1
|
Guo X, Zhang M, Liu X, Zhang Y, Wang C, Guo Y. Attachment, Entry, and Intracellular Trafficking of Classical Swine Fever Virus. Viruses 2023; 15:1870. [PMID: 37766277 PMCID: PMC10534341 DOI: 10.3390/v15091870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Classical swine fever virus (CSFV), which is a positive-sense, single-stranded RNA virus with an envelope, is a member of the Pestivirus genus in the Flaviviridae family. CSFV causes a severe and highly contagious disease in pigs and is prevalent worldwide, threatening the pig farming industry. The detailed mechanisms of the CSFV life cycle have been reported, but are still limited. Some receptors and attachment factors of CSFV, including heparan sulfate (HS), laminin receptor (LamR), complement regulatory protein (CD46), MER tyrosine kinase (MERTK), disintegrin, and metalloproteinase domain-containing protein 17 (ADAM17), were identified. After attachment, CSFV internalizes via clathrin-mediated endocytosis (CME) and/or caveolae/raft-dependent endocytosis (CavME). After internalization, CSFV moves to early and late endosomes before uncoating. During this period, intracellular trafficking of CSFV relies on components of the endosomal sorting complex required for transport (ESCRT) and Rab proteins in the endosome dynamics, with a dependence on the cytoskeleton network. This review summarizes the data on the mechanisms of CSFV attachment, internalization pathways, and intracellular trafficking, and provides a general view of the early events in the CSFV life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Yidi Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Liu YY, Bai JS, Liu CC, Zhou JF, Chen J, Cheng Y, Zhou B. The Small GTPase Rab14 Regulates the Trafficking of Ceramide from Endoplasmic Reticulum to Golgi Apparatus and Facilitates Classical Swine Fever Virus Assembly. J Virol 2023; 97:e0036423. [PMID: 37255314 PMCID: PMC10231254 DOI: 10.1128/jvi.00364-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 06/01/2023] Open
Abstract
Classical swine fever virus (CSFV) is a highly pathogenic RNA virus belonging to the Flaviviridae family that can cause deadly classical swine fever (CSF) in pigs. However, the molecular details of virus replication in the host are still unclear. Our previous studies have reported that several Rab proteins mediate CSFV entry into host cells, but it is unknown whether CSFV hijacks other Rab proteins for effective viral infection. Here, we systematically studied the role of Rab14 protein in regulating lipid metabolism for promoting viral assembly. First, Rab14 knockdown and overexpression significantly affected CSFV replication, indicating the essential role of Rab14 in CSFV infection. Interestingly, Rab14 could significantly affect virus replication in the late stage of infection. Mechanistically, CSFV NS5A recruited Rab14 to the ER, followed by ceramide transportation to the Golgi apparatus, where sphingomyelin was synthesized. The experimental data of small molecule inhibitors, RNA interference, and replenishment assay showed that the phosphatidylinositol-3-kinase (PI3K)/AKT/AS160 signaling pathway regulated the function of Rab14 to affect the transport of ceramide. More importantly, sphingomyelin on the Golgi apparatus contributed to the assembly of viral particles. Blockage of the Rab14 regulatory pathway induced the reduction of the content of sphingomyelin on the Golgi apparatus, impairing the assembly of virus particles. Our study clarifies that Rab14 regulates lipid metabolism and promotes CSFV replication, which provides insight into a novel function of Rab14 in regulating vesicles to transport lipids to the viral assembly factory. IMPORTANCE The Rab protein family members participate in the viral replication of multiple viruses and play important roles in the virus infection cycle. Our previous research focused on Rab5/7/11, which regulated the trafficking of vesicles in the early stage of CSFV infection, especially in viral endocytosis. However, the role of other Rab proteins in CSFV replication is unclear and needs further clarification. Strikingly, we screened some Rabs and found the important role of Rab14 in CSFV infection. Virus infection mobilized Rab14 to regulate the vesicle to transport ceramide from the ER to the Golgi apparatus, further promoting the synthesis of sphingomyelin and facilitating virus assembly. The treatment of inhibitors showed that the lipid transport mediated by Rab14 was regulated by the PI3K/AKT/AS160 signaling pathway. Knockdown of Rab14 or the treatment with PI3K/AKT/AS160 inhibitors reduced the ceramide content in infected cells and hindered virus assembly. Our study is the first to explain that vesicular lipid transport regulated by Rab promotes CSFV assembly, which is conducive to the development of antiviral drugs.
