. Because several human viruses, including flaviviruses, utilize Cdc48, also called VCP/p97, for replication, we suggest that Cdc48 might be a common panviral host factor for plant and animal RNA viruses.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, USA
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, USA.
| |
Collapse
|
3
|
Das P, Dudley JP. How Viruses Use the VCP/p97 ATPase Molecular Machine. Viruses 2021; 13:1881. [PMID: 34578461 PMCID: PMC8473244 DOI: 10.3390/v13091881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses are obligate intracellular parasites that are dependent on host factors for their replication. One such host protein, p97 or the valosin-containing protein (VCP), is a highly conserved AAA ATPase that facilitates replication of diverse RNA- and DNA-containing viruses. The wide range of cellular functions attributed to this ATPase is consistent with its participation in multiple steps of the virus life cycle from entry and uncoating to viral egress. Studies of VCP/p97 interactions with viruses will provide important information about host processes and cell biology, but also viral strategies that take advantage of these host functions. The critical role of p97 in viral replication might be exploited as a target for development of pan-antiviral drugs that exceed the capability of virus-specific vaccines or therapeutics.
Collapse
Affiliation(s)
- Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jaquelin P. Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Valosin-containing protein/p97 plays critical roles in the Japanese encephalitis virus life cycle. J Virol 2021; 95:JVI.02336-20. [PMID: 33731458 PMCID: PMC8139707 DOI: 10.1128/jvi.02336-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Host factors provide critical support for every aspect of the virus life cycle. We recently identified the valosin-containing protein (VCP)/p97, an abundant cellular ATPase with diverse cellular functions, as a host factor important for Japanese encephalitis virus (JEV) replication. In cultured cells, using siRNA-mediated protein depletion and pharmacological inhibitors, we show that VCP is crucial for replication of three flaviviruses: JEV, Dengue, and West Nile viruses. An FDA-approved VCP inhibitor, CB-5083, extended survival of mice in the animal model of JEV infection. While VCP depletion did not inhibit JEV attachment on cells, it delayed capsid degradation, potentially through the entrapment of the endocytosed virus in clathrin-coated vesicles (CCVs). Early during infection, VCP-depleted cells showed an increased colocalization of JEV capsid with clathrin, and also higher viral RNA levels in purified CCVs. We show that VCP interacts with the JEV nonstructural protein NS5 and is an essential component of the virus replication complex. The depletion of the major VCP cofactor UFD-1 also significantly inhibited JEV replication. Mechanistically, thus, VCP affected two crucial steps of the JEV life cycle - nucleocapsid release and RNA replication. Our study establishes VCP as a common host factor with a broad antiviral potential against flaviviruses.ImportanceJEV is the leading cause of viral encephalitis epidemics in South-east Asia, affecting majorly children with high morbidity and mortality. Identification of host factors is thus essential for the rational design of anti-virals that are urgently need as therapeutics. Here we have identified the VCP protein as one such host-factor. This protein is highly abundant in cells and engages in diverse functions and cellular pathways by its ability to interact with different co-factors. Using siRNA mediated protein knockdown, we show that this protein is essential for release of the viral RNA into the cell so that it can initiate replication. The protein plays a second crucial role for the formation of the JEV replication complex. FDA-approved drugs targeting VCP show enhanced mouse survival in JE model of disease, suggesting that this could be a druggable target for flavivirus infections.
Collapse
|
5
|
Zhang Y, Chen S, Yuan Z, Yi Z. Bioorthogonal dissection of the replicase assembly of hepatitis C virus. Cell Chem Biol 2021; 28:1366-1378.e4. [PMID: 33798447 PMCID: PMC8444619 DOI: 10.1016/j.chembiol.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023]
Abstract
Positive-strand RNA viruses such as hepatitis C virus (HCV), flaviviruses, and coronaviruses are medically important. Assembly of replicase on host membranes is a conserved replication strategy and an attractive antiviral target. The mechanisms of replicase assembly are largely unknown, due to the technical difficulties in purifying the replicase and carrying out structural studies. Here, with an HCV replicase assembly surrogate system, we employed a bioorthogonal system to introduce the photolabile unnatural amino into each residue in the cytosolic regions of NS4B and the amphipathic helix (AH) of NS5A. Photocrosslinking enabled visualization of NS4B oligomerization and NS5A dimerization at pinpointed interacting residues and identifying contacting sites among the replicase components. Characterization of the interacting sites revealed hub elements in replicase assembly by docking replicase components to prompt protein-protein interactions. The results provide information about the molecular architecture of the replicase, advancing understanding of the mechanism of replicase assembly.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shuiye Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201052, China.