Collapse
Affiliation(s)
- Ya-Yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ji Shan Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chun-Chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiang-Fei Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yan Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Assefi M, Bijan Rostami R, Ebrahimi M, Altafi M, Tehrany PM, Zaidan HK, Talib Al-Naqeeb BZ, Hadi M, Yasamineh S, Gholizadeh O. Potential use of the cholesterol transfer inhibitor U18666A as an antiviral drug for research on various viral infections. Microb Pathog 2023; 179:106096. [PMID: 37011734 DOI: 10.1016/j.micpath.2023.106096] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Cholesterol plays critical functions in arranging the biophysical attributes of proteins and lipids in the plasma membrane. For various viruses, an association with cholesterol for virus entrance and/or morphogenesis has been demonstrated. Therefore, the lipid metabolic pathways and the combination of membranes could be targeted to selectively suppress the virus replication steps as a basis for antiviral treatment. U18666A is a cationic amphiphilic drug (CAD) that affects intracellular transport and cholesterol production. A robust tool for investigating lysosomal cholesterol transfer and Ebola virus infection is an androstenolone derived termed U18666A that suppresses three enzymes in the cholesterol biosynthesis mechanism. In addition, U18666A inhibited low-density lipoprotein (LDL)-induced downregulation of LDL receptor and triggered lysosomal aggregation of cholesterol. According to reports, U18666A inhibits the reproduction of baculoviruses, filoviruses, hepatitis, coronaviruses, pseudorabies, HIV, influenza, and flaviviruses, as well as chikungunya and flaviviruses. U18666A-treated viral infections may act as a novel in vitro model system to elucidate the cholesterol mechanism of several viral infections. In this article, we discuss the mechanism and function of U18666A as a potent tool for studying cholesterol mechanisms in various viral infections.
Collapse
|
4
|
Zhang L, Yi Y, Wang T, Song M, Guo K, Zhang Y. 25-hydroxycholesterol inhibits classical swine fever virus entry into porcine alveolar macrophages by depleting plasma membrane cholesterol. Vet Microbiol 2023; 278:109668. [PMID: 36709687 DOI: 10.1016/j.vetmic.2023.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Classical swine fever virus (CSFV) is an enveloped positive-sense RNA virus belonging to the Flaviviridae family. The virus utilizes cellular lipids and manipulates host lipid metabolism to ensure its replication, especially during virus invasion and replication steps. Therefore, identification of the molecular lipid metabolism pathways that are suitable targets is critical for the development of anti-CSFV therapeutics. In this study, we screened the anti-CSFV activity of 12 compounds targeting synthesis of cholesterol and fatty acids, cholesterol esters, and cholesterol transport. We found that 25-hydroxycholesterol (25HC), a regulator of cholesterol metabolism and transport, has potent anti-CSFV activity. Mechanistically, we showed that 25HC inhibited CSFV proliferation by blocking the entry of virions into porcine alveolar macrophages (3D4/21) by decreasing cholesterol abundance in the plasma membrane through activation of acyl-CoA:cholesterol acyltransferase (ACAT). Finally, we revealed that cholesterol 25-hydroxylase (CH25H), a redox enzyme that mediates 25HC production, also restricted CSFV infection via both enzyme activity-dependent and -independent mechanisms. Collectively, our results shed light on the mechanisms by which 25HC inhibits CSFV entry into cells and suggests a potential new therapeutic method against CSFV infection.