| |
Collapse
|
6
|
Anton A, Mazeaud C, Freppel W, Gilbert C, Tremblay N, Sow AA, Roy M, Rodrigue-Gervais IG, Chatel-Chaix L. Valosin-containing protein ATPase activity regulates the morphogenesis of Zika virus replication organelles and virus-induced cell death. Cell Microbiol 2021; 23:e13302. [PMID: 33432690 DOI: 10.1111/cmi.13302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
With no available therapies, infections with Zika virus (ZIKV) constitute a major public health concern as they can lead to congenital microcephaly. In order to generate an intracellular environment favourable to viral replication, ZIKV induces endomembrane remodelling and the morphogenesis of replication factories via enigmatic mechanisms. In this study, we identified the AAA+ type ATPase valosin-containing protein (VCP) as a cellular interaction partner of ZIKV non-structural protein 4B (NS4B). Importantly, its pharmacological inhibition as well as the expression of a VCP dominant-negative mutant impaired ZIKV replication. In infected cells, VCP is relocalised to large ultrastructures containing both NS4B and NS3, which are reminiscent of dengue virus convoluted membranes. Moreover, short treatment with the VCP inhibitors NMS-873 or CB-5083 drastically decreased the abundance and size of ZIKV-induced convoluted membranes. Furthermore, NMS-873 treatment inhibited ZIKV-induced mitochondria elongation previously reported to be physically and functionally linked to convoluted membranes in case of the closely related dengue virus. Finally, VCP inhibition resulted in enhanced apoptosis of ZIKV-infected cells strongly suggesting that convoluted membranes limit virus-induced cytopathic effects. Altogether, this study identifies VCP as a host factor required for ZIKV life cycle and more precisely, for the maintenance of viral replication factories. Our data further support a model in which convoluted membranes regulate ZIKV life cycle by impacting on mitochondrial functions and ZIKV-induced death signals in order to create a cytoplasmic environment favourable to viral replication.
Collapse
Affiliation(s)
- Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Wesley Freppel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Claudia Gilbert
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Nicolas Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Marie Roy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Ian Gaël Rodrigue-Gervais
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada.,Center of Excellence in Research on Orphan Diseases-Courtois Foundation (CERMO-FC), Montreal, Québec, Canada.,Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Québec, Canada
| |
Collapse
|
7
|
Wang Y, Soto-Acosta R, Ding R, Chen L, Geraghty RJ. Anti-HCMV activity by an irreversible p97 inhibitor LC-1310. Med Chem Res 2021; 30:440-448. [PMID: 33456290 PMCID: PMC7794631 DOI: 10.1007/s00044-020-02679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
The AAA+ (ATPase associated with various cellular activities) protein p97, also called valosin-containing protein, is a hexameric ring ATPase and uses ATP hydrolysis to unfold or extract proteins from biological complexes. Many cellular processes are affected by p97 including ER-associated degradation, DNA damage response, cell signaling (NF-κB), cell cycle progression, autophagy, and others. Not surprisingly, with its role in many fundamental cellular processes, p97 function is important for the replication of many viruses. We tested irreversible p97-targeting compounds for their ability to inhibit the replication of multiple viruses compared to the known p97 inhibitors NMS-873 and CB-5083. Our results indicate that overall cellular toxicity for p97 compounds provides a challenge for antivirals targeting p97. However, we identified one compound with sub-micromolar activity against human cytomegalovirus and improved cell viability to provide evidence for the potential of irreversible p97 inhibitors as antivirals. ![]()
Collapse
Affiliation(s)
- Yan Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
- Present Address: Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Ruben Soto-Acosta
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rui Ding
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
8
|
Proteins involved in actin filament organization are key host factors for Japanese encephalitis virus life-cycle in human neuronal cells. Microb Pathog 2020; 149:104565. [DOI: 10.1016/j.micpath.2020.104565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
|
9
|
Ramanathan HN, Zhang S, Douam F, Mar KB, Chang J, Yang PL, Schoggins JW, Ploss A, Lindenbach BD. A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating. mBio 2020; 11:e00467-20. [PMID: 32291299 PMCID: PMC7157815 DOI: 10.1128/mbio.00467-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023] Open
Abstract
While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVΔSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVΔSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97.