Collapse
Affiliation(s)
- Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanyan Yi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Augmentation of 3β-hydroxysteroid-Δ24 Reductase (DHCR24) Expression Induced by Bovine Viral Diarrhea Virus Infection Facilitates Viral Replication via Promoting Cholesterol Synthesis. J Virol 2022; 96:e0149222. [PMID: 36468862 PMCID: PMC9769396 DOI: 10.1128/jvi.01492-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases of cattle, leading to numerous losses to the cattle rearing industry worldwide. The pathogenicity of BVDV is extremely complex, and many underlying mechanisms involved in BVDV-host interactions are poorly understood, especially how BVDV utilizes host metabolism pathway for efficient viral replication and spread. In our previous study, using an integrative analysis of transcriptomics and proteomics, we found that DHCR24 (3β-hydroxysteroid-Δ24 reductase), a key enzyme in regulating cholesterol synthesis, was significantly upregulated at both gene and protein levels in the BVDV-infected bovine cells, indicating that cholesterol is important for BVDV replication. In the present study, the effects of DHCR24-mediated cholesterol synthesis on BVDV replication was explored. Our results showed that overexpression of the DHCR24 effectively promoted cholesterol synthesis, as well as BVDV replication, while acute cholesterol depletion in the bovine cells by treating cells with methyl-β-cyclodextrin (MβCD) obviously inhibited BVDV replication. In addition, knockdown of DHCR24 (gene silencing with siRNA targeting DHCR24, siDHCR24) or chemical inhibition (treating bovine cells with U18666A, an inhibitor of DHCR24 activity and cholesterol synthesis) significantly suppressed BVDV replication, whereas supplementation with exogenous cholesterol to the siDHCR24-transfected or U18666A-treated bovine cells remarkably restored viral replication. We further confirmed that BVDV nonstructural protein NS5A contributed to the augmentation of DHCR24 expression. Conclusively, augmentation of the DHCR24 induced by BVDV infection plays an important role in BVDV replication via promoting cholesterol production. IMPORTANCE Bovine viral diarrhea virus (BVDV), an important pathogen of cattle, is the causative agent of bovine viral diarrhea-mucosal disease, which causes extensive economic losses in both cow- and beef-rearing industry worldwide. The molecular interactions between BVDV and its host are extremely complex. In our previous study, we found that an essential host factor 3β-hydroxysteroid-δ24 reductase (DHCR24), a key enzyme involved in cholesterol synthesis, was significantly upregulated at both gene and protein levels in BVDV-infected bovine cells. Here, we experimentally explored the function of the DHCR24-mediated cholesterol synthesis in regulating BVDV replication. We elucidated that the augmentation of the DHCR24 induced by BVDV infection played a significant role in viral replication via promoting cholesterol synthesis. Our data provide evidence that BVDV utilizes a host metabolism pathway to facilitate its replication and spread.
Collapse
|
6
|
Zou X, Yang Y, Lin F, Chen J, Zhang H, Li L, Ouyang H, Pang D, Ren L, Tang X. Lactate facilitates classical swine fever virus replication by enhancing cholesterol biosynthesis. iScience 2022; 25:105353. [PMID: 36339254 PMCID: PMC9626675 DOI: 10.1016/j.isci.2022.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
An emerging topic in virology is that viral replication is closely linked with the metabolic reprogramming of host cells. Understanding the effects of reprogramming host cell metabolism due to classical swine fever virus (CSFV) infection and the underling mechanisms would facilitate controlling the spread of classical swine fever (CSF). In the current study, we found that CSFV infection enhanced aerobic glycolysis in PK-15 cells. Blocking glycolysis with 2-deoxy-d-glycose or disrupting the enzymes PFKL and LDHA decreased CSFV replication. Lactate was identified as an important molecule in CSFV replication, independent of the pentose phosphate pathway and tricarboxylic acid cycle. Further analysis demonstrated that the accumulated lactate in cells promoted cholesterol biosynthesis, which facilitated CSFV replication and disrupted the type I interferon response during CSFV replication, and the disruption of cholesterol synthesis abolished the lactate effects on CSFV replication. The results provided more insights into the complex pathological mechanisms of CSFV. Aerobic glycolysis plays an important role in CSFV replication Intracellular lactate maintains CSFV replication as an effector of glycolysis Lactate promotes cholesterol biosynthesis to maintain CSFV replication Enhanced cholesterol biosynthesis inhibited the response of IFNs during CSFV replication
Collapse
Affiliation(s)
- Xiaodong Zou
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yang Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Feng Lin
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Linzhu Ren
- College of Animal Sciences, Jilin University, Changchun, China
- Corresponding author
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
- Corresponding author
| |
Collapse
|
7
|
Zou X, Lin F, Yang Y, Chen J, Zhang H, Li L, Ouyang H, Pang D, Tang X. Cholesterol Biosynthesis Modulates CSFV Replication. Viruses 2022; 14:v14071450. [PMID: 35891429 PMCID: PMC9316236 DOI: 10.3390/v14071450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Classical swine fever (CSF) caused by the classical swine fever virus (CSFV) has resulted in severe losses to the pig industry worldwide. It has been proposed that lipid synthesis is essential for viral replication, and lipids are involved in viral protein maturation and envelope production. However, the specific crosstalk between CSFV and host cell lipid metabolism is still unknown. In this study, we found that CSFV infection increased intracellular cholesterol levels in PK-15 cells. Further analysis demonstrated that CSFV infection upregulated PCSK9 expression to block the uptake of exogenous cholesterol by LDLR and enhanced the cholesterol biosynthesis pathway, which disrupted the type I IFN response in PK-15 cells. Our findings provide new insight into the mechanisms underpinning the pathogenesis of CSFV and hint at methods for controlling the disease.