Collapse
Affiliation(s)
- Harish N Ramanathan
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Shuo Zhang
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Florian Douam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jinhong Chang
- Department of Experimental Therapeutics, The Baruch S. Blumberg Institute, Doylestown, Pennsylvania, USA
| | - Priscilla L Yang
- Department of Microbiology and the Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Host AAA+ ATPase TER94 Plays Critical Roles in Building the Baculovirus Viral Replication Factory and Virion Morphogenesis. J Virol 2020; 94:JVI.01674-19. [PMID: 31896597 DOI: 10.1128/jvi.01674-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
TER94 is a multifunctional AAA+ ATPase crucial for diverse cellular processes, especially protein quality control and chromatin dynamics in eukaryotic organisms. Many viruses, including coronavirus, herpesvirus, and retrovirus, coopt host cellular TER94 for optimal viral invasion and replication. Previous proteomics analysis identified the association of TER94 with the budded virions (BVs) of baculovirus, an enveloped insect large DNA virus. Here, the role of TER94 in the prototypic baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) life cycle was investigated. In virus-infected cells, TER94 accumulated in virogenic stroma (VS) at the early stage of infection and subsequently partially rearranged in the ring zone region. In the virions, TER94 was associated with the nucleocapsids of both BV and occlusion-derived virus (ODV). Inhibition of TER94 ATPase activity significantly reduced viral DNA replication and BV production. Electron/immunoelectron microscopy revealed that inhibition of TER94 resulted in the trapping of nucleocapsids within cytoplasmic vacuoles at the nuclear periphery for BV formation and blockage of ODV envelopment at a premature stage within infected nuclei, which appeared highly consistent with its pivotal function in membrane biogenesis. Further analyses showed that TER94 was recruited to the VS or subnuclear structures through interaction with viral early proteins LEF3 and helicase, whereas inhibition of TER94 activity blocked the proper localization of replication-related viral proteins and morphogenesis of VS, providing an explanation for its role in viral DNA replication. Taken together, these data indicated the crucial functions of TER94 at multiple steps of the baculovirus life cycle, including genome replication, BV formation, and ODV morphogenesis.IMPORTANCE TER94 constitutes an important AAA+ ATPase that associates with diverse cellular processes, including protein quality control, membrane fusion of the Golgi apparatus and endoplasmic reticulum network, nuclear envelope reformation, and DNA replication. To date, little is known regarding the role(s) of TER94 in the baculovirus life cycle. In this study, TER94 was found to play a crucial role in multiple steps of baculovirus infection, including viral DNA replication and BV and ODV formation. Further evidence showed that the membrane fission/fusion function of TER94 is likely to be exploited by baculovirus for virion morphogenesis. Moreover, TER94 could interact with the viral early proteins LEF3 and helicase to transport and further recruit viral replication-related proteins to establish viral replication factories. This study highlights the critical roles of TER94 as an energy-supplying chaperon in the baculovirus life cycle and enriches our knowledge regarding the biological function of this important host factor.