Collapse
Affiliation(s)
- Xiaodong Zou
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Feng Lin
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Yang Yang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun 130062, China; (X.Z.); (F.L.); (Y.Y.); (J.C.); (H.Z.); (L.L.); (H.O.); (D.P.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence:
| |
Collapse
|
8
|
ARF1 with Sec7 domain-dependent GBF1 activates coatomer protein I to support classical swine fever virus entry. J Virol 2022; 96:e0219321. [PMID: 35044210 PMCID: PMC8941923 DOI: 10.1128/jvi.02193-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV), a positive-sense, enveloped RNA virus that belongs to the Flaviviridae family, hijacks cell host proteins for its own replication. We previously demonstrated that Golgi-specific brefeldin A-resistance factor 1 (GBF1), a regulator of intracellular transport, mediates CSFV infection. However, the molecular mechanism by which this protein regulates CSFV proliferation remains unelucidated. In this study, we constructed a series of plasmids expressing GBF1 truncation mutants to investigate their behavior during CSFV infection and found that GBF1 truncation mutants containing the Sec7 domain could rescue CSFV replication in BFA (brefeldin A)- and GCA (Golgicide A)-treated swine umbilical vein endothelial cells (SUVECs), demonstrating that the effect of GBF1 on CSFV infection depended on the activity of guanine nucleotide exchange factor (GEF). Additionally, it was found that ADP ribosylation factors (ARFs), which are known to be activated by the Sec7 domain of GBF1, also regulated CSFV proliferation. Furthermore, we demonstrated that ARF1 is more important for CSFV infection than other ARF members with Sec7 domain dependence. Subsequent experiments established the function of coatomer protein I (COP I), a downstream effector of ARF1, which is also required for CSFV infection by mediating CSFV invasion. Mechanistically, inhibition of COP I function impaired CSFV invasion by inhibiting cholesterol transport to the plasma membrane, and regulating virion transport from early to late endosomes. Collectively, our results suggest that ARF1, with domain-dependent GBF1 Sec7, activates COP I to facilitate CSFV entry into SUVECs. Importance Classical swine fever (CSF), a highly contact infectious disease, caused by the classical swine fever virus (CSFV) infecting domestic pigs or wild boars, has caused huge economic losses to the pig industry. Our previous studies have revealed that GBF1 and class I and II ARFs are required for CSFV proliferation. However, a direct functional link between GBF1, ARF1, and COP I, and the mechanism of the GBF1-ARF1-COP I complex in CSFV infection is still poorly understood. Here, our data support a model in which COP I supports CSFV entry into SUVECs in two different ways, depending on the GBF1-ARF1 function. On the one hand, the GBF1-ARF1-COP I complex mediates cholesterol trafficking to the plasma membrane to support CSFV entry. On the other hand, the GBF1-ARF1-COP I complex mediates CSFV transport from early to late endosomes during the entry steps.
Collapse
|
9
|
Fatty Acid Synthase Is Involved in Classical Swine Fever Virus Replication by Interaction with NS4B. J Virol 2021; 95:e0078121. [PMID: 34132567 DOI: 10.1128/jvi.00781-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Classical swine fever virus (CSFV), a member of the genus Pestivirus of the family Flaviviridae, relies on host machinery to complete its life cycle. Previous studies have shown a close connection between virus infection and fatty acid biosynthesis, mainly regulated by fatty acid synthase (FASN). However, the molecular action of how FASN participates in CSFV replication remains to be elucidated. In this study, two chemical inhibitors of the fatty acid synthesis pathway [5-(tetradecyloxy)-2-furoic acid (TOFA) and tetrahydro-4-methylene-2R-octyl-5-oxo-3S-furancarboxylic acid (C75)] significantly impaired the late stage of viral propagation, suggesting CSFV replication required fatty acid synthesis. We next found that CSFV infection stimulated the expression of FASN, whereas knockdown of FASN inhibited CSFV replication. Furthermore, confocal microscopy showed that FASN participated in the formation of replication complex (RC), which was associated with the endoplasmic reticulum (ER). Interestingly, CSFV NS4B interacted with FASN and promoted overexpression of FASN, which is regulated by functional Rab18. Moreover, we found that FASN regulated the formation of lipid droplets (LDs) upon CSFV infection, promoting virus proliferation. Taken together, our work provides mechanistic insight into the role of FASN in the viral life of CSFV, and it highlights the potential antiviral target for the development of therapeutics against pestiviruses. IMPORTANCE Classical swine fever, caused by classical swine fever virus (CSFV), is one of the notifiable diseases by the World Organization for Animal Health (OIE) and causes significant financial losses to the pig industry globally. CSFV, like other (+)-strand RNA viruses, requires lipid and sterol biosynthesis for efficient replication. However, the role of lipid metabolism in CSFV replication remains unknown. Here, we found that fatty acid synthase (FASN) was involved in viral propagation. Moreover, FASN is recruited to CSFV replication sites in the endoplasmic reticulum (ER) and interacts with NS4B to regulate CSFV replication that requires Rab18. Furthermore, we speculated that lipid droplet (LD) biosynthesis, indirectly regulated by FASN, ultimately promotes CSFV replication. Our results highlight a critical role for de novo fatty acid synthesis in CSFV infection, which might help control this devastating virus.