Collapse
|
11
|
Carissimo G, Chan YH, Utt A, Chua TK, Bakar FA, Merits A, Ng LFP. VCP/p97 Is a Proviral Host Factor for Replication of Chikungunya Virus and Other Alphaviruses. Front Microbiol 2019; 10:2236. [PMID: 31636613 PMCID: PMC6787436 DOI: 10.3389/fmicb.2019.02236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionarily conserved AAA+ ATPase valosin-containing protein (VCP) was previously shown to be a proviral host factor for several viruses from different viral families such as Flaviviridae, Picornaviridae, and Herpesviridae. VCP was shown to affect trafficking of Sindbis virus receptor and functions as a component of Semliki Forest virus (SFV) replicase compartment. However, the role of this cellular protein was not evaluated during replication of alphaviruses including chikungunya virus (CHIKV). Using siRNA, chemical inhibitors, and trans-replication assays, we show here that VCP is a proviral factor involved in the replication of CHIKV. Immunofluorescence assays confirmed that VCP co-localized with non-structural replicase proteins but not with dsRNA foci possibly due to VCP epitope unavailability. VCP pro-viral role is also observed with other alphaviruses such as o’nyong’nyong virus (ONNV) and SFV in different human cell lines. VCP proviral roles on several viral families now extend to replication of alphaviruses CHIKV and ONNV, emphasizing the pivotal role of VCP in virus–host interaction biology.
Collapse
Affiliation(s)
- Guillaume Carissimo
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Age Utt
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Tze-Kwang Chua
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Andres Merits
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Zhang Y, Zou J, Zhao X, Yuan Z, Yi Z. Hepatitis C virus NS5A inhibitor daclatasvir allosterically impairs NS4B-involved protein-protein interactions within the viral replicase and disrupts the replicase quaternary structure in a replicase assembly surrogate system. J Gen Virol 2018; 100:69-83. [PMID: 30516462 DOI: 10.1099/jgv.0.001180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Daclatasvir (DCV) is a highly potent direct-acting antiviral that targets the non-structural protein 5A (NS5A) of hepatitis C virus (HCV) and has been used with great clinical success. Previous studies have demonstrated its impact on viral replication complex assembly. However, the precise mechanisms by which DCV impairs the replication complex assembly remains elusive. In this study, by using HCV subgenomic replicons and a viral replicase assembly surrogate system in which the HCV NS3-5B polyprotein is expressed to mimic the viral replicase assembly, we assessed the impact of DCV on the aggregation and tertiary structure of NS5A, the protein-protein interactions within the viral replicase and the quaternary structure of the viral replicase. We found that DCV did not affect aggregation and tertiary structure of NS5A. DCV induced a quaternary structural change of the viral replicase, as evidenced by selective increase of NS4B's sensitivity to proteinase K digestion. Mechanically, DCV impaired the NS4B-involved protein-protein interactions within the viral replicase. These phenotypes were consistent with the phenotypes of several reported NS4B mutants that abolish the viral replicase assembly. The DCV-resistant mutant Y93H was refractory to the DCV-induced reduction of the NS4B-involved protein interactions and the quaternary structural change of the viral replicase. In addition, Y93H reduced NS4B-involved protein-protein interactions within the viral replicase and attenuated viral replication. We propose that DCV may induce a positional change of NS5A, which allosterically affects protein interactions within the replicase components and disrupts replicase assembly.
Collapse
Affiliation(s)
- Yang Zhang
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Jingyi Zou
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xiaomin Zhao
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- 1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhigang Yi
- 2Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China.,1Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
14
|
Lyupina YV, Erokhov PA, Kravchuk OI, Finoshin AD, Abaturova SB, Orlova OV, Beljelarskaya SN, Kostyuchenko MV, Mikhailov VS. Essential function of VCP/p97 in infection cycle of the nucleopolyhedrovirus AcMNPV in Spodoptera frugiperda Sf9 cells. Virus Res 2018; 253:68-76. [PMID: 29890203 DOI: 10.1016/j.virusres.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yulia V Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Pavel A Erokhov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Oksana I Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Alexander D Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Svetlana B Abaturova
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia
| | - Olga V Orlova
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow, 119334, Russia
| | - Svetlana N Beljelarskaya
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow, 119334, Russia
| | - Margarita V Kostyuchenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow, 119334, Russia
| | - Victor S Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow, 119334, Russia.
| |
Collapse
|