Collapse
|
10
|
Bovine Parainfluenza Virus Type 3 (BPIV3) Enters HeLa Cells via Clathrin-Mediated Endocytosis in a Cholesterol- and Dynamin-Dependent Manner. Viruses 2021; 13:v13061035. [PMID: 34072688 PMCID: PMC8228847 DOI: 10.3390/v13061035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bovine parainfluenza virus 3 (BPIV3) is a crucial causative agent of respiratory disease in young and adult cattle. No specific therapies are available for BPIV3 infection. Understanding the internalization pathway of the virus will provide a new strategy for the development of antiviral therapy. Here, the mechanism of BPIV3 entry into HeLa cells was analyzed using RNA silencing and pharmacological inhibitors. Treatment of HeLa cells with hypertonic medium prevented BPIV3 internalization. These results indicated that BPIV3 entered HeLa cells via receptor-mediated endocytosis. Moreover, removing cell membrane cholesterol through MβCD treatment hampered viral penetration but not viral replication. In addition, BPIV3 infection was inhibited by pretreatment with dynasore or chlorpromazine (CPZ) or knockdown of dynamin II or clathrin heavy chain. However, virus entry was unaffected by nystatin, EIPA, wortmannin, or cytochalasin D treatment or caveolin-1 knockdown. These data demonstrated that the entry of BPIV3 into HeLa cells was dependent on clathrin-mediated endocytosis but not on caveolae-mediated endocytosis or the macropinocytosis pathway. Many viruses are transported to endosomes, which provide an acidic environment and release their genome upon separation from primary endocytic vesicles. However, we found that BPIV3 infection required endosomal cathepsins, but not a low pH. In summary, we show, for the first time, that BPIV3 enters HeLa cells through the clathrin-mediated endocytosis pathway, presenting novel insights into the invasion mechanism of Paramyxoviridae.
Collapse
|
11
|
Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021; 9:microorganisms9040761. [PMID: 33917361 PMCID: PMC8067343 DOI: 10.3390/microorganisms9040761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas. Thus, in addition to implementing enhanced biosecurity measures and exploring more effective CSF vaccines, other strategies are also needed for effectively controlling CSF. Currently, more and more research about anti-CSFV strategies was carried out by scientists, because of the great prospects and value of anti-CSFV strategies in the prevention and control of CSF. Additionally, studies on anti-CSFV strategies could be used as a reference for other viruses in the Flaviviridae family, such as hepatitis C virus, dengue virus, and Zika virus. In this review, we aim to summarize the research on anti-CSFV strategies. In detail, host proteins affecting CSFV replication, drug candidates with anti-CSFV effects, and RNA interference (RNAi) targeting CSFV viral genes were mentioned and the possible mechanisms related to anti-CSFV effects were also summarized.
Collapse
Affiliation(s)
- Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yingxin Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| |
Collapse
|
12
|
Shah M, Kumar S. Role of cholesterol in anatid herpesvirus 1 infections in vitro. Virus Res 2020; 290:198174. [DOI: 10.1016/j.virusres.2020.198174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
|
13
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
P108 and T109 on E2 Glycoprotein Domain I Are Critical for the Adaptation of Classical Swine Fever Virus to Rabbits but Not for Virulence in Pigs. J Virol 2020; 94:JVI.01104-20. [PMID: 32581110 PMCID: PMC7431803 DOI: 10.1128/jvi.01104-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
The classical swine fever virus (CSFV) live attenuated vaccine C-strain is adaptive to rabbits and attenuated in pigs, in contrast with the highly virulent CSFV Shimen strain. Previously, we demonstrated that P108 and T109 on the E2 glycoprotein (E2P108-T109) in domain I (E2DomainI) rather than R132, S133, and D191 in domain II (E2DomainII) determine C-strain's adaptation to rabbits (ATR) (Y. Li, L. Xie, L. Zhang, X. Wang, C. Li, et al., Virology 519:197-206, 2018). However, it remains elusive whether these critical amino acids affect the ATR of the Shimen strain and virulence in pigs. In this study, three chimeric viruses harboring E2P108-T109, E2DomainI, or E2DomainII of C-strain based on the non-rabbit-adaptive Shimen mutant vSM-HCLVErns carrying the Erns glycoprotein of C-strain were generated and evaluated. We found that E2P108-T109 or E2DomainI but not E2DomainII of C-strain renders vSM-HCLVErns adaptive to rabbits, suggesting that E2P108-T109 in combination with the Erns glycoprotein (E2P108-T109-Erns) confers ATR on the Shimen strain, creating new rabbit-adaptive CSFVs. Mechanistically, E2P108-T109-Erns of C-strain mediates viral entry during infection in rabbit spleen lymphocytes, which are target cells of C-strain. Notably, pig experiments showed that E2P108-T109-Erns of C-strain does not affect virulence compared with the Shimen strain. Conversely, the substitution of E2DomainII and Erns of C-strain attenuates the Shimen strain in pigs, indicating that the molecular basis of the CSFV ATR and that of virulence in pigs do not overlap. Our findings provide new insights into the mechanism of adaptation of CSFV to rabbits and the molecular basis of CSFV adaptation and attenuation.IMPORTANCE Historically, live attenuated vaccines produced by blind passage usually undergo adaptation in cell cultures or nonsusceptible hosts and attenuation in natural hosts, with a classical example being the classical swine fever virus (CSFV) lapinized vaccine C-strain, which was developed by hundreds of passages in rabbits. However, the mechanism of viral adaptation to nonsusceptible hosts and the molecular basis for viral adaptation and attenuation remain largely unknown. In this study, we demonstrated that P108 and T109 on the E2 glycoprotein together with the Erns glycoprotein of the rabbit-adaptive C-strain confer adaptation to rabbits on the highly virulent CSFV Shimen strain by affecting viral entry during infection but do not attenuate the Shimen strain in pigs. Our results provide vital information on the different molecular bases of CSFV adaptation to rabbits and attenuation in pigs.
Collapse
|
15
|
Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther 2020; 214:107618. [PMID: 32592716 PMCID: PMC7311916 DOI: 10.1016/j.pharmthera.2020.107618] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.
Collapse
|
16
|
Li C, Zheng H, Wang Y, Dong W, Liu Y, Zhang L, Zhang Y. Antiviral Role of IFITM Proteins in Classical Swine Fever Virus Infection. Viruses 2019; 11:v11020126. [PMID: 30704088 PMCID: PMC6409519 DOI: 10.3390/v11020126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
The proteins IFITM1, IFITM2, and IFITM3 are host effectors against a broad range of RNA viruses whose roles in classical swine fever virus (CSFV) infection had not yet been reported. We investigated the effect of these proteins on CSFV replication in mammalian cells. The proteins were overexpressed and silenced using lentiviruses. Confocal microscopy was used to determine the distribution of these proteins in the cells, and immunofluorescence colocalization analysis was used to evaluate the relationship between IFITMs and the CSFV endosomal pathway, including early endosomes, late endosomes, and lysosomes. IFITM1, IFITM2, or IFITM3 overexpression significantly inhibited CSFV replication, whereas protein knockdown enhanced CSFV replication. In porcine alveolar macrophages (PAMs), IFITM1 was mainly located at the cell surface, whereas IFITM2 and IFITM3 were mainly located in the cytoplasm. Following CSFV infection, the distribution of IFITM1 changed. IFITM1, IFITM2, and IFITM3 colocalization with Lamp1, IFITM2 with Rab5 and Rab7, and IFITM3 with Rab7 were observed in CSFV-infected cells. Collectively, these results provide insights into the possible mechanisms associated with the anti-CSFV action of the IFITM family.
Collapse
Affiliation(s)
- Cheng Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Hongqing Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | | | - Wang Dong
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| | - Yaru Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|